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I. INTRODUCTION

The Lyman-α (Lyα) line of neutral hydrogen (H i) is an important probe of galaxy formation
and evolution throughout cosmic history [16]. However, due to the complex nature of resonant
scattering of Lyα photons in optically-thick environments, the necessary radiative transfer mod-
eling and interpretation of observations are often challenging [6]. Encouragingly, the fundamental
physical processes are well studied and a few analytic solutions exist in the literature for idealized
cases [7, 8, 12, 14]. Furthermore, the development of Monte Carlo radiative transfer (MCRT) codes
with acceleration schemes has allowed for an accurate, universal approach to Lyα calculations [e.g.
3, 4, 23]. The MCRT method is commonly used to analyze 3D hydrodynamical simulations in
post-processing and explore parameter spaces in empirical modeling. In these notes we provide
brief introductions to different MCRT-based methods for Lyα radiative transfer. The primary goal
is a high-level understanding of the underlying physics through numerical thought experiments.
Although the accompanying codes are not practical for research applications, they are reason-
ably efficient while still giving “correct” results and transparent enough to provide intuition about
unique aspects of Lyα MCRT. In Section II, we introduce the radiative transfer equation, discuss
properties of frequency redistribution, and derive an analytic solution for the case of an isothermal
uniform slab. In Section III, we present a simplified version of the standard MCRT solution. In
Section IV, we provide an alternative approach based on discrete diffusion techniques.
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II. RADIATIVE TRANSFER EQUATION

The specific intensity Iν(r,n, t) encodes all information about the radiation field taking into
account the frequency ν, spatial position r, propagation direction unit vector n, and time t. The
general Lyα radiative transfer equation is given by

1

c

∂Iν
∂t

+ n · ∇Iν = jν − kνIν +
x

kν′Iν′Rν′,n′→ν,ndΩ′dν ′ , (1)

where kν is the absorption coefficient, jν is the emission coefficient, and the last term accounts for
frequency redistribution after partially coherent scattering [6]. The redistribution function R is
the differential probability per unit initial photon frequency ν ′ and per unit initial directional solid
angle Ω′ that the scattering of such a photon traveling in direction n′ would place the scattered
photon at frequency ν and directional unit vector n [for the historical development see 9, 21, 22].

It is convenient to convert to the dimensionless frequency

x ≡ ν − ν0
∆νD

, (2)

where ν0 = 2.466× 1015 Hz is the frequency of the Lyα transition, ∆νD ≡ (vth/c)ν0 is the Doppler
width of the profile, and the thermal velocity in terms of T4 ≡ T/(104 K) is vth ≡ (2 kBT/mH)1/2 =

12.85T
1/2
4 km s−1. Furthermore, the natural Lyα line width is ∆νL = 9.936 × 107 Hz and the

‘damping parameter’, a ≡ ∆νL/2∆νD = 4.702 × 10−4 T
−1/2
4 , represents the relative broadening

of the natural line. The frequency dependence of the absorption coefficient is given by the Voigt
profile φVoigt. For convenience we define the Hjerting-Voigt function H(a, x) =

√
π∆νDφVoigt(ν) as

the dimensionless convolution of Lorentzian and Maxwellian distributions,

H(a, x) =
a

π

∫ ∞
−∞

e−y
2
dy

a2 + (y − x)2
≈

e
−x2 ‘core’
a√
πx2

‘wing’
. (3)

The approximate frequency marking the crossover from core to wing is denoted by xcw, i.e. where
exp(−x2cw) ' a/

√
πx2cw.

