Nebular emission spectra

- Four types of emission from a Stromgren sphere:
 - Recombination lines of H, He
 - Collisionally excited lines of metals. Optical: mostly forbidden lines of O, N, S, Ar, Ne. UV: C, Si, Mg.
 - Some continuum (f-f, f-b, 2-photon) emission. f-f and f-b significant only at radio wavelengths.
 - Other emission lines: resonance-fluorescence, dielectronic recombination, etc

Hydrogen recombination spectrum

- Einstein A coefficients typically $A \sim 10^6 \text{ s}^{-1}$
- Collision rates typically $q \sim 10^{-4} \text{ cm}^3 \text{ s}^{-1}$
- Hence collisions for H become important only when

$$N_e \ge \frac{A}{q} \sim 10^{0} \text{ cm}^3.$$

- So collisions are unimportant at nebular densities
- Detailed balance for H gives level pops N_{nL} :

$$N_{p}N_{e}\alpha_{nL}(T) + \sum_{n'>n}^{\infty} \sum_{L'} N_{n'L'} A_{n'L',nL} = N_{nL} \sum_{n''=1}^{n-1} \sum_{L''} A_{nL,n''L''}$$

Recombinations into state nL

Radiative decays into *nL* from higher levels

Radiative decays from *nL* to lower levels

Emissivity from populations

- This is a set of n x L linear equations in n x L unknowns.
 - Choose N_e, T_e
 - Look up α_{nL} for this temperature
 - Solve for populations levels N_{nL} with linear algebra
- Once level populations are known, the emission produced by any transition is

$$j_{nn'} = \sum_{n'=1}^{n-1} \sum_{L'=L\pm 1} N_{nL} A_{nL,n'L'}$$

- In practice, there are many routes into each level other than direct recombination
 - Hence level pops depend mainly on Einstein A values, only weakly on N_e , T_e .

So far we have neglected:

- Collisional excitation and deexcitation.
 - kT << ΔE for excitation n=1 to n=2 so that's OK
 - Critical density for collisional de-excitation is N_{crit}~10⁹ cm⁻³, so that's OK too
- Input to *nL* via absorption from lower levels
 - Hydrogen electrons decay to ground state (n=1) in 10^{-6} s, so that's more or less OK
 - However, absorptions from ground state can and do occur
 - In fact cross section for absorption in lower Lyman lines is greater than for photoionisation from n=1

Photoionization versus Lyman lines

• Cross sections for Lyman-line absorption:

Line	λ(Å)	A (sec ⁻¹)	a ₀ (cm ²)	τ/τ _{912Å}
Ly α	1215.67	6.26x10 ⁸	5.90x10 ⁻¹⁴	9366
Ly β	1025.72	1.67x10 ⁸	9.46x10 ⁻¹⁵	1501
Ly γ	972.54	6.82x10 ⁷	3.29x10 ⁻¹⁵	522
Ly 10	920.96	4.21x10 ⁶	1.72x10 ⁻¹⁶	27
Ly 15	915.82	1.24x10 ⁶	5.00x10 ⁻¹⁷	8
Ly 20	914.04	5.24x10 ⁵	2.10x10 ⁻¹⁷	3

• At 912Å the cross section for photoionization from n=1 is 6.30×10^{-18} cm²

Case A and Case B

- Traditionally nebulae are said to be either:
- Case A:
 - all Lyman line photons escape the nebula
 - No Lyman line absorptions occur
 - Nebula is optically thin, very faint
 - Earlier detailed balance relation is OK
- Case B:
 - All Lyman line photons re-absorbed by other atoms
 - Downward transitions to ground state aren't included in summations
 - In real life, almost everything is Case B or close to it:

$$N_p N_e \alpha_{nL}(T) + \sum_{n'>n}^{\infty} \sum_{L'} N_{n'L'} A_{n'L',nL} = N_{nL} \sum_{n'=2}^{n-1} \sum_{L''} A_{nL,n''L''}$$

What's good about Case B

- Decays to n = 1 don't count, so every decay eventually goes to n = 2
- All transitions to n = 2 are in the optical
- · So every ionization produces an optical Balmer-line photon
- Number of optical Balmer-line photons = number of ionizing photons emitted by the central star
- Level populations depend almost exclusively on the Einstein A coefficients, weakly on $N_{\rm e}, T_{\rm e}$.
- Line ratios (more or less) fixed by atomic physics
- By measuring $H\beta$ alone, we can derive the number of ionizing photons from the central star

Line ratios for Balmer transitions

Temperature 5000 1000010000 20000 2000

N_e (cm ³)	10 ⁴	10³	10°	10³	10 ⁴
$lpha_{{\sf H}eta}^{\sf eff}$	5.44	3.02	3.07	1.61	1.61
$I(H\alpha)/I(H\beta)$	3.00	2.86	2.81	2.75	2.74
$I(H\gamma)/I(H\beta)$	0.460	0.468	0.471	0.475	0.47(
$I(H\varepsilon)/I(H\beta)$	0.155	0.159	0.163	0.163	0.163

The fate of $L\alpha$ photons

- In Case B, Balmer-series photons leave the nebula but $L\alpha$ photons are trapped
- Eventually some event will destroy $L\alpha$ photons
 - Random walk to edge of nebula and escape
 - Wavelength shift to optically-thin line wings and escape
 - $-\,$ Destruction by hitting a dust grain. A single grain can mop up many $L\alpha$ photons. Grain heats up, re-emits in IR.
 - Resonance fluorescence: L β (or He L α) photon excites a transition at the same wavelength in another species.
 - e.g., He II Lα 303.78Å can excite OIII 303.80Å

Lecture 18 revision quiz

- Use the information in the table on slide 5 to calculate the number density N_1 of hydrogen in the ground state, for which a L α photon would have a mean free path of 1 pc.
- What fraction of all Balmer-line photons produced at typical nebular temperatures and densities emerge in the Hβ line?
- Why is it safe to ignore (a) collisional excitation and (b) collisional de-excitation of hydrogen at typical nebular densities and temperatures?

