
RHD algorithms for the
exa-scale era

Some technical notes

Bert Vandenbroucke (bv7@st-andrews.ac.uk)



Moore’s law
Slide 2 of 44



Computational speedup

Assume the computational speed in 1970 is 𝑆1970

The computational speed in 2010 is

𝑆2010 ≈ 220𝑆1970 ≈ 106𝑆2010

Δ𝐶1970 = 𝑆1970Δ𝑡1970

The computational load Δ𝐶 for a run time Δ𝑡 in 1970 is

So in 2010 a factor 106 can be used to reduce Δ𝑡 and
increase Δ𝐶

Slide 3 of 44



Example

Price (1969): 106 photon packets, 18 zones (cells), 200 mins

Wood et al. (2004): 106 photon packets per min, 653 cells

Vandenbroucke & Wood (2018): 107 photon packets per min,
643 cells

typical CPU speed: 740 KHz

CPU speed: 2.4 GHz

CPU speed: 2.5 GHz

Slide 4 of 44



However…

Physics lurks around the corner:

𝑃𝐶𝑃𝑈 ∼ 𝑓𝑉2

𝑃𝐶𝑃𝑈 is the power
consumed by the CPU

𝑓 is the CPU frequency

𝑉 is the CPU voltage

Slide 5 of 44



Power means heat

Inefficient heat dissipation
makes it very hard to make CPUs
with frequencies above ≈ 4 GHz

Slide 6 of 44



Multicore CPUs

Solution: split CPU into multiple cores that run at lower frequencies
Total computational power of the CPU still goes up, heat production
stays under control
BUT cores act as individual CPUs

Slide 7 of 44



Parallel programming

CPU

1. Do this
2. Then do this
3. Then do this
4. …

core core

core core

1. Do this
2. And do this
3. And do this
4. And do this
5. …

Serial programming => order Parallel programming => chaos?

Slide 8 of 44



Parallelisation impact

Vandenbroucke & Wood (2018)

Slide 9 of 44



Speedup

Vandenbroucke & Wood (2018)

𝑆 𝑛 =
𝑡𝑇 1

𝑡𝑇 𝑛

𝑡𝑇 𝑛 is the total
time using 𝑛
cores

𝑆 𝑛 is the speedup
gained

Ideally, 𝑆 𝑛 = 𝑛

Slide 10 of 44



Parallel efficiency

Vandenbroucke & Wood (2018)

𝐸 𝑛 =
𝑆 𝑛

𝑛

𝐸 𝑛 is the
parallel efficiency

Slide 11 of 44



Amdahl’s law

𝑡𝑇 𝑛 = 𝑠𝑡𝑇 1 +
𝑝

𝑛
𝑡𝑇 1

𝑆 𝑛 =
1

𝑠 +
𝑝
𝑛

<
1

𝑠

𝑠 is the serial fraction

𝑝 is the parallel
fraction

Maximum achievable speedup
depends on how parallel your
code is!

Slide 12 of 44



Gustafson’s law

𝑡𝑇 1, 𝑛 = 𝑠𝑡𝑇 1,1 + 𝑝𝑛𝑡𝑇 1,1

𝑡𝑇 𝑛, 𝑐 is the time it takes to execute a simulation with size
𝑐 using 𝑛 cores

If instead of simply increasing 𝑛, we also increase 𝑠 to roughly
get the same execution time 𝑡𝑇, we can define the
scaled speedup

𝑆𝑠 𝑛 =
𝑡𝑇 1, 𝑛

𝑡𝑇 𝑛, 𝑛
=
𝑠 + 𝑝𝑛

𝑠 + 𝑝
= 𝑠 + 𝑝𝑛 ∼ 𝑛

𝑡𝑇 𝑛, 𝑛 = 𝑠𝑡𝑇 1,1 + 𝑝𝑡𝑇 1,1

Slide 13 of 44



Gustafson’s weak scaling
Slide 14 of 44



Weak scaling

Increase both the
problem size and
the number of
cores, e.g. MCRT
simulation using
same grid but
𝑛 × 106 photon
packets

Easier to achieve,
especially when
the workload scales
linearly with problem size 𝐸𝑤 𝑛 =

𝑡𝑇 1,1

𝑡𝑇 𝑛, 𝑛

Slide 15 of 44



Strong vs weak scaling

Strong scaling (reducing the execution time for a 
problem) is incredibly hard

Weak scaling (increasing the problem size for 
the same execution time) is not

However, codes hardly ever manage to reach 
theoretical speedups…

Slide 16 of 44



How do you use this information?

Computational power has a cost (on Archer: 5p / core hr)

Ideally, we want to minimise the cost of our computation

If 𝑡𝑇 1 is the total expected serial time for the computation,
then

𝑡𝑇 𝑛 =
𝑡𝑇 1

𝑆 𝑛

is the expected run time on 𝑛 threads

Slide 17 of 44



How do you choose resources?

The total cost for the computation is 

where 𝑐 is the cost per core hour

𝐶 𝑛 = 𝑡𝑇 𝑛 × 𝑛 × 𝑐 =
𝑡𝑇 0

𝑆 𝑛
× 𝑛 × 𝑐

For perfect scaling, 𝑆 𝑛 = 𝑛, and the cost is constant

For real scaling, 𝑆 𝑛 < 𝑛, and the cost always increases
with 𝑛

Serial jobs are optimal!

