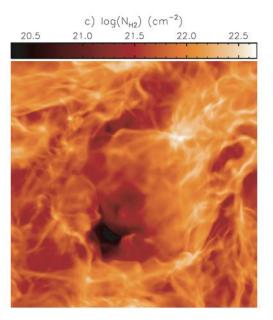
Diagnostic radiative transfer in astrophysics with RADMC-3D

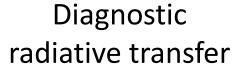
C.P. Dullemond ZAH, Heidelberg University

Radiative Transfer:

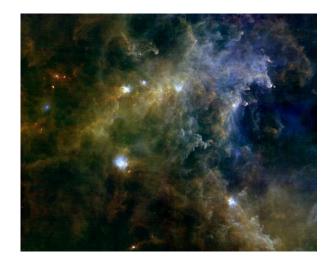
Interpreting the observed light

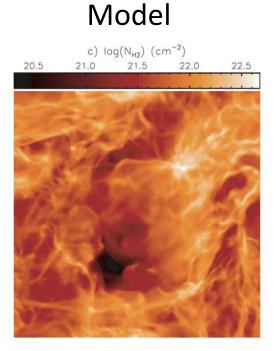
Model





Forward modeling

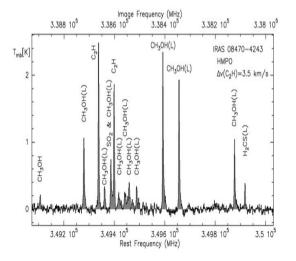




Diagnostic radiative transfer

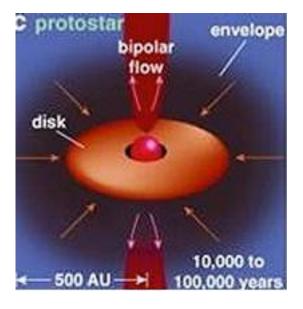
Forward modeling

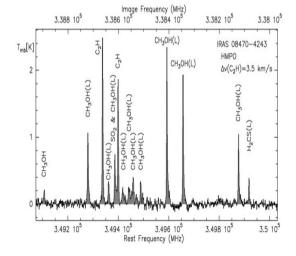
\rightarrow



Model

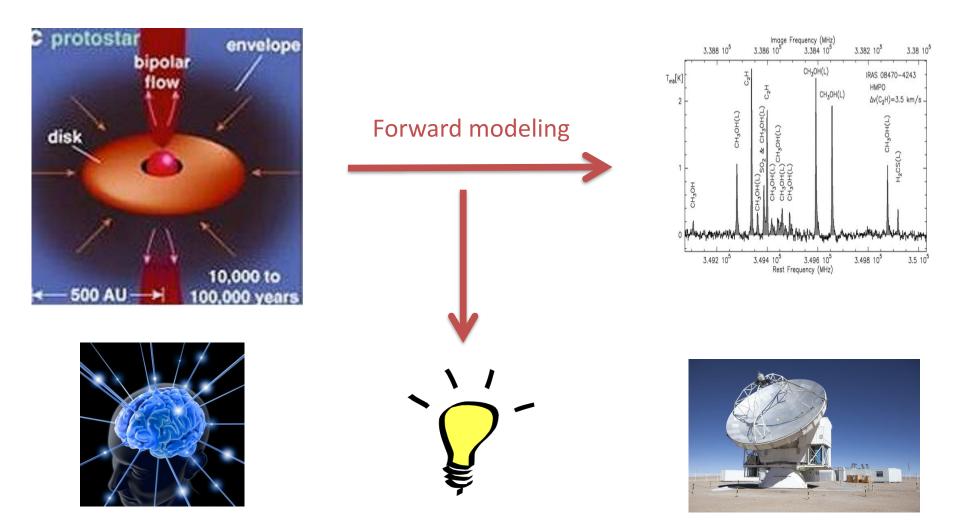
Diagnostic radiative transfer





Model

Diagnostic radiative transfer



Radiative transfer: Heating, cooling and energy transport

- Astrophysical objects cool by emitting radiation
- That same radiation is the radiation we observe with our telescopes
- Inside the object: Radiation can transport energy from one place to another
- Often linked to hydrodynamics: "Radiation hydrodynamics"

Radiative transfer: Driving photochemistry

- Energetic photons can:
 - photoionize atoms, molecules
 - photodissociate molecules
 - charge dust grains
- This powers a complex photochemical network

In summary:

- Radiative transfer is BOTH about:
 - How radiation affects the object and
 - how we can interpret our observations
- In many cases these two are *linked*, so that we cannot interpret our observations without computing how the radiation affects the object.

A short review of radiative transfer

(See also Kenny Wood's lecture)

Radiative transfer: A short review

Radiative Transfer is a 7-dimensional problem (that's *one* of the reasons it is so hard and expensive to solve):

 $I(x, y, z, \theta, \phi, \nu, t)$ [erg s⁻¹ cm⁻² Hz⁻¹ ster⁻¹]

Usually: semi-steady-state:

$$I(x, y, z, \theta, \phi, \nu)$$
 [erg s⁻¹ cm⁻² Hz⁻¹ ster⁻¹]

If the emission and extinction coefficients are known, you can reduce this to the Formal Transfer Equation along a single ray:

$$I(s,\nu)$$
 [erg s⁻¹ cm⁻² Hz⁻¹ ster⁻¹]

Radiative transfer: A short review

Formal Transfer Equation along a ray:

$$\frac{dI_n}{ds} = r K_n \left(S_n - I_n \right)$$

Over length scales larger than $1/\rho\kappa_v$ intensity I tends to approach source function S.

