University of
%7 St Andrews

1413 SUPA

RHD algorithms for the
exa-scale era

Some technical notes

Bert Vandenbroucke (bv7 @st-andrews.ac.uk)

=N

aclon

ize

Slide 2 of 44

Moore’s law

Moore’s Law — The number of transistors on integrated circuit chips (1971-2016) i

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years.
This advancement is important as other aspects of technological progress — such as processing speed or the price of electronic products — are
strongly linked to Moore's law.

20'000'000'000 IBM z13 Storage Controller.
1 0,000,000,000 18-core Xeon Haswell-ES
5,000,000,000

B-core Xeon Nehalem-EX~,

v ¥ QiBMz13
Apple AEX (tri-core ARMB4 “mobile SoC")
23 COVE Core i7 H;

Six-core Xeon 7400, HagyolkE

Duo-core) Inl' Core i7 Broadwell-U
Dual-core ltanium 2@ @ R o ’ ° % ‘Quad-core + GPU GTZ Core i7 Skylake K

Pentium D Presler % uad-core + GPU Core i7 Haswell
1 :0001000'000 Ilé'mium 2 with : C’ 7 (Quac) 0J‘\DD'E A7 (dual-core ARME4 “mabile SoC")
MB cachep ore i ad)
AM
500|000—000 Itanium 2 Madison 6M@ . (,orgz D?ngg %%ig ML

Pentium D Smithfield R Core 2.0uo Conroe
Itanium 2 McKinley4p ell €pCore 2 Duo Wolfdale 3M
Pentium 4 Prg v ,\?Core 2 Duo Allendale
Pentium 4 Cedar Mill
100,000,000 : Dosntium 4 Prescot

50,000,000 = i ; ‘;0 @Barton @atom

5,000,000 y Tarmath

MD K5
81310

4
% entium 11l Tualatin

3 ?Psntium Il Copperming PARM Cortex-A9
e -

—

2 2 Il 3

@ 10‘000'000 ? Pentlﬁm‘h'rBsslcmaulg;‘

R-L4 Peritiu

w

c

©

—

-

<

1,000,000 o0
500,000 e 8o
g @aRMS3
s

100,000 i

50,000 a*‘r?o“ﬁq.

QR’,\:‘:‘M 2 adie
G\évcé%ﬁ °
10,000 TM%UUU NNm-ux

& WP Cavie
ntel 8085 7
8080

% Technology

2
|

5’000 Intel 8008 L

Intel 4004

1,000
QO AV a> A0 AV D & o O P D g PP P> PO D S0
ST EFFFFTFEFTFFTLTFTFTLSE S S

Year of introduction

Data source: Wikipedia (https://en.wikipedia.org/wiki/Transistor_count)
The data visualization is available at QurWorldinData.org. There you find more visualizations and research on this topic Licensed under CC-BY-SA by the author Max Roser.

Computational speedup

Assume the computational speed in 1970 is S197¢

The computational speed in 2010 is
S2010 & 2%°S1970 = 10°S2010
The computational load AC for a run time At in 1970 is
AC1970 = S1970At1970

So in 2010 a factor 10° can be used to reduce At and
increase AC

Example

Price (1969): 10° photon packets, 18 zones (cells), 200 mins
typical CPU speed: 740 KHz

Wood et al. (2004): 10° photon packets per min, 653 cells
CPU speed: 2.4 GHz

Vandenbroucke & Wood (2018): 107 photon packets per min,
CPU speed: 2.5 GHz 64° cells

Slide 5 of 44

However...

Physics lurks around the corner:

Pepy ~ fV?

i7-2600K Clockspeed versus Power-Consumption
Measured under full lood at the minimum Ver required for 5 cydes of IBT/LinX
Pcpy is the power oo)
3I50W T
consumed by the CPU _)
E. J00W E_
= E
4 g 250w 2
f is the CPU frequency 5 S CPy Transiton power
E 200W E B CPU Short-Circuit Power
V iS the CPU Voltage 'E 150w % D CPU Static Power
5 100W l B System Power
S0W
W
16 2.4 3.2 4.0 4.8
Clockspeed (GHz)
ldontcare

Slide 6 of 44

Power means heat

Inefficient heat dissipation
makes it very hard to make CPUs
with frequencies above =~ 4 GHz

Slide 7 of 44

Multicore CPUs

Solution: split CPU into multiple cores that run at lower frequencies

Total computational power of the CPU still goes up, heat production
stays under control

BUT cores act as individual CPUs

IS NSRS BE SIS RS

Shared L3 Cache** ,
EBIEINIEEmIN

488 Memory Controller I/0

Slide 8 of 44

Parallel programming

Serial programming => order Parallel programming => chaos?

