JH ASTRONOMY AND ASTROPHYSICS: AS 3015

Nebulae: Tutorial Questions 1

1. A star of radius R has uniform brightness B. Fill in the missing steps in the derivation given in the lectures to show that the flux F at distance r is given by,

$$
F=\pi B\left(\frac{R}{r}\right)^{2}
$$

consistent with the inverse square law.
2. A pinhole camera consists of a small circular hole of diameter d, a distance L from the film (measured normal to the film).

Show that the flux F at the film plane depends upon the brightness field $I_{v}(\theta, \phi)$ according to,

$$
\begin{gathered}
F_{v}=\frac{\pi \cos ^{4} \theta}{4 f^{2}} I_{v}(\theta, \phi) \\
\text { where } f=L / d .
\end{gathered}
$$

3. By differentiating the Planck function $B_{v}(T)$ with respect to v, show that the peak occurs at, $h v_{\max }=2.82 \mathrm{kT}$ (this ends up requiring solution of an equation of the form $x=3\left(1-e^{-x}\right)-$ do this with trial and error using a calculator). Derive the Rayleigh-Jeans and Wien limiting forms of the Planck function.