Expressions for the redistribution function and discussions of its properties may be found in
[10, 11, 15, 21]. One notational simplification is that the scattering probability depends only on the
angle between the incoming and outgoing directions, µ ≡ cos θ = n ·n′. Therefore, with an appro-
priate choice of a scattering phase function p(µ) normalized such that

∫ 1
−1 p(µ) dµ = 1, we define

the outgoing angular-averaged redistribution function as Rx′→x ≡ (4π)−2
s

dΩ′dΩRx′,n′→x,n =∫ 1
−1 p(µ)Rx′→x,µ dµ. Furthermore, the conservation of photons in Eq. (1) requires a normalization1

for the redistribution function of
∫∞
−∞Rx′→x dx′ = 1, in accordance with the previous interpre-

tation as a probability distribution function. Finally, the conversion to dimensionless frequency
introduces a constant multiplicative factor, e.g. specific intensity, Ix = ∆νDIν , and frequency
redistribution, Rx′→x = (∆νD)2Rν′→ν . Further discussion of the behavior of the redistribution
function is provided in Appendix A, but for now we summarize the most relevant properties of
redistribution in the wings by the average drift back toward the core and the rms displacement

〈δx〉 ∼ −1

x
and

√
〈δx2〉 ∼ 1 . (4)

1 This convention differs from that of Hummer [10], but is similar to that of Dijkstra [6]. For reference, our angle-
averaged definition is related as Rus

x′→x = RHummer
x′→x /φVoigt(x

′).
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To simplify further, we define the zeroth and first order angular moments of the radiation
intensity as Jx ≡ 1

4π

∫
dΩIx and Hx ≡ 1

4π

∫
dΩIxn. These quantities are related to the energy

density and flux by Ex = 4π
c Jx and F x = 4πHx, respectively. The emissivity is discretized as

creation of photon MC packets each characterized by a particular energy εk, position rk, frequency
xk, and emission time tk, such that jx ≈

∑
εkδ(rk)δ(xk)δ(tk)/(4π), where the index k refers to an

individual MC packet. Without loss of generality we temporarily omit the emissivity term. The
angular-averaged form of Eq. (1) is the zeroth order moment equation:

1

c

∂Jx
∂t

+∇ ·Hx = −kxJx +

∫
kx′Jx′Rx′→xdx′ . (5)

In the diffusion limit we may apply Fick’s law as a closure relation to the moment equations:2

Hx ≈ −
∇Jx
3kx

, (6)

where the factor of 3 arises from the number of dimensions. Likewise, in the wings we can take
advantage of the Fokker-Planck approximation to rewrite the redistribution integral as [18]

− kxJx +

∫
kx′Jx′Rx′→xdx′ ≈ ∂

∂x

(
kx
2

∂Jx
∂x

)
, (7)

which naturally transforms frequency redistribution into a localized diffusion process.3 Thus, after
incorporating Eqs. (6) and (7) we have

1

c

∂Jx
∂t

= ∇ ·
(
∇Jx
3kx

)
+

∂

∂x

(
kx
2

∂Jx
∂x

)
. (8)

This form places diffusion in space and frequency on equal footing.
At this point, we make additional assumptions to obtain an analytic solution for a static,

isothermal, optically thick slab. This implies spatial-frequency independence for the absorption
coefficient, k(z, x) = k(z)H(x). In steady-state we discard the time-derivative and add a constant
luminosity source, i.e.

t
jνdzdνdΩ = L with the spatial, frequency, and angular dependence

isolated as η(z), H(x)/
√
π, and 1/(4π), respectively (all normalized to unity):

1

k(z)

∂

∂z

(
1

k(z)

∂J

∂z

)
+

3

2
H(x)

∂

∂x

(
H(x)

∂J

∂x

)
= −3L

4π

η(z)

k(z)

H2(x)√
π

. (9)

We then apply a change of variables with dx =
√

3/2H(x) dx̃, dz = dz̃/k(z), and J = J̃L
√

6/(4π).
Here, z̃ represents the cumulative optical depth at line center starting from the center of the slab.
Now in terms of the overall width of the line, H2(x) is sharply peaked at x = 0, so we can replace
it with a delta function. To preserve normalization, we note that

∫
3H2dx̃ =

∫
3H2(dx̃/dx) dx =∫ √

6H dx =
√

6π. This gives a final equation of

∂2J̃

∂z̃2
+
∂2J̃

∂x̃2
= −η(z̃)

k(z̃)
δ(x̃) . (10)

2 Fick’s law can be derived by taking the first order moment equation, i.e.

1

c2
∂F ν

∂t
+∇ · Pν = −kνF ν

c
,

and assuming the Eddington approximation Pν = 1
3
Eν I and that the flux changes slowly in time ∂F ν/∂t ≈ 0.