Photon mean free path:

Optical depth of a cloud of size L:

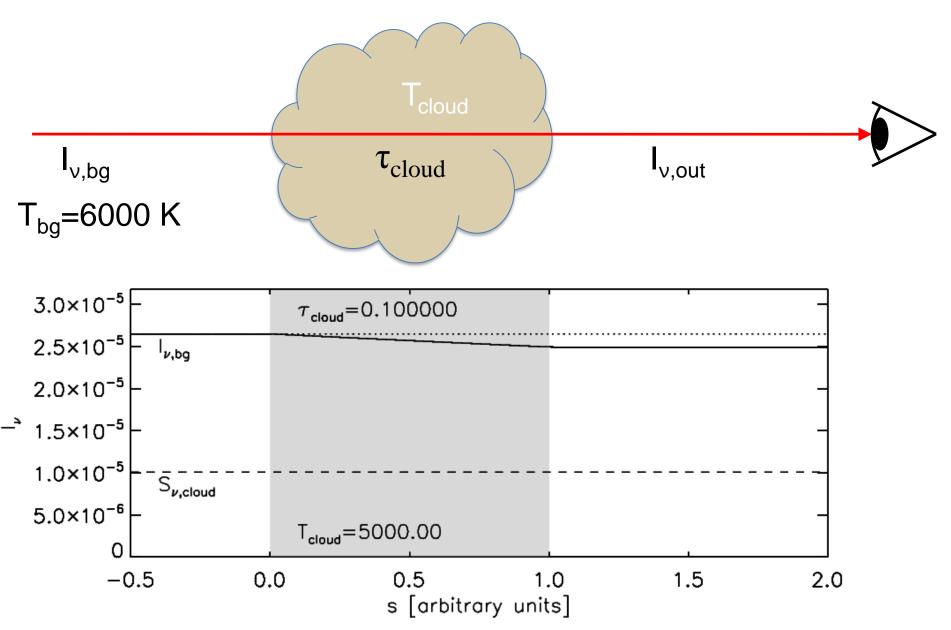
In case of local thermodynamic equilibrium: S is Planck function:

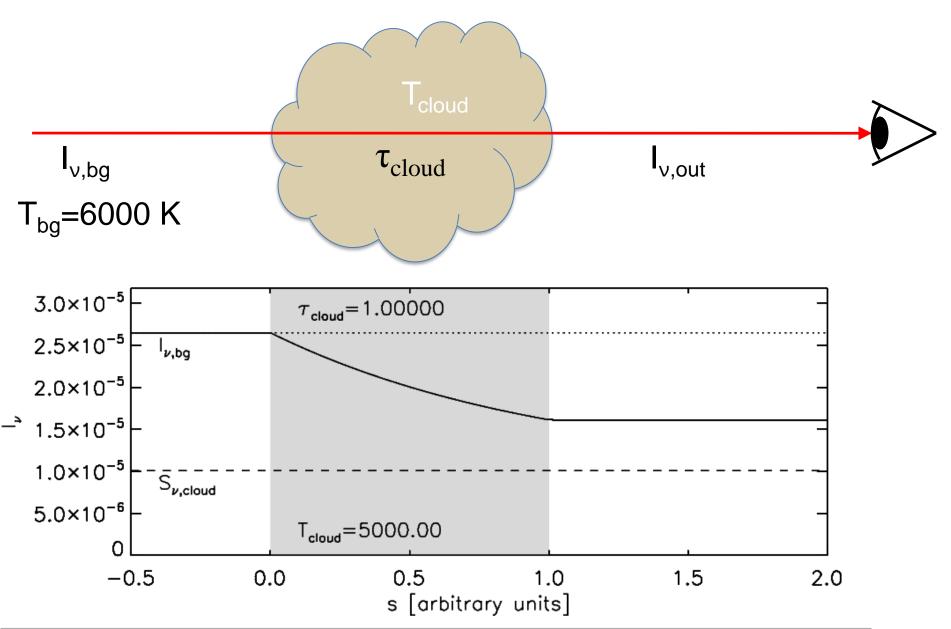
$$l_{\text{free},n} = \frac{1}{rk_n}$$

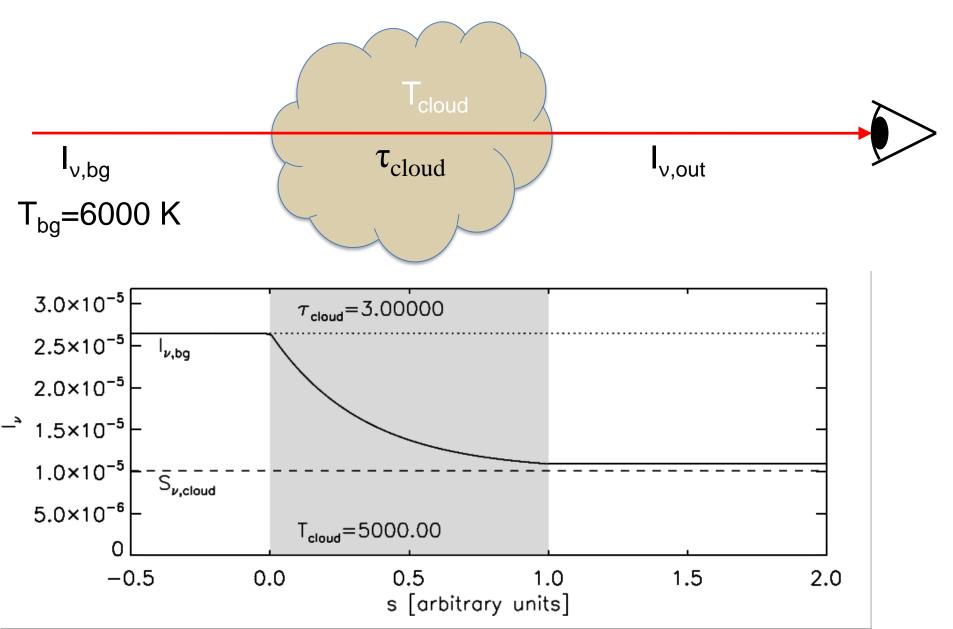
$$t_n = \frac{L}{l_{\text{free},n}} = L \Gamma k_n$$

