Free-free transitions and Scattering

- An electron passing close to an ion feels an acceleration. An accelerating charge produces radiation (recall Larmor's formula). This is free-free emission, also called *Bremsstrahlung*:
 - Important at high temperatures, where the plasma is highly ionized.
 - Depends upon temperature T, ion charge Z, and electron, ion densities n_e and n_i. For Thermal
 Bremsstrahlung, the power per unit volume is proportional to (see Rybicki & Lightman, 5.2):

$$T^{1/2}n_en_iZ^2$$

Free-Free absorption—I

- A free electron can also *gain* energy during a collision with an ion by absorbing a photon. This is *free-free absorption*.
- A free electron passing an ion can emit or absorb radiation while it is close enough. At temperature *T*, thermal velocity is

$$(1/2)m_{\rm e}v^2 \approx kT$$

• and the time they are close enough will be proportional to

$$v^{-1} \propto T^{-1/2}$$

Free-Free absorption-II

• If the density is ρ , the number of systems able to participate is

$$\propto \rho T^{-1/2}$$

• A single system has an absorption coefficient proportional to Z^2v^{-3} , where Z is the charge number of the ion. Then,

$$\kappa_v \propto Z^2 \rho T^{-1/2} v^{-3}$$

• Most absorption happens near the peak of $B_v(T)$, so since $v_{\text{max}} \sim T$, an intensity-weighted integral over frequency gives *Kramers' Law*:

$$\kappa_{\it ff} \propto \rho T^{-7/2}$$

Scattering

- For thermal emission the source function $S_v=B_v(T)$ is:
 - Independent of the incident radiation field
 - A function only of the local temperature
- Another important emission process is scattering, which depends entirely on the incident radiation field

Incoming radiation

- Differential cross section or scattering phase function gives probability of radiation being scattered from incident to scattered direction
- Example:
 - Electron scattering: photons scatter off free electrons. This is called Thomson scattering for low energies, and Compton scattering at high energies.

Electron scattering

• Free electrons scatter radiation with the same efficiency at all wavelengths. Absorption cross-section (m² per electron) is:

$$\sigma_{es} = \frac{8\pi}{3} \left(\frac{e^2}{4\pi \varepsilon_0 m_e c^2} \right)^2$$

• which numerically is 6.7×10^{-29} m². The opacity is

$$\kappa_{es} = \frac{N}{\rho} \sigma_{es}$$

· which for pure hydrogen is,

$$\kappa_{es} = 0.04 \text{m}^2 kg^{-1}$$

- This process is called *Thomson scattering* or *electron scattering*. It becomes the most important opacity source at high temperatures.
- At high energies, when $hv \sim m_e c^2$, this description breaks down. Relativistic effects need to be taken into account – this is the regime of *Compton scattering* or *inverse Compton scattering*.

Isotropic scattering

Consider the simplest case:

- Isotropic scattering: Scattered radiation is emitted uniformly across all solid angles → emission coefficient is independent of solid angle
- Coherent scattering: Scattered radiation has the same frequency distribution as the incoming radiation (also called *elastic scattering*) i.e., no redistribution of energy across frequencies
- The astrophysically important case of electron scattering by nonrelativistic electrons approximately meets these restrictions

Transfer equation for pure scattering

• For coherent isotropic scattering, power j_{ν} emitted per unit volume per unit frequency range = power absorbed:

$$j_{v} = \sigma_{v} J_{v}$$

- Here, σ_{ν} is the absorption coefficient for the scattering process (the scattering coefficient), and J_{ν} is the mean intensity as before.
- Source function:

$$S_v \equiv \frac{j_v}{\sigma_v} = J_v \equiv \frac{1}{4\pi} \int I_v d\Omega$$

• For pure scattering, the transfer equation becomes,

$$\frac{dI_{v}}{ds} = -\alpha_{v}I_{v} + j_{v} = -\sigma_{v}(I_{v} - J_{v})$$

- Notes:
 - J_v is the integral of I_v over all directions. The transfer equation for scattering no longer depends simply on local T.
 - scattering coefficient is usually called σ_v . Don't confuse with the cross section per atom. σ_v has the same units as the absorption coefficient α_v , i.e., [length-1].

Scattering and absorption

Suppose we have a material in which there is both thermal emission with an
absorption coefficient α₁, and isotropic coherent scattering with scattering
coefficient σ₂. The transfer equation then has two terms,

$$\frac{dI_{v}}{ds} = -\alpha_{v}(I_{v} - B_{v}) - \sigma_{v}(I_{v} - J_{v})$$
$$= -(\alpha_{v} + \sigma_{v})(I_{v} - S_{v})$$

• The source function is still the ratio of the emission to the absorption coefficients,

$$S_{v} = \frac{\alpha_{v} B_{v} + \sigma_{v} J_{v}}{\alpha_{v} + \sigma_{v}}$$

The net absorption coefficient (α_V + σ_V) can be used to define the optical depth
 dτ_V = (α_V + σ_V) ds exactly as before.

Lecture 10 revision quiz

- The differential cross section (or scattering phase function) for electron scattering is $\pi \, r_e^2 \, (1 + \cos^2 \theta)$ where r_e is the classical electron radius and θ is the angle between the incident and scattered radiation. Show that the total cross section for electron scattering is given by the formula in the notes.
- Evaluate the absorption cross-section (in m² per electron) for electron scattering.
- Work through the steps to derive the equation of radiation transfer for a purely scattering medium and for a medium that has scattering and absorption.

Lecture 10 revision quiz

- Evaluate the absorption cross-section (in m² per electron) for electron scattering.
- What type of source function (thermal or scattering) is most appropriate to compute the spectrum emanating from:
 - The Orion Nebula?
 - The solar white-light corona?
 - The solar photosphere?
 - A neon discharge tube?
 - A candle flame?
 - White clouds?
 - Blue sky?