3 The form of Eq. (7) technically violates photon conservation, but the correction factor proposed by Rybicki &
Dell’Antonio [18] with frequency derivatives of n ·Hx may safely be ignored for nearly isotropic radiation fields.
Furthermore, Eq. (7) does not account for detailed balance, atomic recoil, or stimulated scattering. However, these
are unlikely to be significant for many of the applications that utilize this approximation [17].
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In Appendix B, we derive a general solution for the emission from an optically thick slab. For
a central point source, the following is accurate when aτ0 & 103 [7, 8, 13]:

J(x)∫
J(x)dx

=

√
π

6

x2

aτ0
sech

(√
π3

54

x3

aτ0

)
. (11)

Eq. (11) is a symmetric, double-peaked profile with peaks located at xp = ±1.0664 (aτ0)
1/3, which

is derived by setting ∂J/∂x = 0 to obtain the transcendental relation x̄ tanh x̄ = 2/3 with x̄ =√
π3/54x3/aτ0. This characteristic escape frequency can be derived with a back of the envelope

calculation. Recall that the typical redistribution in the wings generates an average drift back
toward the core of 〈δx〉 ∼ −1/x and a RMS displacement of

√
〈δx2〉 ∼ 1 [15]. Therefore, a wing

photon tends to return to the core after Nscat,wing ∼ x2 scatterings. In the optically-thick regime,
escape occurs after an excursion in the wing to a characteristic escape frequency determined by

setting the RMS displacement to the slab size, i.e. N
1/2
scat,wingλmfp ≈ R. Therefore, the escape

frequency is approximately

xesc ≈
(
aτ0√
π

)1/3

, (12)

the optical depth at this frequency is τesc ≈ xesc, the mean free path is λmfp ≈ R/xesc, and the
trapping (or diffusion) time is ttrap ≈ xesctlight [2]. However, the total number of scatterings
including core photons with short mean free paths is higher and may be estimated from the
cumulative escape probability via Nscat ∼ P−1esc ∼ [2

∫∞
xesc

dxφ(x)/x2]−1 ∼ τ0 [1]. Physical scattering
dominates the computational time for Lyα MCRT codes, so we expect the runtime to scale as
tMC ∝ τ0. With a core-skipping acceleration scheme this is improved to tMC,cs ∝ x2esc ∝ (aτ0)

2/3.
In the next sections we outline two MCRT-based methods designed to further our intuition about
Lyα transport in optically-thick media.

III. CONTINUOUS TRANSPORT

For simplicity we will only consider the static, uniform slab setup and we describe our algorithm
in terms of individual photon trajectories. We do not consider transport through multiple cells,
which in general requires Doppler-shifting into the correct local comoving frame in case the density,
temperature, or bulk velocity of the gas changes. We first initialize the photon position at the center
z = 0 and frequency at line center x = 0. We then combine scattering and movement together
until the photon escapes, i.e. z > |Z|. At each scattering event the photon changes frequency. If
the photon is in the core (|x| . 3 then we assign the new frequency to be x = ±xcs, which is a
core-skipping technique that assumes the mean-free-path is zero for core photons. If the photon is
in the wing then we approximate the change in frequency by the first two frequency moments of the
redistribution function, i.e. the new frequency is drawn from a Gaussian distribution with mean
x− 1/x and standard deviation 1. Finally, the photon moves by considering the random direction
and interaction distance. The directional cosine with respect to the z-axis is drawn uniformly
in µ ∈ [−1, 1]. The optical depth to the next scattering event is drawn from an exponential
distribution as ∆τ = − log(ξ), based on the uniform random number ξ ∈ [0, 1]. Finally, ray tracing
reduces to a trivial integration, such that the traversed optical depth is proportional to distance,
which means that the change in slab position for wing photons is

∆z = µ
∆τ

k(x)
≈ −µ log(ξ)

√
πZ

aτ0
x2 . (13)
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If the photon remains within the slab then the loop continues with a fresh iteration of scattering
and moving. This represents the most basic (functional) Lyα MCRT code and we provide the
following Python code as a demonstration.