- Do this +—Do this
- Then do this ~And do this
- Then do this core core —And do this

4. ... + 4-And do this

core core

~l

Slide 9 of 44

Parallelisation impact

50000 A

40000 A

30000 A

total run time (s)

20000 -

10000 -

0 5 10 15 20 25 30 35
number of cores e

Vandenbroucke & Wood (2018) C/’ N\

Maclonize

t-(n) is the total
time usingn

cores

S(n) is the speedup
gained

ldeally, S(n) = n

Speedup

Slide 10 of 44

0 5 10 15 20 25
number of cores

Vandenbroucke & Wood (2018)

30

35

-

ac

on

ize b

Slide 11 of 44

Parallel efficiency

1.0 1

o
Qo
1

o
o

E(n) is the
parallel efficiency

parallel efficiency

o
B

0.2 1

0.0 —

0 5 10 15 20 25 30
number of cores _—

35

N

Vandenbroucke & Wood (2018) C

=

ac

on

ize b

Slide 12 of 44

Amdahl’s law

p

tr(n) = stp(1) + gtT(l)

s is the serial fraction

120

100 1

p is the parallel
fraction

S(n) =

Maximum achievable speedup
depends on how parallel your
code is!

s=1.]
g = (.01
s = 0.001
s = 0.0001
0 25 50 75 00 125

cores

Gustafson’s law

tr(1,n) = str(1,1) + pntr(1,1)
tr(n,n) = sty (1,1) + pty(1,1)

t-(n, c) is the time it takes to execute a simulation with size
C using n cores

If instead of simply increasing n, we also increase s to roughly
get the same execution time ty, we can define the
scaled speedup

tr(L,n) s+pn
tr(n,n) s+p

S.(n) = =s+pn~n

Slide 14 of 44

Gustafson’s weak scaling

1204 —— s=0.1
— s =10.01
100 1
o — 5 =0.001
=
2 307 s = 0.0001
&
< 001
2
g
& 40 -
20 -
O_

0 25 50 75 100 125
cores

Slide 15 of 44

Weak scaling

Increase both the
problem size and
the number of
cores, e.g. MCRT
simulation using
same grid but

n X 10° photon
packets

run time (s)

Easier to achieve,

. 0.2
especially when N | | | | | | | |
the workload scales \f 4 6 8 10 12 14 16

weak scaling efficiency

number of cores

linearly with problem size E. (n) = tr(1,1)
w =
tT(n, n)

Strong vs weak scaling

Strong scaling (reducing the execution time for a
problem) is incredibly hard

Weak scaling (increasing the problem size for
the same execution time) is not

However, codes hardly ever manage to reach
theoretical speedups...

How do you use this information?

Computational power has a cost (on Archer: 5p / core hr)
Ideally, we want to minimise the cost of our computation

If t-(1) is the total expected serial time for the computation,
then

is the expected run time on n threads

How do you choose resources?

The total cost for the computation is

tr(0)
S(n)

C(n)=tr(n) XnxXc= XnXc
where c is the cost per core hour

For perfect scaling, S(n) = n, and the cost is constant

For real scaling, S(n) < n, and the cost always increases
with n

Serial jobs are optimal!

The cost of waiting

The total cost for the computation should be

tr(0)

C(n) = St

X (nxXc+cy)

where c,, is the cost for waiting for the computation to finish
What is this waiting cost?

e.g. typical PhD salary in UK = £7.5 / hr

speedup, S(n)

5.0 1

2.5 4

7.5 7

The optimal number
of threads shifts to
higher n as the cost
of waiting becomes
more dominant

ideal scaling
real scaling 1
real scaling 2

2.5 5.0 7.5 10.0 12,5 15.0

number of cores, n

Example

Slide 20 of 44

cw=1xc¢ Cp=2Xc¢
30 4
27.5 4
T 25.0
5% 25
2254
8
° 20,0
2 20
o175
=1
£
15.0
g 15
12.5
10.0
cw =4 x ¢ cpy =8 Xc
50 4 ideal scaling
80 - real scaling 1
5 —— real scaling 2
o 40
*g 60
& 30 A
g 0
£
S 20 1
20 1

T T T T
2.5 5.0 7.5 10.0
number of cores, n

T
12.5

2.5

5.0

T T
7.5 10.0

number of cores, n

T T
12.5 15.0

Since ¢ < ¢,, in many cases, this is not
a very restrictive decision strategy

Serial code:
cannot be
done in
parallel

Slide 21 of 44

Factors limiting scaling

Total empty fraction: 2.73 %

—— gradsweep internal ——— predict primitives fluxsweep boundary
—— gradsweep neighbour fluxsweep internal update conserved

gradsweep boundary —— fluxsweep neighbour —— update primitives
—— slope limiter

Load
imbalances:
cores are
waiting for
other cores
to finish

0.06 0.08 0.10 012 014
Simulation time (s)

Factors |

mit

Total empty fraction: 6.68 %

—— gradsweep internal

gradsweep neighbour

gradsweep boundary

slope limiter

——— predict primitives
fluxsweep internal

fluxsweep neighbour

——— fluxsweep boundary
update conserved

update primitives

0.18

0.19 0.20

021 0.22
Simulation time (s)

0.23

0.25

Slide 22 of 44

ing scaling (16 cores)

Factors |

Total empty fraction: 26.61 %

—— gradsweep internal —— predict primitives —— fluxsweep boundary
gradsweep neighbour fluxsweep internal update conserved
gradsweep boundary fluxsweep neighbour —— update primitives
il slope limiter I
| 1N |
[] i1l I I
| LT RN I
) | BTN I]
| i]
| I]
1 |l I
| L I
[lll\ ll‘l IlH ||| I
I I
| M-l 11
] M| I
il 111 I
| M 11 I
I, (I |]
| 1l I
[| M 1 |11]
| I]
i [0l [||]I I
| min| [[] I
[] I I
= I\H \II‘ |
I
1 (1] I
[[I]
| M I
| 1. [[] 11
[([Nt I]
| I | .]
1 [T | |]]
I B A I
0.20 0.21 0.22 0.23 0.24 0.25

Simulation time (s)

Slide 23 of 44

miting scaling (32 cores)

Slide 24 of 44

Parallelisation strategies

Serial programming => order Parallel programming
=> ordered chaos
. Do this 1—Do this
: Then do this —And do this
: Then do this core core —And do this

4. ... + 4-And do this

core core

~l

(someone adds parallelisation)

Parallelised serial code

relatively easy to write
parallelises the sub-steps in a generally serial timeline
will inevitably contain a lot of load imbalance bottlenecks

usually depends on monolithic memory structures,
e.g. a single grid

=> does not strong scale beyond ~ 10 — 100 cores

Slide 26 of 44

Truly parallel code

Total empty fraction: 5.75 %

—— gradsweep internal ——— predict primitives ——— fluxsweep boundary
—— gradsweep neighbour fluxsweep internal update conserved
radsweep bounda —— fluxsweep neighbour update primitives
I depetndter T 1 i LRI
] | 1 i ‘ [/ —| | I—— — — i—— — | i
I I 1 [I 0 1 0 1 1 [0° °I'" W IN}D;N|
[] \ I | I | [N | | | [|1 | mmil |
Il | (| I | [N N | I O A I 1 — NN
Il [| I | | | | Y Y I (| [| NI
| | | | | | Y Y | [| Y | LN LI e |
1 | | \ | | I I 0 1 1 nm 1
| 1 I 1 m 1 | ©u
mi | | I I I 1 0 1N [
[1 | \ | | [1 1 1 W n |
I | I | w [°r rr [0 [m
| | | | [l [I | 11/ A ||]
| [| | | I 1 m 1 1 W Wi
I | | I 0 °r ° m 1 [[[‘|i;m
] | | | I mwr e [[
| | | il | P 1r 1 un 1 ° 1 ;N I |
[| I | I | m 1 1w [1 [1 ©°1 I;m i fninnmi
|l \ | I | | I 1 m 1 /i 1 n Hun inm |
|]I} | | | | I 1 I [i 1 1Jim il
1 | | | | m 1 1 0°© [0 m | [(nN;IEnnn |
| | | Il I m " nr r m § I m § 1D o
II | | | | I ¢ 1 " ° /i mmneinmn|
| \ I I | [N R || I | I 1 minmmm
|1 [N Y I I 1111y || Y Y | I [N NI
1l | | 1 I 1P 1 1 1 0 | 10 m I |
I Il I \ | I 0 1 1 1 m m n 1 I L[] |
] | | | | [N | |/ Y | | I 1 1T A I
[\ | | 1 [1 m ° 1 | §° W I’ || |
I \ I 1 I I (I I | [N O | |1 I | I 1 |1 N1 I
I | | l I n nm [| IR I I | {110 T I |
I I m r °r [[I 1 (§imm 1 §io. |

0.200 0.205 0.210 0.215 0.220 0.225 0.230 0.235
Simulation time (s)

Task-based parallel code

requires a complete rewrite of an existing code

constructs a truly parallel timeline in which independent tasks
can be scheduled if they do not have unmet dependencies

almost completely eliminates load imbalance bottlenecks
crucially depends on small, managed memory structures

=> does strong scale to much larger systems

Examples

T Y R A
| / 7/
[

NN
| ——

S /1

Athena++ (Stone et al., in prep.)

Slide 28 of 44

o/ (Gonnet et al., 2013; Borrow et al., 2018)

DISPATCH (Nordlund, 2017)

_—

/

N

@S

an

Vi

s

(Vandenbroucke, in prep.)

