Atomic processes:

Bound-bound transitions (Einstein coefficients)

Radiative processes from electron transitions:

• **Bound-bound**: electron moves between two bound states in an atom or ion. Photon emitted or absorbed.

$$h\nu = \chi_{\rm u} - \chi_{\rm l}$$

• **Bound-free**: electron moves between bound and unbound states. Bound-unbound: ionization. Unbound-bound: recombination

$$hv = \chi_{\text{ion}} - \chi_n + \frac{1}{2}mu^2$$

• **Free-free**: Free electron gains energy by absorbing a photon as it passes an ion, or loses energy by emitting a photon. This emission process is called Bremsstrahlung (braking).

$$hv = \frac{1}{2}mu_2^2 - \frac{1}{2}mu_1^2$$

Photon frequency, $hv_{ij} = |E_i - E_j|$

Hydrogen-like atoms (nucleus + one electron):

$$E_n = -Z^2 \frac{m_e e^4}{2n^2 \hbar^2} = -\frac{Z^2 R}{n^2}$$

where

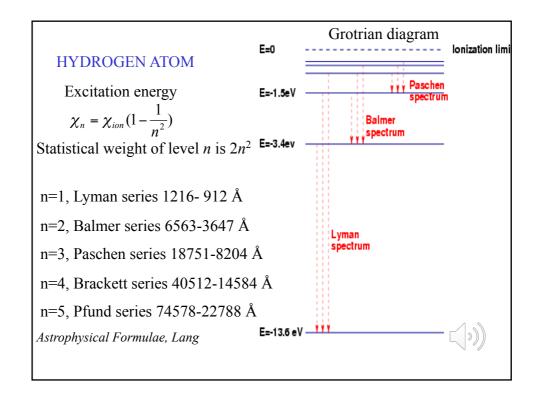
n is an integer (the principal quantum number), Z is nuclear charge in units of e, and

 $R \cong 13.6 \text{ eV}$ is a constant.

Spectrum consists of a series of lines, labelled by the final n of downward transition, e.g., the Lyman series are transitions to n=1.

Lyman α is the transition n=2 to n=1, with wavelength $\lambda(\text{Ly}\alpha) = 121.6$ nm.

Transition between two atomic energy levels:



Boltzmann's Law

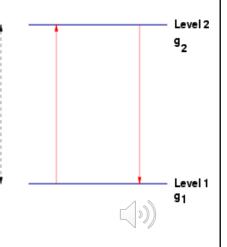
• In thermodynamic equilibrium at temperature T, the populations n_1 and n_2 of any two energy levels are given by Boltzmann's law,

$$\frac{n_2}{n_1} = \frac{g_2}{g_1} e^{-(E_2 - E_1)/kT}$$

- E_1 and E_2 are the energies of the levels relative to the ground state.
- Some energy levels are degenerate (i.e., can hold >1 electron). Statistical weights g₁, g₂ give the number of sublevels.
- In terms of photon frequency: $\frac{n_2}{n_1} = \frac{g_2}{g_1} e^{-hv/kT}$

Bound-bound transitions: Einstein coefficients

• Kirchhoff's Law was introduced in Lecture 4 and relates the absorption and emission coefficients for black body radiation,


$$B_{v} = \frac{j_{v}}{\alpha_{v}}$$

- This law
 - was derived without using any knowledge of microscopic processes
 - Must imply some relation between emission and absorption processes at an atomic level

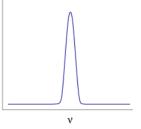
2-level atom

- Einstein considered the case of a two level atom:
 - Two energy levels
 - Energy E_1 , statistical weight g_1
 - Energy $E_1 + \Delta E = E_1 + hv_0$, statistical weight g_2
 - 3 important radiative processes follow

1. Spontaneous emission

- Atom decays spontaneously from level 2 to level 1
- Photon emitted
- Occurs independently of the radiation field
- **Define**: The Einstein A-coefficient, A_{21} , is the transition rate per unit time for spontaneous emission, typically $\sim 10^8 \text{ s}^{-1}$

2. Absorption


- Photons with energies close to $h v_0$ cause transitions from level 1 to level 2
- The probability per unit time for this process will evidently be proportional to the mean intensity at the frequency v_0

Line profile $\phi(v)$

Need to define a line profile function $\phi(v)$:

- describes the probability that a photon of frequency V will cause a transition
- $\phi(v)$ is sharply peaked at v_0 , with width Δv and normalization,

$$\int_0^\infty \phi(v) dv = 1$$

Define: The transition rate per unit time for absorption is $B_{12}\overline{J}$

where,
$$\bar{J} = \int_0^\infty J_\nu \phi(\nu) d\nu$$

with J_{ν} being the mean intensity and $\phi(\nu)$ the line profile function B_{12} is one of the Einstein B-coefficients

Note: we have been careful to distinguish between J_{ν} and \bar{J} , but this is a technicality. If J_{ν} changes slowly over the line width $\Delta \nu$ of the line, then $\phi(\nu)$ is almost $\delta(\nu - \nu_0)$ and $\bar{J} \cong J_{\nu_0}$

3. Stimulated emission

Planck's law does not follow from considering only spontaneous emission and absorption. Must also include *stimulated emission*, which like absorption is proportional to \bar{J}

Define: $B_{21}\overline{J}$ is the transition rate per unit time for stimulated emission.

 B_{21} is a second Einstein B-coefficient. Stimulated emission occurs into the same state (frequency, direction, polarization) as the photon that stimulated the emission.

Lecture 6 revision quiz

- Make sketches to illustrate the physical processes involved in b-b, b-f, and f-f transitions.
- Calculate the wavelengths of the first 3 lines of the hydrogen Balmer series: Hα, Hβ, Hγ.
- Define the statistical weight *g* of an atomic energy level.
- Write down Boltzmann's Law and define all symbols used and their units.