## Track a single photon to escape ##

def photon():

z = 0. # Initialize each photon at the center of the slab

x = 0. # Initialize at line center: x = (nu - nu0) / DnuD

while np.abs(z) < zmax:

## Scatter: 'frequency redistribution'

if np.abs(x) < x_cw: # Core-skipping = Zero mean free path approximation

x = x_cs

if rand() < 0.5: x = -x # Force symmetry for core-skipping

else: # Wing scattering approximated by <dx> = -1/x and <dx^2> = 1

x += normal() - 1. / x

## Move: Photon z position changes by cos(theta) * dtau / (k0 * H(x))

mu = 2.*rand() - 1. # Random direction: uniformly distributed in [-1,1]

dtau = -np.log(rand()) # Random optical depth: dtau = -ln(R)

z += mu * dtau * dz0 * x * x # i.e. dz = mu dtau / (k0 * H(x))

return x

IV. DISCRETE DIFFUSION

The second method MCRT-based method is based on a discretized version of Eq. (8) rather
than the continuous version from Eq. (1). A finite-volume discretization in space and frequency
transforms the diffusion terms into source and sink terms dictating the movement of photon packets
through cell boundaries and frequency bins. This process is quantitatively described by ‘leakage
coefficients’. We define the cell- and bin-averaged intensity by Ji,j ≡ (∆Vi∆xj)

−1 s
i,j Jx dV dx,

with ∆Vi ≡
∫
i dV denoting the volume of cell i, and ∆xj ≡

∫
j dx the width of frequency bin j.

The spatial diffusion term becomes

∇ ·
(
∇Jx
3kx

)
−→

∑
δi

kδiz-leak(Jδi,j − Ji,j) , (14)

where the summation is over all neighboring cells δi, the cells sharing a face with cell i. This
discretization of the diffusion operator is based on a piecewise linear reconstruction with inflections
at cell centers and interfaces. In the Monte Carlo interpretation the right hand side of Eq. (14)
provides the mechanism for spatial transport. Likewise, the frequency diffusion term is

∂

∂x

(
kx
2

∂Jx
∂x

)
−→

∑
δj

kδjx-leak(Ji,δj − Ji,j) , (15)

where the summation is over neighboring frequency bins δj. In the Monte Carlo picture the
exchange on the right hand side of Eq. (15) provides the mechanism for frequency redistribution.

Substituting Eqs. (14) and (15) into Eq. (8) yields the fundamental equation for the resonant
discrete diffusion Monte Carlo (rDDMC) scheme for resonant line transfer with a symmetric treat-
ment of diffusion in both space and frequency [20]:

1

c

∂Ji,j
∂t

=
∑
δi

kδiz-leak(Jδi,j − Ji,j) +
∑
δj

kδjx-leak(Ji,δj − Ji,j) . (16)
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Eq. (16) is arranged to highlight photon flux conservation across cell/bin interfaces. The relative
magnitudes of the leakage coefficients express the likelihood of the respective diffusion events.

The exact form for the leakage coefficients is determined by the specific geometry and dis-
cretization scheme. For concreteness, the general leakage coefficients for non-uniform Cartesian
coordinates with ∆zi denoting the cell width in the leakage direction, and ∆xj denoting the fre-
quency bin width (see [5] for a derivation; we also give the mean-free-paths for an isothermal,
uniform medium with uniform spatial and frequency meshes):

kδiz-leak =
1

3∆zi

2

ki,j∆zi + kδi,j∆zδi
⇒ λδiz-leak = 3kj(∆z)

2 (17)

and

kδjx-leak =
1

∆xj

1

k−1i,j ∆xj + k−1i,δj∆xδj
⇒ λδjx-leak =

(
k−1j + k−1δj

)
(∆x)2 . (18)

