
Absorption
Consider a beam passing through an absorbing medium. Define the absorption coefficient, an, by

i.e., the fractional loss in intensity in travelling a distance ds is an ds (convention: positive an means
energy loss).
Suppose the absorption is due to particles (atoms, molecules etc) with number n per unit volume. Each
presents an effective absorbing area (or cross section) sn to the radiation (units, m2).
Within a beam of length ds and area dA, the number of such absorbers is n dA ds. The fraction of
the beam that is absorbed is:

Comparing this with the equation above we have:

Finally, we can define the mass absorption coefficient (or, opacity coefficient) kn (m2 kg-1),

Confusingly, the “absorption” can be positive or negative. This is because stimulated emission, like
true absorption, is proportional to In, and so is conveniently combined into the absorption coefficient.
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The radiative transfer equation

• Is an ordinary differential equation along a straight line
• Combines the effects of absorption and emission
• Gives 

– variation in the specific intensity along a ray
– macroscopic description of the radiation field

To use it, we need
1. To determine an and jn for all physical processes that emit or absorb radiation. We’ll 

consider specific examples later. Details can be complicated and messy.
2. To solve the transfer equation, which looks deceptively simple. The problem is that 

the emission coefficient jn, and sometimes the absorption coefficient an, often 
depend upon In, and not just along a ray. For example, scattering will  couple rays 
in different directions that intersect each  other.

First, we consider simple special cases.
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Medium with no absorption
In this case, an = 0, and

whose solution is :

i.e., the increase in brightness is just the integral of 
the emission coefficient along the line of sight.  

Medium with no emission
In this case, jn = 0, and 
with solution:

i.e., the brightness decreases by the exponential of 
the absorption coefficient integrated along the line 
of sight.
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Optical depth
Distance s isn’t always a good independent variable to use in the transfer equation.
Emission and absorption change the intensity on length scales that can vary enormously.
So we define a new variable, the optical depth, tn

or,

Here s0 is an arbitrary point that sets the zero of the optical depth scale
Optical depth increases along the path of a ray
Given a typical ray passing through a medium, we say that:
• The medium is optically thick if tn > 1 (photons usually absorbed)
• The medium is optically thin if tn < 1 (photons usually pass through)

A medium can often be optically thin at some frequencies yet optically thick at others.
e.g., dusty disks around young stars are:

Optically thick to infra-red emission at l ~ 1 µ m.
Optically thin to emission at mm-wavelengths.
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Cotera et al. 2001

V (0.55µm) I (0.85µm) K (2.25µm)

HH30 protoplanetary disk imaged by HST in optical and near-IR. 
Width of dust lane decreases towards longer wavelengths as dust is 
optically thinner. Width decrease less than predicted if dust is same as 
in ISM, providing evidence for a grayer dust opacity and grain growth 
in the disk.

Source function
Dividing the transfer equation by the absorption coefficient,

Since dtn = an ds, we can write this as:

where we have defined the source function Sn as the ratio between the 
emission and absorption coefficients,
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Formal solution of the transfer equation
Start by writing the transfer equation in terms of optical depth & source function:

Multiply by the integrating factor :

When tn =0, In = In(0). Thus,

Recall that tn=1 implies absorption by a factor of 1/e. 
Interpretation: the final intensity is 

the initial intensity diminished  by absorption, 
plus the integrated source function likewise diminished by absorption. 
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A  candle flame casts a shadow

For a constant source function, the solution becomes,

and as tn ® ¥, In ® Sn. From the transfer equation it is clear this holds 
more generally, i.e., the specific intensity approaches the source 
function at large optical depth.

Soot particles cast shadows, attenuating 
incident beam, but they also add intensity 
with a source function (brightness) that 
depends on soot temperature. Shadow 
vanishes when T(soot) =T(maglite)
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Lecture 3 revision quiz

• To derive the intensity differential in slide 1, what 
assumptions must be made about the distribution 
of absorbers?

• Using a sketch, show how scattering can lead to 
non local coupling of the radiation field with 
radiation from different regions of a nebula 
contributing to the equation of radiation transfer.

• Revise the mathematical technique for solving 
differential equations using an integrating factor 
and derive the formal solution for the equation of 
radiation transfer.

Lecture 3 revision quiz

• Starting from the formal solution of the equation 
of radiation transfer, derive the solution for a 
constant source function.

• Make sketches to explain the physical situations 
described by the solution of the equation of 
radiation transfer in the cases with no absorption, 
no emission, absorption and emission.

• Identify the household items Andrew Cameron 
used for the example in the final slides.



Lecture 3 revision quiz

• In a violent desert sandstorm, the visibility is 
about 10m and the mean sand particle diameter is 
about 20 microns. 
– Estimate the number density of sand particles. 
– Estimate the absorption coefficient a,
– If the sand particles are made of material with 

density 5000 kg m–3, estimate the mass 
absorption coefficient k.


