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Radiative transfer:
Heating, cooling and energy transport

Astrophysical objects cool by emitting
radiation

That same radiation is the radiation we
observe with our telescopes

Inside the object: Radiation can transport
energy from one place to another

Often linked to hydrodynamics: ,,Radiation
hydrodynamics®



Radiative transfer: Driving photochemistry

* Energetic photons can:
— photoionize atoms, molecules
— photodissociate molecules
— charge dust grains

* This powers a complex photochemical
network



In summary:

e Radiative transfer is BOTH about:
— How radiation affects the object and
— how we can interpret our observations

* |[n many cases these two are linked, so that we
cannot interpret our observations without
computing how the radiation affects the
object.



A short review of
radiative transfer

(See also Kenny Wood's lecture)



Radiative transfer: A short review

Radiative Transfer is a 7-dimensional problem
(that's one of the reasons it is so hard and expensive to solve):

I(a:,y,z,é’, ¢7 v, t) [erg S_l CIIl_2 I‘IZ_1 Ster_l]
Usually: semi-steady-state:

I(x,y,2,0,0,v) lergs™ ! cm 2 Hz ' ster 1]

If the emission and extinction coefficients are known, you can
reduce this to the Formal Transfer Equation along a single ray:

I(s,v) lergs™ !t em™? Hz ' ster™ !



Radiative transfer: A short review

Formal Transfer Equation along a ray:

Do = rk (s,-1,)
ds

Over length scales larger than 1/pk, intensity | tends to
approach source function S.

1
Photon mean free path: lfree’n -
rk,
Optical depth of a tn — L :ern
cloud of size L: [free .
In case of local thermodynamic —
Sn o Bn (T)

equilibrium: S is Planck function:
Kirchhoff's law
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Rad. trans. through a cloud of fixed T
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Formal radiative transfer solution

Radiative transfer equation again:
dl,

ds

— rk/? (S/? B ]/7)

Observed flux from single-temperature slab:
obs — 70 -1, -t, _
I =" +1-e")B (T) t =Lrk,

»1,B,(T)
for £,<<1 and [ =0



Dust continuum
radiative transfer

(See also Tom Robitaille lecture)



Difficulty of dust radiative transfer

|. The thermal equilibrium problem

If temperature of dust is given (ignoring scattering for the
moment), then radiative transfer is a mere integral along a

ray: i.e. easy.
Problem: dust temperature is affected by radiation, even the
radiation it emits itself.

Therefore: must solve radiative transfer and thermal
balance simultaneously.

Difficulty: each point in cloud can heat (and receive heat
from) each other point.




Thermal balance of dust grains

Optically thin case: ‘
Heating: \ /

0, =pa’ OF, € dn

a = radius of grain ‘/ l \

g,~ absorption efficiency (=1
for perfect black sphere)

Cooling:
O =4pa® QuB,(T)e,dn k,=F="

Thermal balance:

4pa’ QpB,(T)e,dn=pa* OF, e dn



Thermal balance of dust grains

Optically thin case: ‘
Heating: \ /

0, =pa’ OF, € dn

a = radius of grain ‘/ l \

g,~ absorption efficiency (=1
for perfect black sphere)

Cooling:
O =4pa® QuB,(T)e,dn k,=F="

Thermal balance:

OB, (T)k, dn=" OF, k, dn
o,



Optically thick case

Additional radiation field: ‘
diffuse infrared radiation from \ /
the grains

—_—

1

J¢ = yps I¢ dQ / ' \
JU

Intensity obeys tranfer equation
along all possible rays:

ds

dly _ g A(B,(T)- 1) \ A

—_—

Thermal balance: / l \

N\ N\ O
OB, (T)k, dn= Oéaj;Fne' '+ J° K, dn



Once we have the Temperature...