Here, the cell- and bin-averaged coefficients are defined by ki,j ≡ (∆Vi∆xj)
−1 s

i,j kx dV dx. We
note that other discretizations or weighting kernels are possible but for simplicity we employ
a tophat filter to simulate a piecewise constant frequency representation. Specifically, the Lyα
absorption coefficient is kx = k0H(a, x), where k0 denotes the value at line center and the Hjerting–
Voigt function is defined in Eq. (3) with a second order expansion in a of [see 19]

H(a, x) ≈ e−x2 +
2a√
π

(
2xF (x)− 1

)
+ a2e−x

2(
1− 2x2

)
, (19)

where the Dawson integral is F (x) =
∫ x
0 e

y2−x2dy. Integrating Eq. (19) over frequency yields

H(a, x) ≡
∫ x

0
H(a, y) dy ≈

√
π

2
erf(x)− 2a√

π
F (x) + a2 x e−x

2
, (20)

where the error function is erf(x) ≡ 2
∫ x
0 e
−y2dy/

√
π. Thus, the mean absorption coefficient is

kj = k0
(
H(a, xj + ∆xj/2)−H(a, xj −∆xj/2)

)
/∆xj , (21)

where for clarity we have dropped the spatial index and introduced the frequency bin center and
width as xj and ∆xj , respectively.

The Lyα rDDMC procedures used to solve Eq. (16) are similar to the continuous implementation
of MCRT [see e.g. 6]. However, instead of following continuous photon trajectories, the DDMC
packets are tracked by the cell index and frequency bin. When precise positions and frequencies are
needed they can be drawn uniformly from the cell volume or bin interval. After a DDMC packet
is initialized, leakage proceeds according to the smallest interaction distance:

∆` = min
δi,δj

(
∆`δiz-leak,∆`

δj
x-leak

)
, (22)

is executed to transport the photon packet across the appropriate cell or frequency bin interface.
Here, the indices δi and δj run over all neighboring cells and frequency bins. The respective lengths
are determined by drawing the effective optical depths from exponential distributions, such that

∆`X = − log(ξ)/kX for kX ∈
{
kδiz-leak, k

δj
x-leak

}
, (23)

where ξ is a random number uniformly distributed in [0, 1], and the label X specifies the transport
process. The result is shown in Fig. 1, which exactly matches the analytic solution from Eq. (11).
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lambda_z = 3. * k * dz**2 # Mean free path for spatial leakage

k_inv = np.hstack([np.inf, 1./k[1:] + 1./k[:-1], np.inf])

lambda_x_L = k_inv[:-1] * dx**2 # Mean free path for frequency leakage (left)

lambda_x_R = k_inv[1:] * dx**2 # Mean free path for frequency leakage (right)

## Track a single photon to escape ##

def photon():

iz = iz0 # Initialize each photon at the center of the slab

ix = ix0 # Initialize at line center: x = (nu - nu0) / DnuD

while True:

dl_min = np.inf

## Check spatial leakage (left)

dl_z_L = -np.log(rand()) * lambda_z[ix] # dl = -ln(R) / k_leak

if dl_z_L < dl_min:

action = MOVE_LEFT

dl_min = dl_z_L

## Check spatial leakage (right)

dl_z_R = -np.log(rand()) * lambda_z[ix] # dl = -ln(R) / k_leak

if dl_z_R < dl_min:

action = MOVE_RIGHT

dl_min = dl_z_R

## Check frequency leakage (left)

dl_x_L = -np.log(rand()) * lambda_x_L[ix] # dl = -ln(R) / k_leak

if dl_x_L < dl_min:

action = FREQ_LEFT

dl_min = dl_x_L

## Check frequency leakage (right)

dl_x_R = -np.log(rand()) * lambda_x_R[ix] # dl = -ln(R) / k_leak

if dl_x_R < dl_min:

action = FREQ_RIGHT

dl_min = dl_x_R

## Update photon position (cell) or frequency (bin)

if action == MOVE_LEFT:

iz -= 1

if iz < 0:

break # Photon escapes through left boundary

elif action == MOVE_RIGHT:

iz += 1

if iz >= nz:

break # Photon escapes through right boundary

elif action == FREQ_LEFT:

ix -= 1

elif action == FREQ_RIGHT:

ix += 1

return x[ix]



