
Finite volume
schemes

An introduction

Bert Vandenbroucke, bv7@st-andrews.ac.uk

Sedov, L. I., Similarity and dimensional methods in mechanics, 10th edition (CRC Press, 1993), pp. 261-290

Some problems can be solved analytically…

… most cannot.

https://www.pinterest.com/flywithcptjoe/pretty-flying-pictures/

X-ray: NASA/CXC/Rutgers/J.Hughes; Optical: NASA/STScI

We need numerical simulations.

https://gitlab.cosma.dur.ac.uk/swift/swiftsim

Because they are awesome.

High density
High pressure

Low density
Low pressure

The 1D Sod shock tube

t = 0.0 t = 0.2

Finite volume schemes: discretization in space

The 1D “volume” is subdivided into cells. Each cell holds a single value for the
density, pressure, and fluid velocity.

We need to solve the equations of hydrodynamics for this discrete set of cells.

We will derive equations for a general,
3D, unstructured cell.

A 1D regular cell is just a special case
of this more general cell shape.

𝜕𝜌

𝜕𝑡
+ 𝛻. 𝜌𝑢 = 0

𝜌
𝜕𝑢

𝜕𝑡
+ 𝜌 𝑢. 𝛻 𝑢 = −𝛻𝑝 + 𝜌𝑔

𝜕

𝜕𝑡

1

2
𝜌𝑢2 + 𝜌𝑒 + 𝛻.

1

2
𝜌𝑢2 + 𝜌𝑒 𝑢 = −𝐿 − 𝛻. 𝑝𝑢 − 𝜌𝑢. 𝛻𝜓

We start from the Euler equations:

Continuity equation

Momentum equation

Energy equation

We will assume a polytropic equation of state: 𝑝 = 𝛾 − 1 𝜌𝑒

𝜕𝜌

𝜕𝑡
+ 𝛻. 𝜌𝑢 = 0

𝜌
𝜕𝑢

𝜕𝑡
+ 𝜌 𝑢. 𝛻 𝑢 = −𝛻𝑝 + 𝜌𝑔

𝜕

𝜕𝑡

1

2
𝜌𝑢2 + 𝜌𝑒 + 𝛻.

1

2
𝜌𝑢2 + 𝜌𝑒 𝑢 = −𝐿 − 𝛻. 𝑝𝑢 − 𝜌𝑢. 𝛻𝜓

We consider pure hydro, so:
- no gravity
- no energy sources or sinks

𝜌𝑒𝑡𝑜𝑡

𝜌 𝑢. 𝛻 𝑢 = 𝜌𝛻. 𝑢 𝑢 − 𝜌𝑢 𝛻. 𝑢

𝜕𝜌

𝜕𝑡
+ 𝛻. 𝜌𝑢 =

𝜕𝜌

𝜕𝑡
+ 𝜌 𝛻. 𝑢 + 𝑢. 𝛻𝜌 = 0

𝛻. 𝑢 = −
1

𝜌

𝜕𝜌

𝜕𝑡
−
1

𝜌
𝑢. 𝛻𝜌

𝜌 𝑢. 𝛻 𝑢 = 𝜌𝛻. 𝑢 𝑢 + 𝑢
𝜕𝜌

𝜕𝑡
+ 𝑢 𝑢. 𝛻𝜌

= 𝛻. 𝜌𝑢 𝑢 + 𝑢
𝜕𝜌

𝜕𝑡

𝜌
𝜕𝑢

𝜕𝑡
+ 𝛻. 𝜌𝑢 𝑢 + 𝑢

𝜕𝜌

𝜕𝑡
= −𝛻𝑝

𝜕𝜌𝑢

𝜕𝑡
+ 𝛻. 𝜌𝑢 𝑢 = −𝛻𝑝 𝛻𝑝 =

𝜕𝑝

𝜕𝑥
𝑖 +

𝜕𝑝

𝜕𝑦
𝑗 +

𝜕𝑝

𝜕𝑧
𝑘

𝛻. 𝐴 =
𝜕𝐴11
𝜕𝑥

+
𝜕𝐴21
𝜕𝑦

+
𝜕𝐴31
𝜕𝑧

𝑖 + ⋯

𝐴 = 𝐴11𝑖 𝑖 + 𝐴12𝑖 𝑗 + 𝐴13𝑖 𝑘 + ⋯

𝛻𝑝 = 𝛻. 𝑝1 = 𝛻.