Slide 18 of 44



The cost of waiting

The total cost for the computation should be 

where 𝑐𝑤 is the cost for waiting for the computation to finish

𝐶 𝑛 =
𝑡𝑇 0

𝑆 𝑛
× 𝑛 × 𝑐 + 𝑐𝑤

What is this waiting cost?

e.g. typical PhD salary in UK ≈ £7.5 / hr

Slide 19 of 44



Example

The optimal number
of threads shifts to
higher 𝑛 as the cost
of waiting becomes
more dominant

Since 𝑐 ≪ 𝑐𝑤 in many cases, this is not
a very restrictive decision strategy

Slide 20 of 44



Factors limiting scaling

Serial code:
cannot be
done in
parallel

Load
imbalances:
cores are
waiting for
other cores
to finish

Slide 21 of 44



Factors limiting scaling (16 cores)
Slide 22 of 44



Factors limiting scaling (32 cores)
Slide 23 of 44



Parallelisation strategies

CPU

1. Do this
2. Then do this
3. Then do this
4. …

core core

core core

1. Do this
2. And do this
3. And do this
4. And do this
5. …

Serial programming => order Parallel programming
=> ordered chaos

(someone adds parallelisation)

Slide 24 of 44



Parallelised serial code

relatively easy to write

parallelises the sub-steps in a generally serial timeline

will inevitably contain a lot of load imbalance bottlenecks

usually depends on monolithic memory structures,
e.g. a single grid

=> does not strong scale beyond ∼ 10 − 100 cores

Slide 25 of 44



Truly parallel code
Slide 26 of 44



Task-based parallel code

requires a complete rewrite of an existing code

constructs a truly parallel timeline in which independent tasks
can be scheduled if they do not have unmet dependencies

almost completely eliminates load imbalance bottlenecks

crucially depends on small, managed memory structures

=> does strong scale to much larger systems

Slide 27 of 44



Examples

(Gonnet et al., 2013; Borrow et al., 2018)

Athena++ (Stone et al., in prep.)

DISPATCH (Nordlund, 2017)

2.0

(Vandenbroucke, in prep.)

Slide 28 of 44



How does this work?

𝑊 = 𝑊

𝑄 = 𝑄 + Δ𝑄

𝑊 = 𝑓 𝑄

𝑄 = 𝑄

Most basic finite volume scheme imaginable

Flux exchange
Update conserved variables

Update primitive variables
based on new conserved
variables

Slide 29 of 44



Serial parallel finite volume scheme

Flux exchange for all cells
Update conserved variables

Update primitive variables
based on new conserved
variables for all cells

Slide 30 of 44



Task-based finite volume scheme

Update small parts of the grid
Each subgrid done in serial, but many in parallel
Serial time line only required for individual subgrids

Additional step where
subgrids interact

Slide 31 of 44



Dependencies

Dependencies encode which tasks cannot be executed:
- tasks that require another task to be executed first
- tasks that use resources that are already in use
All other tasks are safe to execute in parallel

Slide 32 of 44



Impact

Gonnet, 2013

A task-based approach offers a significantly better scaling compared
to a serial parallel algorithm for high core numbers

Slide 33 of 44



Memory bandwidth

RAM memory
(nowadays: 10 GB – 1 TB)

CPU caches
(nowadays: 1 – 100 MB)

Slide 34 of 44



Splitting up the Monte Carlo grid
Slide 35 of 44



A task-based MCRT algorithm

PACKET GENERATION PACKET PROPAGATION PACKET SCATTERING

nothing grid (part),

grid (part),

IN

OUT

Slide 36 of 44



Photon packet buffers

Each grid (part) has output buffers:
• 1 internal buffer
• 6 direct (face) neighbours

The packet traversal task takes an
INPUT buffer and deposits photon
packets in the OUTPUT buffers,
according to the outgoing direction
(absorbed photons are put in the
internal OUTPUT buffer)

Full buffers are converted into input
buffers for neighbouring subgrids

Slide 37 of 44



Thread point of view

core core

core core

1.

2.

3.

4.

Each thread tries to
obtain the first available
task with the highest
possible priority

This strategy tries to
minimize the number
of active photon packets

Slide 38 of 44



Subgrid load
Some subgrids (the ones containing sources) have a significantly
higher load than others
This load can be higher than the average load per thread

Slide 39 of 44



Subgrid copies

Make (cheap) copies
of high-load subgrids

Task-based algorithm
is agnostic of the
fact that a portion of
the grid is represented
multiple times

Slide 40 of 44



Does this work?

2.0

Slide 41 of 44



Strong scaling
Slide 42 of 44



Summary

Moore’s law for single CPUs is dead

 simulations no longer get faster for free

Huge speedup available on parallel systems,

BUT requires parallel code

Parallelisation not so much a matter of 
OpenMP/MPI(/…), but of a good parallelisation 
strategy => truly parallel algorithms

Slide 43 of 44



Summary (2)

Good parallel code requires computer science

 people that know how computers work

 people that care about making code faster

 probably not astronomers

Writing your own code is very good to learn about 
algorithms and to get experience,
BUT you should probably not use it if you want to 
run state-of-the-art simulations

Slide 44 of 44