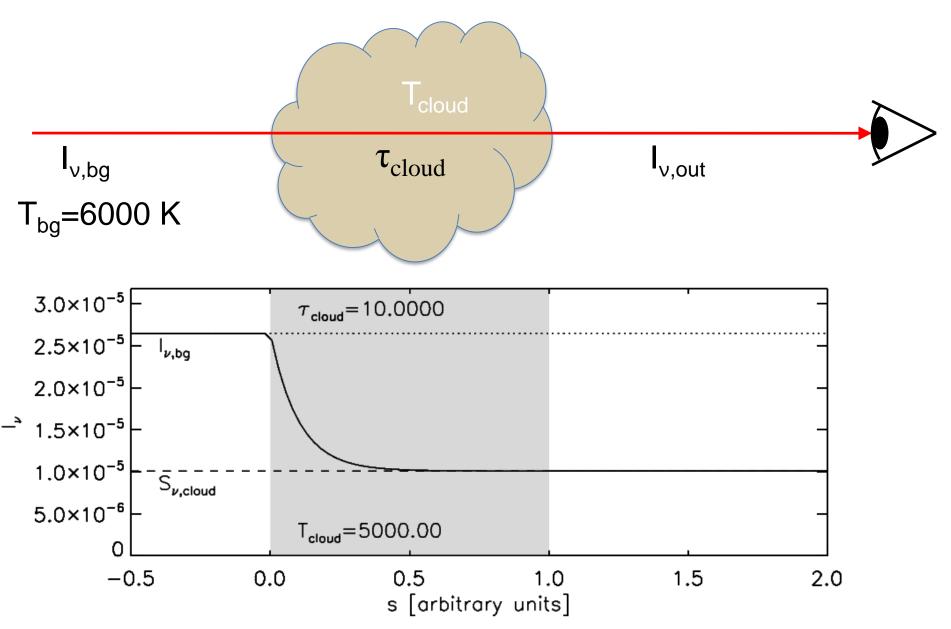
$$S_n = B_n(T)$$

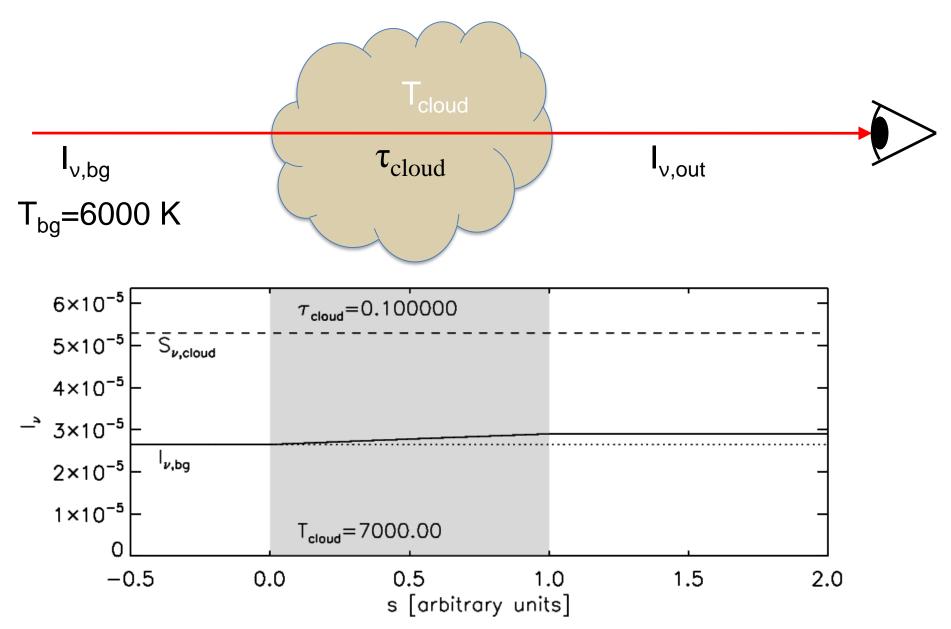
Kirchhoff's law

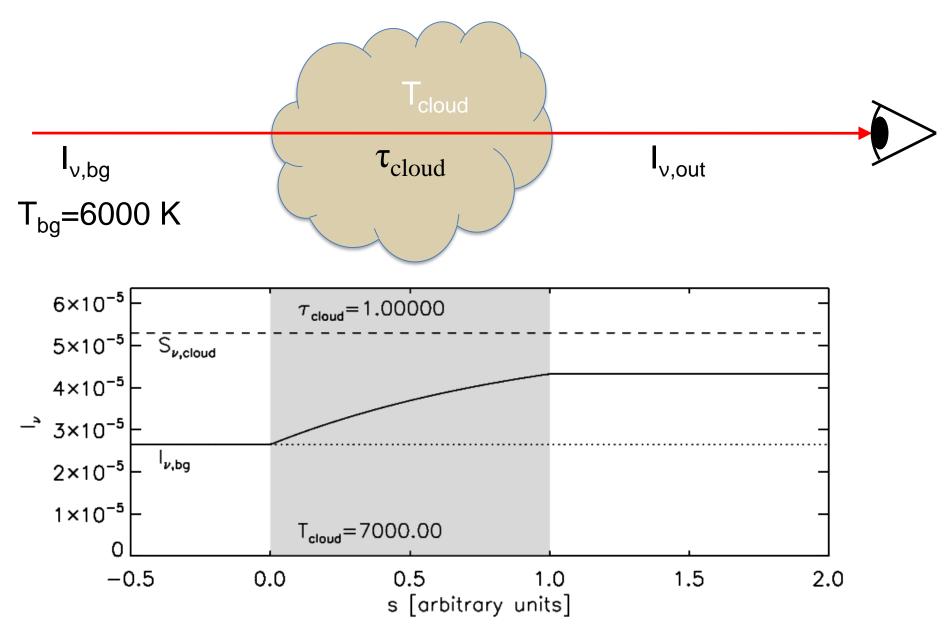


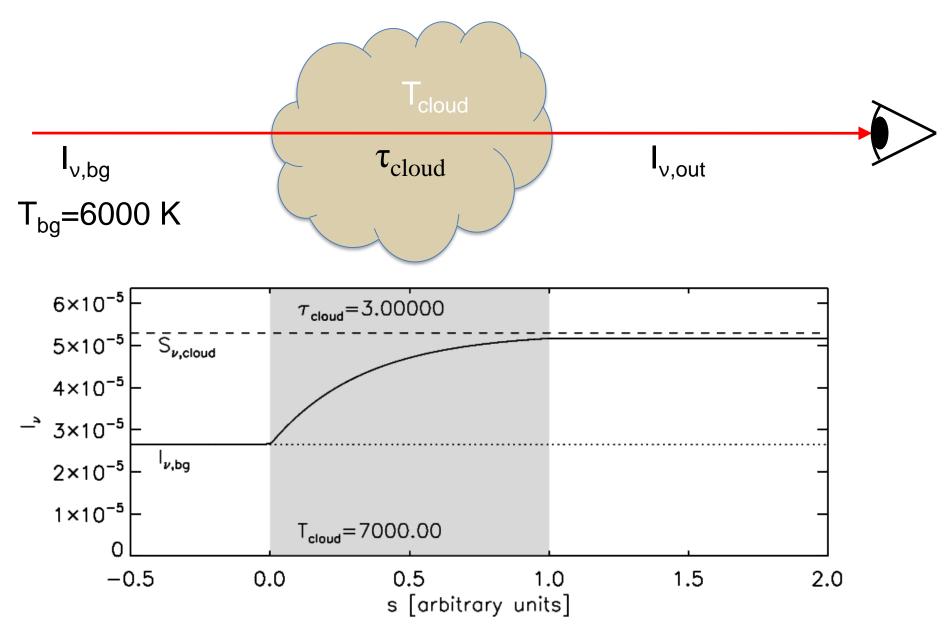


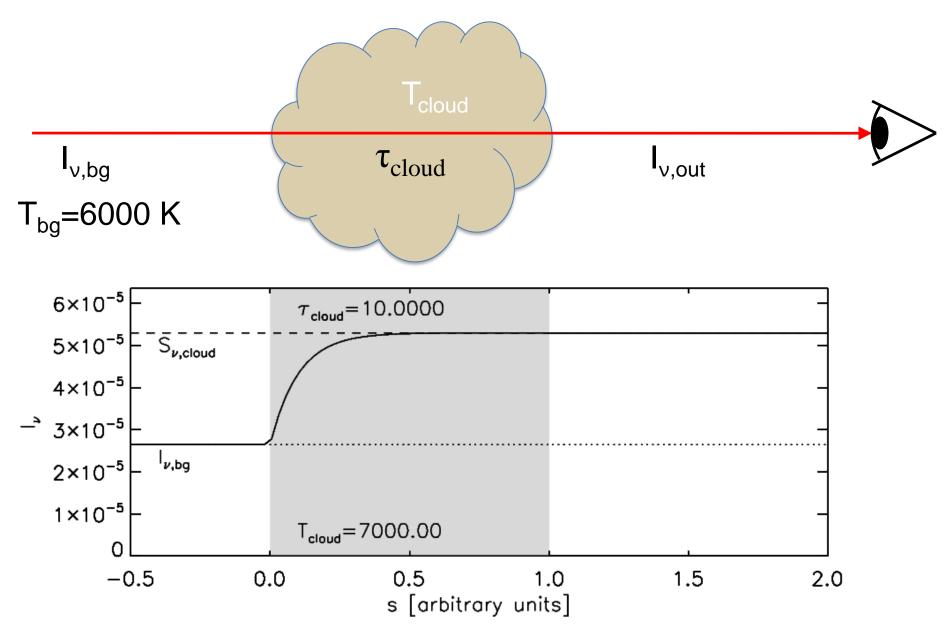












Formal radiative transfer solution

Radiative transfer equation again:

$$\frac{dI_n}{ds} = r k_n (S_n - I_n)$$

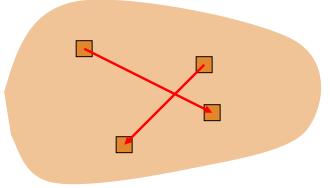
Observed flux from single-temperature slab:

Dust continuum radiative transfer

(See also Tom Robitaille lecture)

Difficulty of dust radiative transfer I. The thermal equilibrium problem

- If temperature of dust is given (ignoring scattering for the moment), then radiative transfer is a mere integral along a ray: i.e. easy.
- <u>Problem</u>: dust temperature is affected by radiation, even the radiation it emits itself.
- <u>Therefore:</u> must solve radiative transfer and thermal balance simultaneously.
- <u>Difficulty</u>: each point in cloud can heat (and receive heat from) each other point.