𝑝 0 0
0 𝑝 0
0 0 𝑝

Momentum equation’

Note for a general tensor

The divergence is given by

Hence, we can also write the
gradient of a scalar as a divergence
of a tensor:

Hence, we find:
𝜕𝜌𝑢

𝜕𝑡
+ 𝛻. 𝜌𝑢 𝑢 + 𝑝1 = 0

𝜕𝜌𝑢

𝜕𝑡
+ 𝛻. 𝜌𝑢 𝑢 + 𝑝1 = 0

This is a vector equation, and is shorthand for:

𝜕𝜌𝑢𝑥
𝜕𝑡

+
𝜕

𝜕𝑥
𝜌𝑢𝑥𝑢𝑥 +

𝜕

𝜕𝑦
𝜌𝑢𝑦𝑢𝑥 +

𝜕

𝜕𝑧
𝜌𝑢𝑧𝑢𝑥 +

𝜕𝑝

𝜕𝑥
= 0

𝜕𝜌𝑢𝑦

𝜕𝑡
+

𝜕

𝜕𝑥
𝜌𝑢𝑥𝑢𝑦 +

𝜕

𝜕𝑦
𝜌𝑢𝑦𝑢𝑦 +

𝜕

𝜕𝑧
𝜌𝑢𝑧𝑢𝑦 +

𝜕𝑝

𝜕𝑦
= 0

𝜕𝜌𝑢𝑧
𝜕𝑡

+
𝜕

𝜕𝑥
𝜌𝑢𝑥𝑢𝑧 +

𝜕

𝜕𝑦
𝜌𝑢𝑦𝑢𝑧 +

𝜕

𝜕𝑧
𝜌𝑢𝑧𝑢𝑧 +

𝜕𝑝

𝜕𝑧
= 0

𝜕𝜌

𝜕𝑡
+ 𝛻. 𝜌𝑢 = 0

𝜕𝜌𝑢

𝜕𝑡
+ 𝛻. 𝜌𝑢 𝑢 + 𝑝1 = 0

𝜕𝜌𝑒𝑡𝑜𝑡
𝜕𝑡

+ 𝛻. 𝜌𝑒𝑡𝑜𝑡𝑢 + 𝑝𝑢 = 0

𝜕𝑈

𝜕𝑡
+ 𝛻. 𝐹 𝑈 = 0

𝑈 =

𝜌
𝜌𝑢
𝜌𝑒𝑡𝑜𝑡

, 𝐹 𝑈 =

𝜌𝑢

𝜌𝑢 𝑢 + 𝑝1

𝜌𝑒𝑡𝑜𝑡𝑢 + 𝑝𝑢

This gives us the Euler equations in
conservative form:

All equations together can be written
in the more compact form

with

We call this a conservation law

Note that the fluxes 𝐹 𝑈 can be expressed in terms of the primitive variables:

- Density 𝜌 - Fluid velocity 𝑢

- Pressure 𝑝 = 𝛾 − 1 𝜌𝑒 = 𝛾 − 1 𝜌𝑒𝑡𝑜𝑡 −
1

2
𝜌𝑢2

ම
𝜕𝑈

𝜕𝑡
+ 𝛻. 𝐹 𝑈 d𝑉 = 0

𝜕𝑄

𝜕𝑡
= −ඵ𝐹 𝑈 . d𝑆

ම
𝜕𝑈

𝜕𝑡
d𝑉 =

𝜕

𝜕𝑡
ම𝑈d𝑉 =

𝜕

𝜕𝑡
ම

𝜌
𝜌𝑢
𝜌𝑒𝑡𝑜𝑡

d𝑉 ≡
𝜕

𝜕𝑡

𝑚
𝑚𝑢

𝐸𝑡𝑜𝑡

=
𝜕𝑄

𝜕𝑡

Conservation law?