8

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

x/(aτ0)
1/3

0

1

2

3

4

5

J
(x

)
×

1
00

(a
τ 0

)1
/3

Analytical

Nph = 106

Nph = 105

Nph = 104

FIG. 1. Angular-averaged flux J(x) for a homogeneous, static slab as a function of frequency. The axes
have been rescaled by factors of (aτ0)1/3 to remove the dependence on temperature and optical depth from
the analytic solution. The simulations were run with aτ0 = 109 and T = 10 K. With a uniform resolution
of ∆z ≈ 0.01Z and ∆x ≈ 0.05 (aτ0)1/3, the Monte Carlo noise is still apparent when the number of photon
packets is Nph ≈ 104. Convergence is obtained by increasing Nph, yielding nearly exact agreement to the
analytic solution with Nph ≈ 106.

Appendix A: Approximations of the redistribution function

We now provide specific forms for the Lyα redistribution function. In particular, under isotropic
coherent scattering without recoil, the redistribution function for the Voigt profile is [10, 21]

RII-A(x, x′) =
1

πH(x′, a)

∫ ∞
ζ

e−u
2

[
tan−1

(
x+ u

a

)
− tan−1

(
x̄− u
a

)]
du , (A1)

where x̄ = max(x, x′), x = min(x, x′), and ζ = (x̄ − x)/2 = |x − x′|/2. The limit as a → 0
corresponds to the case with only Doppler broadening, so we may approximate the redistribution
function in the core by

RII-A,core(x, x
′) ≈ RI-A(x, x′) =

√
π

2
ex
′2

erfc|x̄| , (A2)

where |x̄| = max(|x|, |x′|). In this approximation core photons have an equal probability of being
scattered in the range |x| < |x′| with an exponentially decreasing probability of being scattered to
other frequencies. On the other hand, in the limit of large frequencies |x+x′| → ∞ the approximate
redistribution function in the wing is

RII-A,wing(x, x
′) ≈

(
2x′

x+ x′

)2
[
e−ζ

2

√
π
− ζ erfc(ζ)

]
. (A3)

The angular-averaged redistribution function under dipole scattering is qualitatively similar albeit
with additional asymmetry because photons are preferentially forward- and back-scattered. We
can gain some insight by considering the highest order frequency moments of the redistribution
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function in the wings. Specifically, we calculate the frequency change (δx ≡ x− x′) moment of the
portion in square brackets as

[δxn] =

∫ 0

−∞
δxn

[
e−δx

2/4

√
π

+
δx

2
erfc(−δx/2)

]
dδx+

∫ ∞
0

δxn

[
e−δx

2/4

√
π
− δx

2
erfc(δx)

]
dδx

=
((−2)n + 2n)√

π(n+ 2)
Γ

(
n+ 1

2

)
=

4mΓ
(
m+ 1

2

)
√
π(m+ 1)

(where m = n/2) . (A4)

Here only the even moments survive and the odd moments vanish. Therefore, we may expand the
first term and integrate each term individually:

〈δxn〉 ≡
∫ ∞
−∞

δxnRII-A,wing(δx, x
′)dδx

=

∞∑
k=0

(−1)k(k + 1)

2kx′k

[
δxn+k

]
. (A5)

If n is odd then only the odd k terms survive, and similarly if n is even then k must be even.
Therefore, we consider the two cases separately:

〈δx2m+1〉 = −
∞∑
l=0

(l + 1)

4lx′2l+1

[
δx2(m+l+1)

]
≈ − 1

x′

[
δx2(m+1)

]
≈ −

4m+1Γ
(
m+ 3

2

)
√
π(m+ 2)x′

(A6)

〈δx2m〉 =

∞∑
l=0

(2l + 1)

4lx′2l

[
δx2(m+l)

]
≈
[
δx2m

]
≈

4mΓ
(
m+ 1

2

)
√
π(m+ 1)

. (A7)

which leads to the desired result that the first two moments are 〈δx〉 ∼ −1/x and 〈δx2〉 ∼ 1.