Thermal balance of dust grains

Optically thin case:

Heating:

$$Q_{+} = \rho a^2 \, \dot{\mathbf{0}} \, F_n \, e_n \, dn$$

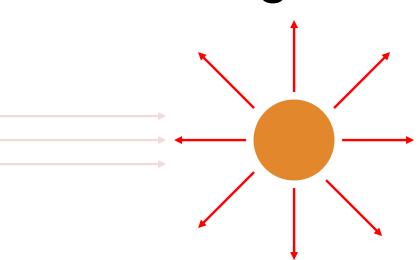
 $\begin{array}{l} a = \mbox{radius of grain} \\ \epsilon_v = \mbox{absorption efficiency (=1)} \\ \mbox{for perfect black sphere)} \end{array}$

Cooling:

$$Q_{-} = 4\rho a^2 \hat{\mathbf{0}} \rho B_n(T) e_n dn$$

Thermal balance:

$$4\rho a^2 \, \hat{\mathbf{0}} \, \rho B_n(T) e_n \, dn = \rho a^2 \, \hat{\mathbf{0}} \, F_n e_n \, dn$$



$$k_n = \frac{\rho a^2 e_n}{m}$$

Thermal balance of dust grains

Optically thin case:

Heating:

$$Q_{+} = \rho a^2 \, \dot{\mathbf{0}} \, F_n \, e_n \, dn$$

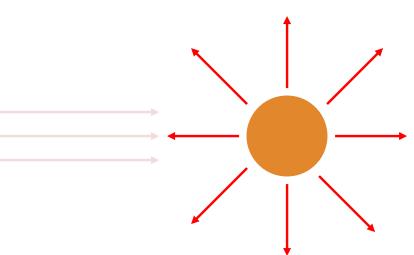
 $\begin{array}{l} a = \mbox{radius of grain} \\ \epsilon_v = \mbox{absorption efficiency (=1)} \\ \mbox{for perfect black sphere)} \end{array}$

Cooling:

$$Q_{-} = 4\rho a^2 \, \hat{\mathbf{0}} \, \rho B_n(T) e_n \, dn$$

Thermal balance:

$$\grave{0} B_n(T) K_n dn = \frac{1}{p} \grave{0} F_n K_n dn$$



$$k_n = \frac{\rho a^2 e_n}{m}$$

Optically thick case

Additional radiation field: diffuse infrared radiation from the grains

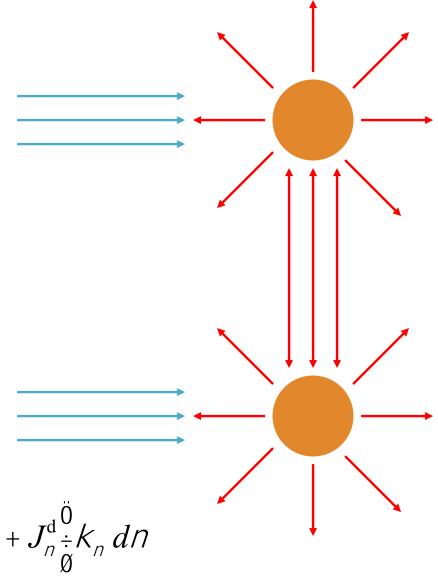
$$J_{\nu}^{\rm d} = \frac{1}{4\pi} \oint I_{\nu}^{\rm d} \, d\Omega$$

Intensity obeys tranfer equation along all possible rays:

$$\frac{dI_n^{\rm d}}{ds} = r \kappa_n \left(B_n(T) - I_n^{\rm d} \right)$$

Thermal balance:

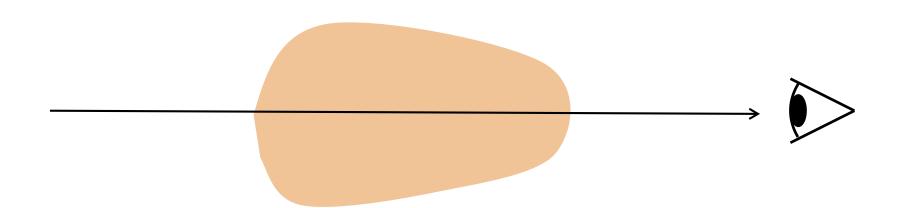
$$\hat{\mathbf{0}} B_n(T) K_n dn = \hat{\mathbf{0}} \hat{\mathbf{c}} \frac{1}{\rho} F_n e^{-t_n} + J_n^{\mathrm{d}} \hat{\mathbf{c}} K_n dn$$



Once we have the Temperature...

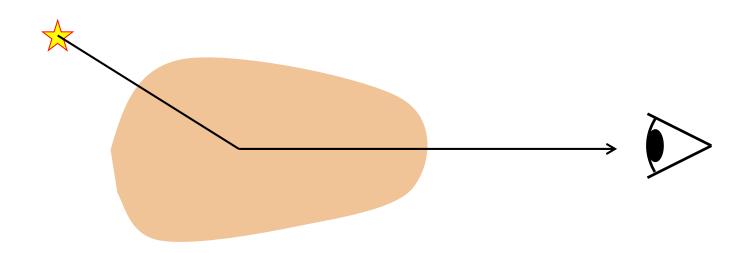
Simply integrate the Formal Transfer Equation

$$\frac{dI_n^{\rm d}}{ds} = r \kappa_n \left(B_n(T) - I_n^{\rm d} \right)$$



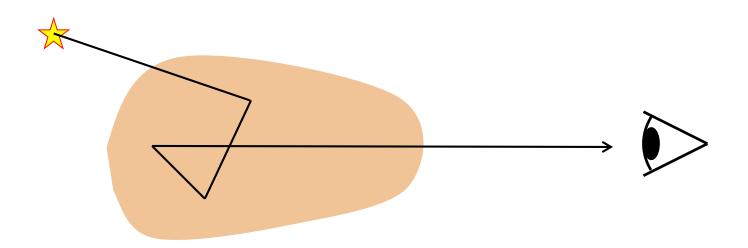
Difficulty of dust radiative transfer

• Light from a star, or even from other regions of the cloud can scatter into the line of sight:



Difficulty of dust radiative transfer

- Light from a star, or even from other regions of the cloud can scatter into the line of sight.
- Multiple scattering can happen:



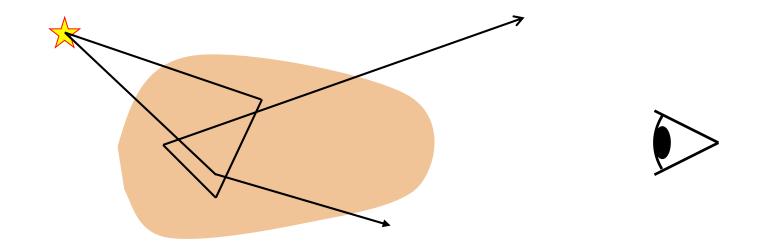
Scattering source function

 $\frac{dI_{\nu}(s)}{ds} = j_{\nu}^{\text{emis}}(s) + j_{\nu}^{\text{scat}}(s) - \rho(s)(\kappa_{\nu}^{\text{abs}} + \kappa_{\nu}^{\text{scat}})I_{\nu}(s)$

Scattering source function

$$\frac{dI_{\nu}(s)}{ds} = j_{\nu}^{\text{emis}}(s) + j_{\nu}^{\text{scat}}(s) - \rho(s)(\kappa_{\nu}^{\text{abs}} + \kappa_{\nu}^{\text{scat}})I_{\nu}(s)$$

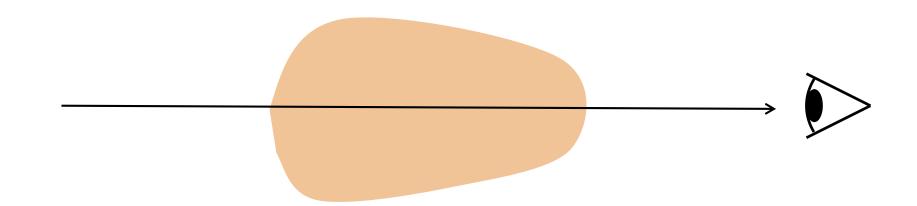
So now use Monte Carlo to compute S^{scat}



Scattering source function

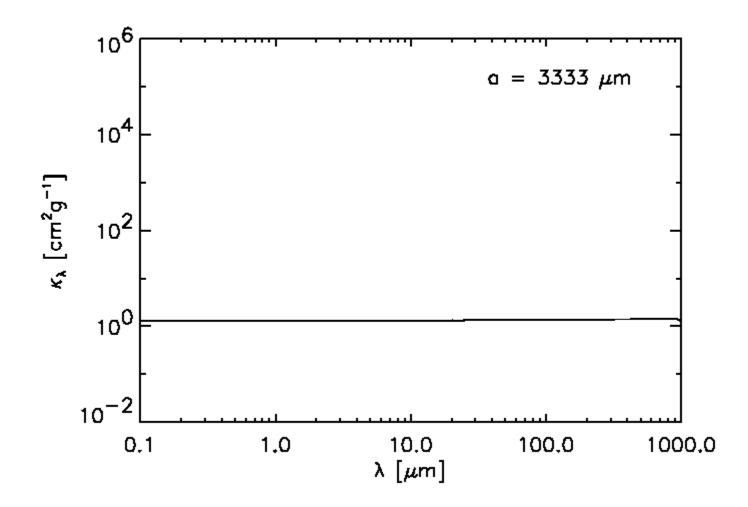
$$\frac{dI_{\nu}(s)}{ds} = j_{\nu}^{\text{emis}}(s) + j_{\nu}^{\text{scat}}(s) - \rho(s)(\kappa_{\nu}^{\text{abs}} + \kappa_{\nu}^{\text{scat}})I_{\nu}(s)$$

So now use Monte Carlo to compute S^{scat}

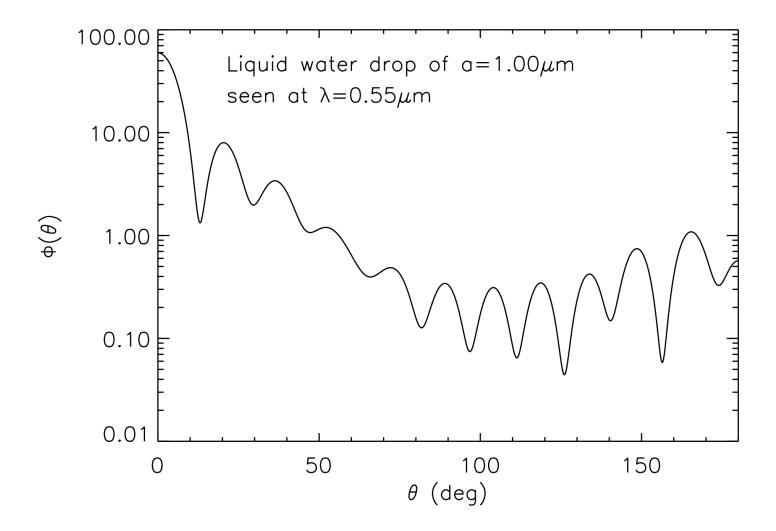


- Dust opacities depend on:
 - Material properties (silicate, carbon, water ice, you name it!)
 - Grain size
 - Grain shape (spherical, compact, porous, fluffy)

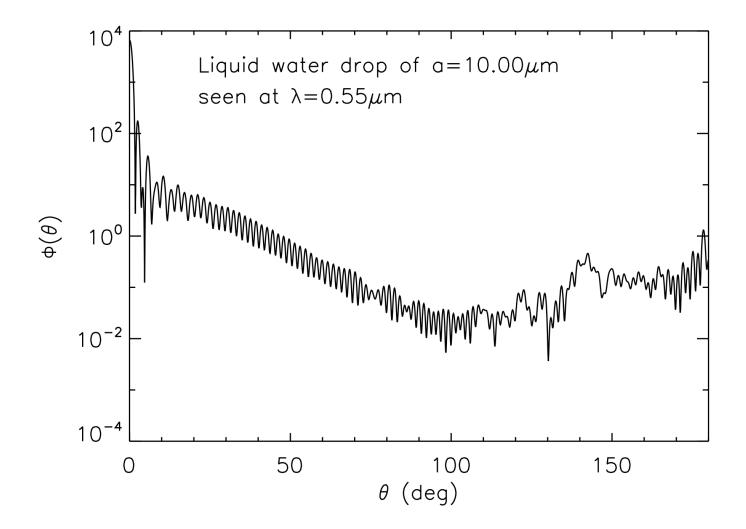
Example: Silicate dust opacity for different grain sizes



Example: Phase functions for non-isotropic scattering

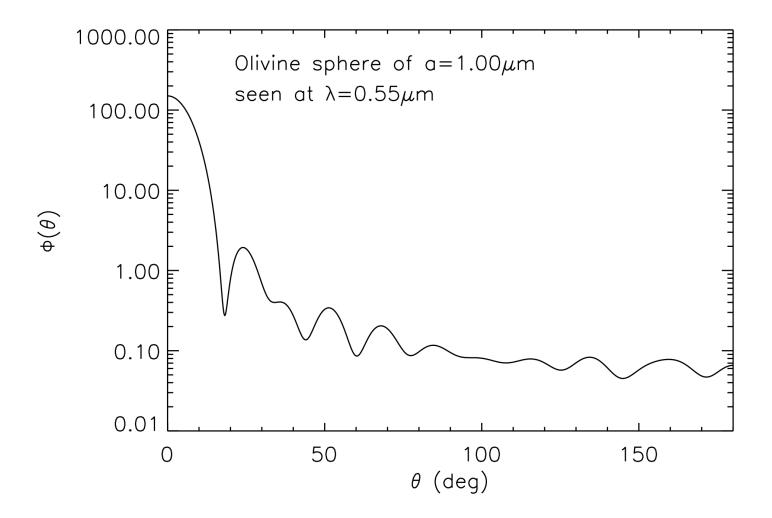


Example: Phase functions for non-isotropic scattering



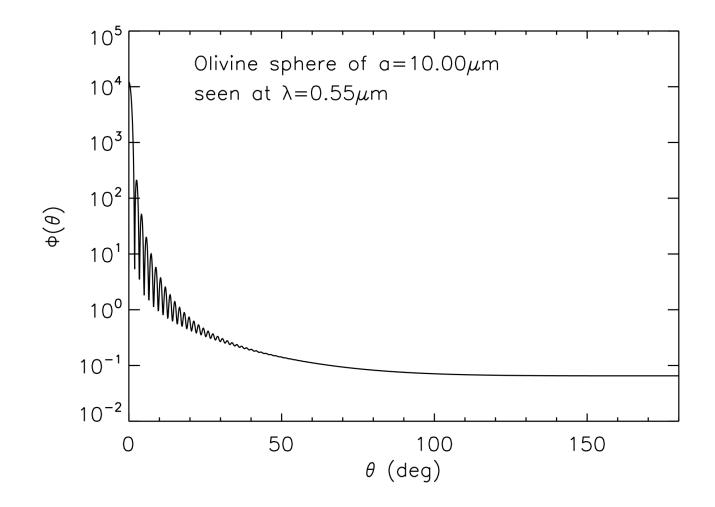
Dust opacities

Example: Phase functions for non-isotropic scattering



Dust opacities

Example: Phase functions for non-isotropic scattering



Compute your own dust opacities

- Different shapes need different opacity codes:
 - Spheres: Mie Code (= simplest!)
 - Polygons: T-Matrix Code (= moderately complex)
 - Complex shapes: DDA Code (= very complex/heavy)

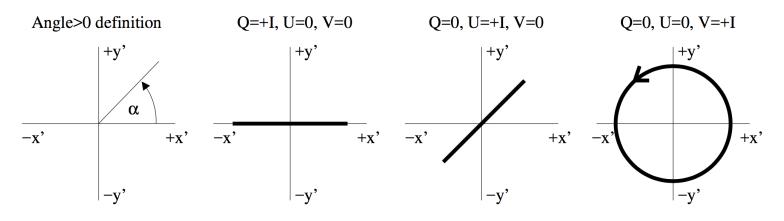
Polarized radiation

• So far we have only talked about "the" intensity:

$$I(s,\nu)$$
 [erg s⁻¹ cm⁻² Hz⁻¹ ster⁻¹]

• But in reality radiation can be polarized and should be described by a Stokes vector:

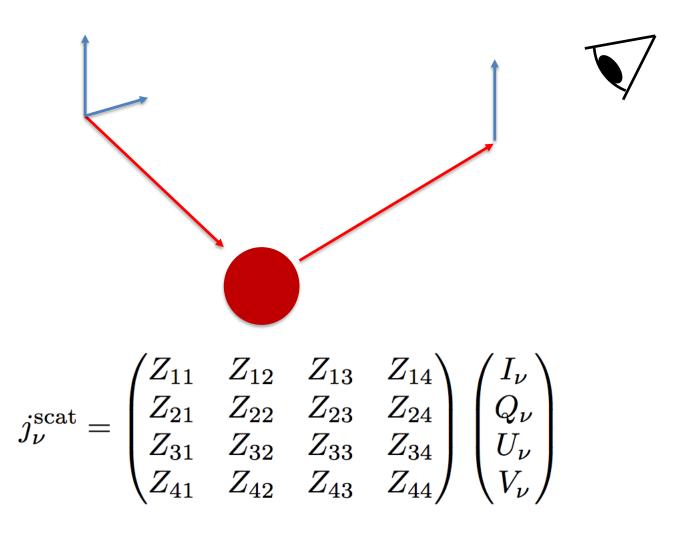
$$\mathcal{I}_{\nu} = \begin{pmatrix} I_{\nu} \\ Q_{\nu} \\ U_{\nu} \\ V_{\nu} \end{pmatrix}$$



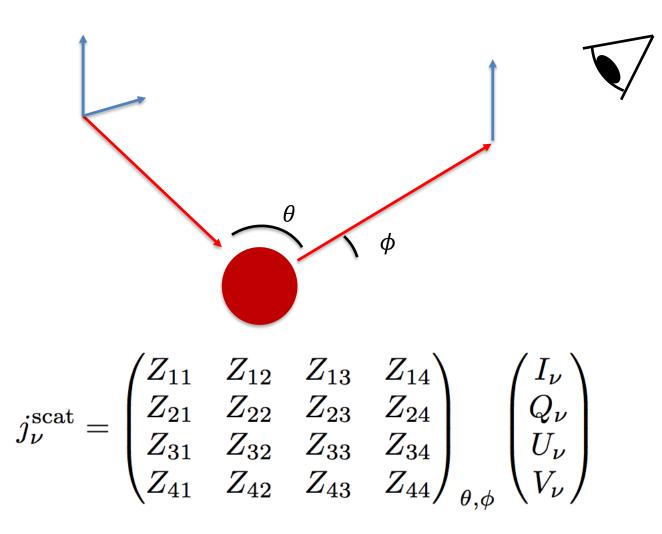
Note: Depends on convention and on a choice of Q-direction!

Scattering induces polarization

Scattering induces polarization



Scattering induces polarization



Line radiative transfer

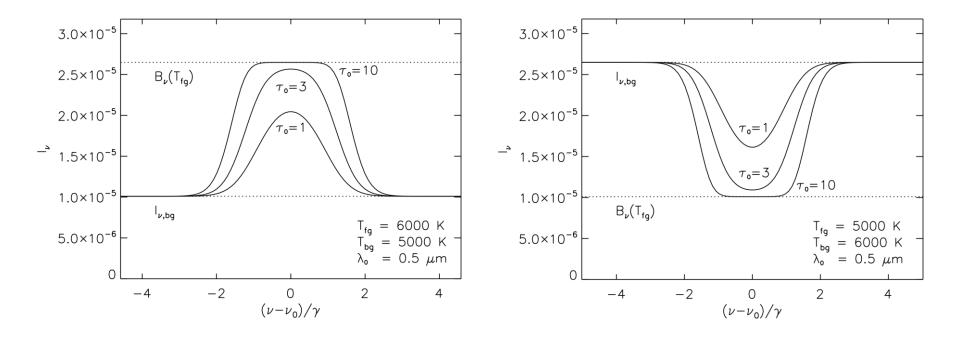
(See also Christian Brinch's lecture)

RT Equation for lines in LTE

For LTE the Formal Transfer equation is the same as for dust:

$$\frac{dI_{\nu}}{ds} = \rho(s)\kappa_{\nu}B_{\nu}(T(s)) - \rho(s)\kappa_{\nu}I_{\nu}(s)$$

Just replace dust continuum opacity with line opacity. (works only in LTE!)



RT Equation for lines in non-LTE

For non-LTE the Formal Transfer equation is:

$$\frac{dI_{\nu}}{ds} = j_{\nu}(s) - \alpha_{\nu}(s)I_{\nu}(s)$$

$$j_{ij,\nu} = \frac{h\nu_{ij}}{4\pi} N_i A_{ij} \phi_{ij}(\nu)$$
$$\alpha_{ij,\nu} = \frac{h\nu_{ij}}{4\pi} (N_j B_{ji} - N_i B_{ij}) \phi_{ij}(\nu)$$

Methods for solving the populations:

- Optically thin populations
- Escape probability
- Large Velocity Gradient
- Full non-LTE (not included in RADMC-3D)

Literature:

- A standard book on radiative processes in astrophysics is: Rybicki & Lightman "Radiative Processes in Astrophysics" Wiley-Interscience
- For radiative transfer in particular there are some excellent lecture notes on-line by Rob Rutten "Radiative transfer in stellar atmospheres" http://www.staff.science.uu.nl/~rutte101/
- For stellar atmospheres: pleasantly written book by Böhm-Vitense "Stellar Astrophysics Vol. 2: Stellar atmospheres"

Literature:

- In-depth reference work by Mihalas "Stellar atmospheres"
- Allround bible on radiation hydrodynamics by Mihalas & Mihalas "Radiation Hydrodynamics"
- Book on Exoplanetary atmospheres by Seager "Exoplanet Atmospheres"
- Book on radiative transfer in Earth's atmosphere (application to e.g. climate research): Wendisch & Yang "Theory of Atmospheric Radiative Transfer"

Literature:

• My own set of lecture notes: http://www.ita.uni-heidelberg.de/~dullemond/teaching.shtml