Integrate the conservation law over an arbitrary volume V

We get

Conserved quantities

if 𝑉 is independent of 𝑡

and

ම𝛻.𝐹 𝑈 d𝑉 =ඵ𝐹 𝑈 . d𝑆

if 𝐹 𝑈 is continuous over 𝑉

𝑆 is the boundary surface of 𝑉

This means that the change of the conserved quantities 𝑄 is given by the fluxes 𝐹 𝑈
through the surface 𝑆 of the volume 𝑉:

ම
𝜕𝑈

𝜕𝑡
+ 𝛻. 𝐹 𝑈 d𝑉𝑖 = 0

𝜕𝑄𝑖
𝜕𝑡

= −ඵ𝐹 𝑈 . d𝑆𝑖 𝑄𝑖 =

𝑚𝑖

𝑚𝑖𝑢𝑖

𝐸𝑡𝑜𝑡,𝑖

Since this holds for an arbitrary volume, we can apply the same logic to a set
of discrete cells 𝑖 with volumes 𝑉𝑖 and boundary surfaces 𝑆𝑖:

to get:

The change in conserved cell quantities
𝑄𝑖 is given by the flux through the
boundary surface of the cell.

Since an outflux in cell 𝑖 corresponds to
an influx in another cell 𝑗, the entire
integration scheme is reduced to an
exchange of fluxes between cells.

http://woolshed1.blogspot.co.uk/2010/02/sheep-yards-design-and-construction.html

Note that the entire derivation until now was exact, if we can guarantee that the
fluid quantities are continuous inside a cell, and that the cell volume does not change
with time.

To convert the equation above into a useful numerical method, we will need to
make some approximations

𝜕𝑄𝑖
𝜕𝑡

= −ඵ𝐹 𝑈 . d𝑆𝑖

about how to obtain useful fluxes

about how to approximate the surface integral

about how to deal with discontinuities in the fluid quantities
(shocks, contact discontinuities)

about how to discretize time

Obtaining useful fluxes

x

We need to evaluate the fluxes at the boundary between cells.

However, our integration scheme will only be stable if we respect the natural flow
direction of the fluid, a so called upwind scheme.

This means we cannot simply use the average of the fluid quantities on both sides
of the boundary.

Obtaining useful fluxes: the Riemann problem

What is the natural flow direction in a two state problem?

L R

Physical acceptable solutions contain three distinct waves:

- a left rarefaction or shock wave

- a central contact discontinuity

- a right rarefaction or shock wave

𝜌𝐿, 𝑢𝐿, 𝑝𝐿 𝜌𝑅, 𝑢𝑅, 𝑝𝑅

Wave types: shock wave

Strong discontinuity in density, pressure and fluid velocity.
Supersonic movement caused by a strong pressure or velocity gradient.

Wave types: contact discontinuity

Discontinuity in density, pressure and fluid velocity are constant.
Moving with the local fluid velocity.

Wave types: rarefaction wave

Continuous change in density, pressure and fluid velocity.
Moving with the sound speed relative w.r.t. the local fluid velocity.
Normal flow, described by the Euler equations.

Obtaining useful fluxes: the Riemann problem

Exact solution to Riemann problem can be found using an iterative procedure

Good approximate solvers exist that do not require an iteration (more efficient)

The solution of the Riemann problem is then used to obtain fluxes that respect
the natural direction of the flow.

Since the Riemann problem explicitly deals with discontinuities, our integration
scheme can handle discontinuous fluid quantities, as long as they coincide with
cell boundaries!

