
Thermal Radiation

Now we consider thermal radiation emitted by matter in thermal equilibrium. 
If the medium is also optically thick, it becomes blackbody radiation.

An extremely good example: 
The cosmic microwave background spectrum,
with TCMB = 2.729�0.004  K.

(COBE, Fixsen et al., 1996, ApJ, 473, 576)

In other cases, such as stars (where we know better), or accretion  discs (where 
we don’t), blackbody radiation provides a useful first approximation to the 
thermal spectrum.
For blackbody radiation, the energy density, flux and intensity depend on 
temperature only.

• If In is not equal to I’n radiation will flow in one direction between the two 
cavities. Violates 2nd law of thermodynamics. Hence, In = I’n

Can show that In is isotropic and independent of the shape of the cavity. It is a 
function only of T (and n, of  course).

In (black body radiation) = Bn (T)
Bn (T) is called the Planck function.

Blackbody Radiation
Consider insulated cavity at uniform temperature T. Photons created and 
destroyed until radiation is in thermal equilibrium with the cavity. Can sample 
the radiation through a small hole.

Specific intensity of bb radiation is a 
function of T only. Proof:

• Imagine two cavities at same T, 
containing radiation  with intensity In
and In’

• Connect cavities with a narrow-band 
filter that passes radiation only around 
frequency n.



Kirchhoff's Law

Relates the emission coefficient jn to the absorption coefficient an for 
thermal emission. 

Imagine placing a thermally emitting material with source function Sn at 
temperature T inside a blackbody cavity of the same T. Intensity of  
blackbody radiation does not depend on cavity shape, so the intensity 
of radiation must be unchanged. Thus, the source function of the 
material must equal the intensity of blackbody radiation:

This is Kirchhoff's Law. Note the distinction:

Thermal radiation for which

Blackbody radiation for which 
Blackbody radiation is a special case of thermal radiation for optically 

thick media. Blackbody radiation is homogenous and isotropic, so 
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Planck Spectrum
To derive the Planck spectrum, we again consider a blackbody cavity of 

dimensions Lx, Ly, Lz.

To find the energy density of the radiation in the cavity, need to know:
• Number of modes (or states) of the EM field inside the cavity.
• Average energy of each mode
Photon of frequency n has wave vector k = (2π/l)n = (2π n /c)n
For l « L, treat the photon as a standing wave. Permitted states in the x

direction say have an integer number of nodes nx, where:
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For large nx, the number of allowed states in a wavenumber  interval Dkx is,

d3k=DkxDkyDkz the number of states is,

Since Lx Ly Lz = V, the number of states per unit volume per unit three-
dimensional wavevector is 2 / (2 π)3, where the extra factor of 2 accounts for 
photons having two polarization  states.

Magnitude of wavevector k2 = kx
2 + ky

2 + kz
2 (cf. radius of sphere in k-space).

Modes with wavenumbers in range k to k+dk occupy shell of volume 4pk2 dk, or 
just k2 dk per unit solid angle (because black body radiation is isotropic).

Multiply by 2 / (2 π)3 to get number of states per unit volume per unit 
frequency per unit solid angle:

rs = 2n2/c3 is the density of states. rs increases without limit at high frequency.  
We recreate a famous error of classical physics if we assume that all states are 
occupied. Instead, we ask what is the average energy per state?

∆"#=
%#∆&#
2(

∆) = ∆"#∆"*∆"+ =
%#%*%+,-&

2( -

2
2( - ,-& =

2
2( - &.,& =

2
2( -

2( -/.
0- ,/ = 2/.

0- ,1

Photon of frequency n has energy hn, where h is  Planck's constant. Each 
state can contain n photons,  where n = 0,1,2,… The total energy per state 
is then, En = nhn

Statistical mechanics: probability of a state having energy En is proportional 
to  e-En/kT where k is Boltzmann's constant. Define b =1/kT.

Weighted average energy is then,

The bracket is a geometric series with sum,

so we have,

i.e., the average occupancy of a state of frequency n is
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The energy per unit volume per unit frequency interval per unit solid angle is 
then the product of the density of states rs and the average energy      per 
state. By definition this is un(W):

Earlier we found that,
For blackbody radiation, where In =Bn , we finally obtain,

This is the Planck law.
We can also write the Planck law per unit wavelength instead of per unit 

frequency,

Bn and Bl do not peak at the same place, because n and l are not linearly 
related. This is a common source of confusion.
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Properties of the Planck Spectrum

• Low frequency limit hn « kT: 
Rayleigh-Jeans law

The classical result. Useful at low 
frequencies,  especially in the radio part of 
the spectrum.

• High frequency limit hn » kT : 
Wien Law

i.e., the spectrum cuts off exponentially at 
high frequency.
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• Increasing T increases Bn(T) at all frequencies
• Wien displacement law. The peak of Bn(T) increases linearly with T,

hnmax =  2.82 kT Þ nmax / T =  5.88 ´ 1010 Hz K-1

NB c/nmax is not the wavelength at which Bl (T) peaks!!!

• Stefan-Boltzmann law: Integrate Bn over frequency to obtain:

• Energy density of blackbody radiation is u(T) = aT4

where a is the radiation constant:

• Flux from an isotropically emitting blackbody surface is F = s T4

where s is the  Stefan-Boltzmann constant:

(NB flux from an isotropic emitting surface is π ´ specific intensity) 
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Lecture 4 revision quiz
• What is the volume of a spherical shell of radius k and 

thickness dk?
• Sanity check: differentiate the right-hand side of equation 

9 to show that:

• Sanity check: find a reference to help you verify:

• Given that the frequency integrated Planck function equals 
sT4/p, show that for black body radiation u = a T4, where 
a = 4s/c.
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