Appendix B: Analytic solution for an optically thick slab

We can find a general solution to Eq. (10) if the optical depth is finite. For simplicity we further
assume the functions η(z) and k(z) are symmetric (even) about the central plane z = 0. Therefore,
z̃ ∈ [−τ0, τ0] and the boundary conditions can be written as(

∂J̃

∂z̃

)
z̃=τ0

= fH(x̃)J̃ |z̃=τ0 and lim
x̃→±∞

J̃ = 0 . (B1)

The domain of z̃ is compact so we employ an eigenfunction expansion with separable space and
frequency so

J̃(z̃, x̃) =
∞∑
n=1

ϑn(z̃)ϕn(x̃) . (B2)

The solutions of the homogeneous equation

d2ϑn
dz̃2

+ λ2nϑn = 0 , (B3)

are of the form

ϑn = N−1n cos(λnz̃) where n = 1, 2, . . . , (B4)
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where the boundary conditions require the eigenvalues to satisfy the equation

λn tan(λnτ0) = fH(x̃) . (B5)

Now if the optical depth is large out to any frequency with appreciable radiation, so photons escape
before they diffuse to frequencies where the whole slab is optically thin, then it follows that

λnτ0 = π(n− 1) + tan−1
(
fH(x̃)

λn

)
≈ π

(
n− 1

2

)
+O

(
πn

fτ(x̃)

)
, (B6)

where τ(x̃) ≡ τ0H(x̃). The normalization of orthogonal eigenfunctions is

N2
n =

∫ τ0

−τ0
cos2(λz̃) dz̃ = τ0 +

sin(2λnτ0)

2λnτ0
≈ τ0 . (B7)

Upon substitution of Eq. (B2) into Eq. (10), multiplying by ϑm and integrating over z̃ we obtain

d2ϕn
dx̃2

− λ2nϕn = − Qn√
τ0
δ(x̃) , (B8)

where

Qn =

∫ τ0

−τ0

η(z̃)

k(z̃)
cos(λnz̃) dz̃ = 2

∫ ∞
0

η(z) cos

(
λn

∫ z

0
k(z′)dz′

)
dz . (B9)

Away from x̃ = 0, the solution satisfying the boundary conditions limx̃→±∞ J̃ = 0, and the jump
condition ∆(dϕn/dx̃)x̃=0 = −Qn/

√
τ0 derived from integrating Eq. (B8) is

ϕn =
Qn

2λn
√
τ0
e−λn|x̃| . (B10)

Putting this all together we have a final solution of

J̃(z̃, x̃) =
∞∑
n=1

Qn
2λnτ0

e−λn|x̃| cos(λnz̃) . (B11)

The spectral line profile at the boundary is relevant for observations. We use Eq. (B5) to substitute
cos(λnτ0) = λn sin(λnτ0)/[fH(x̃)] ≈ λn sin(λnτ0)/[fH(x̃)] ≈ λn(−1)n−1/[fH(x̃)], yielding

J̃(x̃) =
eπ|x̃|/2

2fτ(x̃)

∞∑
n=1

(−1)n−1Qne
−nπ|x̃| . (B12)

To make further progress, we must consider specific cases for Qn. For a central delta function
source η(z) = δ(z) so Qn = 1. We take advantage of the geometric series relation

∑∞
n=1 r

n =
r/(1− r), or more specifically including minus signs

∑∞
n=1(−1)n−1rn = r/(1 + r), to simplify the

expression to

J̃(x̃) =
sech(π|x̃|/2)

4fτ(x̃)
. (point source) (B13)

If the emissivity traces the absorption coefficient then k(z) = 2τ0η(z). Therefore, the unknown
constant from Eq. (B9) is

Qn =

∫ ∞
0

2η(z) cos

(
λnτ0

∫ z

0
2η(z′)dz′

)
dz

=

∫ 1

0
cos (λnτ0ζ) dζ =

sin(λnτ0)

λnτ0
≈ (−1)n−1

λnτ0
, (B14)
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and the expression for the spectral line profile from Eq. (B12) simplifies to

J̃(x̃) =
1

πfτ(x̃)
tanh−1

(
e−π|x̃|/2

)
. (uniform source, η ∝ k) (B15)
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