Approximating the surface integral

The integral over the entire cell boundary surface is a sum over boundaries between
the cell and its neighbouring cells:

𝜕𝑄𝑖
𝜕𝑡

= −ඵ𝐹 𝑈 . d𝑆𝑖 ≈ −෍

𝑗

𝐹𝑖𝑗 . 𝐴𝑖𝑗

Time integration

A first order accurate integration scheme is a simple Euler scheme:

Δ𝑄𝑖 = − ෍

𝑗

𝐹𝑖𝑗. 𝐴𝑖𝑗 Δ𝑡

If we use upwind fluxes, this scheme will be conditionally stable, if

Δt < CCFL
Δ𝑥

𝑣𝑠𝑖𝑔𝑛𝑎𝑙

Δ𝑥 is the size of a single cell 𝑣𝑠𝑖𝑔𝑛𝑎𝑙 is the velocity of the flow

𝐶𝐶𝐹𝐿 is the Courant-Friedrichs-Lewy number, 0 < 𝐶𝐶𝐹𝐿 < 1 for a stable solution

Summary: first order finite volume scheme

Use fluxes to update conserved variables

Δ𝑄𝑖 = − ෍

𝑗

𝐹𝑖𝑗. 𝐴𝑖𝑗 Δ𝑡

Convert conserved to primitive variables

𝜌𝑖 =
𝑚𝑖

𝑉𝑖
𝑝𝑖 = 𝛾 − 1 𝜌𝑖 𝑒𝑡𝑜𝑡,𝑖 −

1

2
𝑢𝑖
21

Use primitive variables across cell boundaries as input for Riemann solver

RiemannSolver(𝜌𝐿 , 𝑢𝐿 , 𝑝𝐿 , 𝜌𝑅 , 𝑢𝑅 , 𝑝𝑅) 𝜌𝑠𝑜𝑙 , 𝑢𝑠𝑜𝑙 , 𝑝𝑠𝑜𝑙2

Use Riemann problem solution to obtain upwind fluxes

𝐹𝑖𝑗 = 𝐹 𝜌𝑠𝑜𝑙, 𝑢𝑠𝑜𝑙 , 𝑝𝑠𝑜𝑙
3

4

the cell class

class Cell:

def __init___(self):

self._volume = 0.

self._mass = 0.

self._momentum = 0.

self._energy = 0.

self._density = 0.

self._velocity = 0.

self._pressure = 0.

self._right_ngb = None

self._surface_area = 1.

Example Python code:

set up the cells

cells = []

for i in range(100):

cell = Cell()

cell._volume = 0.01

if i < 50:

cell._mass = 0.01

cell._energy = 0.01 / (GAMMA - 1.)

else:

cell._mass = 0.00125

cell._energy = 0.001 / (GAMMA - 1.)

cell._momentum = 0.

set the neighbour of the previous cell

cells[-1]._right_ngb = cell

cells.append(cell)

the constant adiabatic index

GAMMA = 5./3.

the constant time step

timestep = 0.001

Convert conserved to primitive variables

𝜌𝑖 =
𝑚𝑖

𝑉𝑖
𝑝𝑖 = 𝛾 − 1 𝜌𝑖 𝑒𝑡𝑜𝑡,𝑖 −

1

2
𝑢𝑖
21

for cell in cells:

volume = cell._volume

mass = cell._mass

momentum = cell._momentum

energy = cell._energy

density = mass / volume

velocity = momentum / mass

pressure = (GAMMA – 1) * (energy / volume – 0.5 * density * velocity * velocity)

cell._density = density

cell._velocity = velocity

cell._pressure = pressure

Example Python code:

Use primitive variables across cell boundaries as input for Riemann solver

RiemannSolver(𝜌𝐿 , 𝑢𝐿 , 𝑝𝐿 , 𝜌𝑅 , 𝑢𝑅 , 𝑝𝑅) 𝜌𝑠𝑜𝑙 , 𝑢𝑠𝑜𝑙 , 𝑝𝑠𝑜𝑙2

for cell in cells:

cell_right = cell._right_ngb

densityL = cell._density

velocityL = cell._velocity

pressureL = cell._pressure

densityR = cell_right._density

velocityR = cell_right._velocity

pressureR = cell_right._pressure

densitysol, velocitysol, pressuresol = RiemannSolver(densityL, velocityL, pressureL,

densityR, velocityR, pressureR)

… continued in step 3 …

Example Python code:

Use Riemann problem solution to obtain upwind fluxes

𝐹𝑖𝑗 = 𝐹 𝜌𝑠𝑜𝑙, 𝑢𝑠𝑜𝑙 , 𝑝𝑠𝑜𝑙
3

for cell in cells:

…

flux_mass = densitysol * velocitysol

flux_momentum = densitysol * velocitysol * velocitysol + pressuresol

flux_energy = (pressuresol * GAMMA / (GAMMA – 1) + \

0.5 * densitysol * velocitysol * velocitysol) * velocitysol

… continued in step 4 …

Example Python code:

Use fluxes to update conserved variables

Δ𝑄𝑖 = − ෍

𝑗

𝐹𝑖𝑗. 𝐴𝑖𝑗 Δ𝑡4

for cell in cells:

…

A = cell._surface_area

cell._mass = cell._mass – flux_mass * A * timestep

cell._momentum = cell._momentum – flux_momentum * A * timestep

cell._energy = cell._energy – flux_energy * A * timestep

flux exchange: what goes out of cell has to go into cell_right

cell_right._mass = cell_right._mass + flux_mass * A * timestep

cell_right._momentum = cell_right._momentum + flux_momentum * A * timestep

cell_right._energy = cell_right._energy + flux_energy * A * timestep

Example Python code:

Reference solution at t = 0.2 (after 200 steps)

Solution without Riemann solver at t = 0.1

The method we have seen so far is first order in space and time.
This means that the accuracy of the solution improves linearly with the number
of cells used to discretize the fluid.

EXTRA: Improving the result

We can do better by using a second order method.

100 cells 1000 cells

Second order schemes

x

Use linear interpolation to obtain more accurate values at cell boundaries

Requires the computation of gradients across cells

Second order in space

Second order schemes

Gradients can also be used to predict variables forward in time:

𝜌′ = 𝜌 −
1

2
Δ𝑡 𝜌𝛻. 𝑢 + 𝑢. 𝛻𝜌

𝑢′ = 𝑢 −
1

2
Δ𝑡 𝑢 𝛻. 𝑢 +

1

𝜌
𝛻𝑝

𝑝′ = 𝑝 −
1

2
Δ𝑡 𝛾𝑝 𝛻. 𝑢 + 𝑢. 𝛻𝑝

Second order in time

(these are just the Euler equations)

Reference solution at t = 0.2 (first order)

Reference solution at t = 0.2 (second order)

Lagrangian schemes

We have imposed no restrictions on the shape of a cell

However, we have required the cell volume to be independent of time

This requirement can be relaxed by adding correction terms to the fluxes:

𝐹 𝑈 =

𝜌 𝑢 − 𝑤

𝜌𝑢 𝑢 − 𝑤 + 𝑝1

𝜌𝑒𝑡𝑜𝑡 𝑢 − 𝑤 + 𝑝𝑢

𝑤 is the velocity of the surface boundary of the cell

This also means we can solve the Riemann problem in the rest frame of the boundary
surface, cancelling out large flow velocities that might affect the accuracy of the solver.

Reference solution at t = 0.2 (Eulerian)

Reference solution at t = 0.2 (Lagrangian)

EXTRA: multidimensional finite volume scheme

Problem: we only have a 1D Riemann solver...