Simply integrate the Formal Transfer Equation

dr, _
= rk,(B,(T)- I;)




Difficulty of dust radiative transfer

lI. The scattering problem

« Light from a star, or even from other regions of the cloud
can scatter into the line of sight:

ﬁ



Difficulty of dust radiative transfer

lI. The scattering problem

« Light from a star, or even from other regions of the cloud
can scatter into the line of sight.

« Multiple scattering can happen:




Scattering source function

dl,(s)
ds

= Jum(8) + 357 (s) = p(s) (5™ + K™ L (s)



Scattering source function

dl,(s)
ds

So now use Monte Carlo to compute S5t

= Jum(8) + 357 (s) = p(s) (5™ + K™ L (s)



Scattering source function

dl,(s)
ds

So now use Monte Carlo to compute S5t

= Jum(8) + 357 (s) = p(s) (5™ + K™ L (s)




Dust opacities

* Dust opacities depend on:

— Material properties (silicate, carbon, water ice,
you name it!)

— Grain size
— Grain shape (spherical, compact, porous, fluffy)



Dust opacities

Example: Silicate dust opacity for different grain sizes
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Example: Phase functions for non-isotropic scattering
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Dust opacities

Example: Phase functions for non-isotropic scattering
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Dust opacities

Example: Phase functions for non-isotropic scattering
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Compute your own dust opacities

* Different shapes need different opacity codes:
— Spheres: Mie Code (= simplest!)
— Polygons: T-Matrix Code (= moderately complex)
— Complex shapes: DDA Code (= very complex/heavy)



Polarized radiation

* So far we have only talked about "the" intensity:

I(s,v)

lergs™ ! cm™2 Hz ' ster™!]

* Butin reality radiation can be polarized and should be

described by a Stokes vector:

Angle>0 definition
+y’

3

_y,

+x°

I,
r_|@
S
U,
V.
Q=+I, U=0, V=0 Q=0, U=+I, V=0 Q=0, U=0, V=+I
+y’ +y’ +y’
_X’ +X, _X5 +X5 _X,KJ +X,
-y’ -y’ -y’

Note: Depends on convention and on a choice of Q-direction!



Scattering induces polarization

|



Scattering induces polarization
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Scattering induces polarization
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LIne
radiative transfer

(See also Christian Brinch's lecture)



RT Equation for lines in LTE

For LTE the Formal Transfer equation is the same as for dust:

dl

d—sy = p(8)ku B, (T'(s)) — p(s)ku 1, (s)

Just replace dust continuum opacity with line opacity.
(works only in LTE!)
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RT Equation for lines in non-LTE

For non-LTE the Formal Transfer equation is:

L= () — )9

. hvi;
Jijv = ENiAi i$ii(v)

hVi'
@iy = 4—7:(Niji — N;B;j)¢i;(v)

Methods for solving the populations:
- Optically thin populations
- Escape probability
- Large Velocity Gradient
- Full non-LTE (not included in RADMC-3D)



Literature:

* A standard book on radiative processes in
astrophysics is: Rybicki & Lightman “Radiative
Processes in Astrophysics’ wiley-interscience

* For radiative transfer in particular there are
some excellent lecture notes on-line by Rob

Rutten “Radiative transfer in stellar

atmospheres’
http://www.staff.science.uu.nl/~rutte101/

* For stellar atmospheres: pleasantly written
book by Bohm-Vitense ,Stellar Astrophysics
Vol. 2: Stellar atmospheres”



Literature:

In-depth reference work by Mihalas ,Stellar
atmospheres”

Allround bible on radiation hydrodynamics by
Mihalas & Mihalas , Radiation
Hydrodynamics”

Book on Exoplanetary atmospheres by Seager
,Exoplanet Atmospheres”

Book on radiative transfer in Earth’s
atmosphere (application to e.g. climate
research): Wendisch & Yang ,Theory of
Atmospheric Radiative Transfer”



Literature:

My own set of lecture notes:
http://www.ita.uni-heidelberg.de/~dullemond/teaching.shtml