Slide 29 of 44

How does this work?

Most basic finite volume scheme imaginable

Flux exchange Update primitive variables
Update conserved variables based on new conserved
variables

Slide 30 of 44

Serial parallel finite volume scheme

Update primitive variables

Flux exchange for all cglls based on new conserved
Update conserved variables variables for all cells

Q
Q
Q
Q
Q
Q
2,

ccccccec
ccccccece
ccccceccece
ccccccece
ccccccce
ccccccce

Slide 31 of 44

Task-based finite volume scheme

Update small parts of the grid
Each subgrid done in serial, but many in parallel
Serial time line only required for individual subgrids

cccC
aCCC

ccceC

Additional step where
subgrids interact

Slide 32 of 44

Dependencies

Dependencies encode which tasks cannot be executed:
- tasks that require another task to be executed first

- tasks that use resources that are already in use

All other tasks are safe to execute in parallel

Slide 33 of 44

Impact

A task-based approach offers a significantly better scaling compared
to a serial parallel algorithm for high core numbers

Speedup CosmoVolume (51M) Parallel Efficiency CosmoVolume (51M)

1000f
900
800
700}
600 | 512
500 i
400}
300}

200

100+

200 400 600 800 1000 1 00 101 1 02 103
nr. cores nr. cores

Gonnet, 2013 % ,-S?E 7

Slide 34 of 44

Memory bandwidth

RAM memory
(nowadays: 10 GB — 1 TB)

A - 4 :
i ." 3
: IER SIS RN B TR Y -1
3 * %k
3 Shared L3 Cache Power
3 BRE = BR BR :l EBE | 3 connector
w9 Memory Controller 1/0

Motherboard
model number

CPU caches N\ e N e
(nowadays: 1 — 100 MB) T . SN

PCle Slot
x16

PCle Slot
x1

PCl Slots

Slide 35 of 44

Splitting up the Monte Carlo grid

&

Slide 36 of 44

A task-based MCRT algorithm

PACKET GENERATION PACKET PROPAGATION PACKET SCATTERING

IN nothing grid (part), % %

Q N S—U

ouT % grid (part),% ﬂ

Slide 37 of 44

Photon packet buffers

Each grid (part) has output buffers:
1 internal buffer

B 6 direct (face) neighbours

The packet traversal task takes an

INPUT buffer and deposits photon

packets in the OUTPUT buffers,

according to the outgoing direction

(absorbed photons are put in the

internal OUTPUT buffer)

Full buffers are converted into input
buffers for neighbouring subgrids

Thread point of view

J

Each thread tries to
obtain the first available
task with the highest
possible priority

This strategy tries to
minimize the number
of active photon packets

1.
2.
3.
4.

Slide 38 of 44

N
/>
/ 4

IRV

N
/>
/ 4
4

N
/>
/ 4

Slide 39 of 44

Subgrid load

Some subgrids (the ones containing sources) have a significantly
higher load than others

This load can be higher than the average load per thread

Computational cost

thread 7 - 135.78 % load
thread 6 - 142.41 % load
thread 5 - 61.78 % load
thread 4 - 94.70 % load
thread 3 - 60.61 % load
thread 2 - 77.22 % load
thread 1 - 56.08 % load
thread 0 - 171.41 % load

Photon cost

thread 7 - 105.40 % load
thread 6 - 107.84 % load
thread 5 - 95.27 % load
thread 4 - 95.16 % load
thread 3 - 89.78 % load
thread 2 - 85.53 % load
thread 1 - 93.72 % load
thread 0 - 127.29 % load

Slide 40 of 44

Subgrid copies

Make (cheap) copies
of high-load subgrids

’
“
. =

Task-based algorithm
is agnostic of the

fact that a portion of
the grid is represented
multiple times

~

ac

oniz

2.0

Slide 41 of 44

Does this work?

Total empty fraction: 2.28 %

—— source photon (discrete) reemission temperature /ionization state

photon traversal

0.0 0.2 0.4 0.6 0.8
Simulation time (s)

1.0

Strong scaling

Slide 42 of 44

run time (s)

10% 4

-~ (CMaclonize 1.0
——— CMaclonize 2.0

speedup

=
o
]

o
(92
]

parallel efficiency

o
o

number of cores

Summary

Moore’s law for single CPUs is dead
= simulations no longer get faster for free

Huge speedup available on parallel systems,
BUT requires parallel code

Parallelisation not so much a matter of
OpenMP/MPI(/...), but of a good parallelisation
strategy => truly parallel algorithms

Summary (2)

Good parallel code requires computer science
— people that know how computers work

—> people that care about making code faster
—> probably not astronomers

Writing your own code is very good to learn about
algorithms and to get experience,

BUT you should probably not use it if you want to
run state-of-the-art simulations