The split multidimensional Riemann problem

Consider a face parallel to the 𝑦-axis in 2D:

In this case, the 2D conservation law

𝜕𝑈

𝜕𝑡
+ 𝛻. 𝐹 𝑈 =

𝜕𝑈

𝜕𝑡
+
𝜕𝐹𝑥 𝑈

𝜕𝑥
+
𝜕𝐹𝑦 𝑈

𝜕𝑦
= 0

reduces to

𝜕𝑈

𝜕𝑡
+
𝜕𝐹𝑥 𝑈

𝜕𝑥
= 0 𝐹𝑥 𝑈 =

𝜌𝑢𝑥
𝜌𝑢𝑥

2 + 𝑝
𝜌𝑢𝑥𝑢𝑦

𝜌𝑒𝑢𝑥 + 𝑝𝑢𝑥

with

𝜕𝑈

𝜕𝑡
+
𝜕𝐹𝑥 𝑈

𝜕𝑥
= 0 𝐹𝑥 𝑈 =

𝜌𝑢𝑥
𝜌𝑢𝑥

2 + 𝑝
𝜌𝑢𝑥𝑢𝑦

𝜌𝑒𝑢𝑥 + 𝑝𝑢𝑥

with

These are the same equations as the 1D conservation law, with an extra equation:

𝜕𝜌𝑢𝑦

𝜕𝑡
+
𝜕𝜌𝑢𝑥𝑢𝑦

𝜕𝑥
= 𝜌

𝜕𝑢𝑦

𝜕𝑡
+ 𝑢𝑦

𝜕𝜌

𝜕𝑡
+ 𝜌𝑢𝑥

𝜕𝑢𝑦

𝜕𝑥
+ 𝑢𝑦

𝜕𝜌𝑢𝑥
𝜕𝑥

= 0

or, using the continuity equation:

𝜕𝑢𝑦

𝜕𝑡
+ 𝑢𝑥

𝜕𝑢𝑦

𝜕𝑥
= 0

This is an advection equation, which means that 𝑢𝑦 is simply advected with the flow in

the 𝑥 direction

𝜕𝐴

𝜕𝑡
+ 𝑢𝑥

𝜕𝐴

𝜕𝑥
= 0

For a general advection equation

the Riemann problem has a trivial solution:

𝐴𝐿 𝐴𝑅

𝑢𝑥

𝑥0

𝐴 𝑥, 0 = ቊ
𝐴𝐿, 𝑥 < 𝑥0
𝐴𝑅 , 𝑥 > 𝑥0

𝐴 𝑥, 𝑡 = ቊ
𝐴𝐿, 𝑥 + 𝑢𝑥𝑡 < 𝑥0
𝐴𝑅, 𝑥 + 𝑢𝑥𝑡 > 𝑥0

𝑢𝑥

𝑢𝑥 − 𝑐𝑠

𝑢𝑥 + 𝑐𝑠

The advected quantities move at the same speed as the middle wave
(contact discontinuity) in the Riemann problem solution

This means that we just need to find out on which side of the contact
discontinuity we sample the Riemann solution

The Riemann solver

𝜌𝐿, 𝑢𝐿,𝑥, 𝑝𝐿 𝜌𝑅, 𝑢𝑅,𝑥, 𝑝𝑅

𝜌𝑅𝑆, 𝑢𝑅𝑆,𝑥, 𝑝𝑅𝑆,

 = 1 = −1

𝜌𝑆, 𝑢𝑆,𝑥, 𝑢𝑆,𝑦 , 𝑝𝑆 = ൝
𝜌𝑅𝑆, 𝑢𝑅𝑆,𝑥, 𝑢𝐿,𝑦 , 𝑝𝑅𝑆,  = −1

𝜌𝑅𝑆, 𝑢𝑅𝑆,𝑥, 𝑢𝑅,𝑦 , 𝑝𝑅𝑆,  = +1

An extra flag variable tells us which side of the contact discontinuity we sample:

