
Format

• Lectures & lots of “unscheduled time”
• Breakout sessions – tutorial exercises, using 

codes, informal discussions
• Coffee served morning and afternoon
• Lunch each day
• Dinner each evening (different locations)
• Beach activities and BBQ on Tuesday
• Dinner & whisky tasting on Wednesday



Lecturers
• Kenny Wood – general intro to MCRT & write a 

scattered light code; photoionization with MCRT
• Antonia Bevan – practical guide to writing MCRT 

codes; confidence in academia
• Bert Vandenbroucke – computational 

hydrodynamics; exascale computing
• Tim Harries – 3D gridding techniques, radiation 

pressure, time dependent MCRT, using TORUS
• Tom Haworth – NLTE excitation, development of 

NLTE codes, ALMA simulations



Lecturers
• Aaron Smith – Lyman a and rad-hydro
• Kees Dullemond – RADMC-3D
• Stuart Sim – radiation hydrodynamics with MCRT
• Lewis McMillan – MCRT in medical physics at St 

Andrews and Dundee



Why are you here?

• Use existing Monte Carlo codes to model 
data sets – set up source locations & 
luminosities, change density structure, get 
images and spectra to compare with 
observations 

• Learn techniques so you can develop your 
own Monte Carlo codes

• General interest in computational radiation 
transfer and hydrodynamics



Reflection Nebulae: can reflections from 
grains diagnose albedo?

Mathis, Whitney, & Wood (2002)

3D density: viewing angle effects

NGC 7023
Reflection Nebula



Photo- or shock- ionization?

Ercolano et al. (2012)

[O III]
Ha + [O III]

“Photoionzed”

“Shock-ionzed”



Dusty Ultra Compact H II Regions

Indebetouw, Whitney, Johnson, & Wood (2006)

3D Models: Big variations with viewing angle



Vandenbroucke & Wood (2019)

N(HI)

Ha

Radiation Hydrodynamics

Photoionisation feedback 
in the interstellar medium



What happens physically?

• Photons emitted, travel some distance, interact 
with material

• Scattered, absorbed, re-emitted
• Photon interactions heat material, change level 

populations, alter ionization balance and hence 
change opacity

• If medium in hydrostatic equilibrium: density 
structure related to temperature structure

• Density structure may depend on radiation field 
and vice versa



Atmospheric Physics
Clouds important for photon 
transport and temperature 
structure of atmosphere



Medical Physics
Light activated treatments such as photodynamic therapy: how 
deep does the radiation penetrate into skin and tissue?
Imaging using x-ray, ultraviolet, optical, infrared, & polarised light
Optical tweezers, photo-acoustic imaging, nuclear medicine, etc, etc

Monte Carlo simulations of computed
topography (CT) x-ray imaging doses
Rensselaer Polytechnic Institute



Nuclear Physics & Neutron Transport
Compute controlled criticality assemblies & geometries for 
nuclear fission reactors
Nuclear safety – radioactive shielding calculations
Uncontrolled reactions – critical masses for bombs

Chain reaction in 235U Chicago Pile 1, December 1942
World’s first artificial nuclear reactor



Buffon’s needles

What is the probability that a 
needle will cross a line?

Georges-Louis Leclerc
Comte de Buffon

1707-1788



Needles of length l
Line separation s
x = distance from needle centre 
to closest line
Needle touches/crosses line if

Probability density function: function of a variable that gives 
probability for variable to take a given value

Exponential distribution: p(x) = e-x , for x in range 0 to infinity

Uniform distribution: p(x) = 1/L , for x in range 0 to L

Normalised over all x: 
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Probability x lies in range a < x < b is ratio of “areas under the 
curve”

x is distributed uniformly between (0, s/2), q in range (0, p/2)

p(x) = 2/s, p(q) = 2/p

Variables x and q independent, so joint probability is 

p(x, q) = 4/(s p)
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Probability of a needle touching a line (l < s) is 

Drop lots of needles. Probability of needle crossing line is

Can estimate p :
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Number of needles crossing lines
Total number of needles dropped
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Brief History
• Buffon’s needles – first Monte Carlo simulation
• Statistical sampling – draw conclusions on an entire 

population by conducting a study on a small subset of the 
population. 

• Used in maths since 1800s, but slow before computers. 
• Lord Kelvin studied kinetic theory using random sampling 

to evaluate integrals. Generated random numbers by 
pulling pieces of paper from a jar.

• Fission of 235U by neutrons discovered in 1938, possibility 
of chain reactions for power and explosives

• Enrico Fermi developed a mechanical machine, the 
FERMIAC, to simulate neutron random walks



Enrico Fermi and the FERMIAC

Mechanical device that plots 2D random 
walks of slow and fast neutrons in fissile material



Los Alamos
• Development of computers from the 1940s made Monte Carlo 

practical – the ENIAC, MANIAC, etc 
• Ideas from Metropolis, Ulam, von Neumann, Teller developed 

for neutron propagation



Stan Ulam with the FERMIAC

MANIAC: Mathematical Analyzer Numerical Integrator and Computer

The ENIAC
Electronic Numerical Integrator and Computer

No whining about fortran…!!!!



• Stan Ulam had ideas on numerical simulations when he 
was ill and playing solitaire (patience)

• Technique given name by Nick Metropolis
• First declassified paper published in 1949 by Metropolis & 

Ulam: “The Monte Carlo Method” 



Just in case you think you’re doing something new…

Fig. 1. The first and last pages of von Neumann’s remarkable letter to Robert Richtmyer are shown above, as well as a portion of his tentative
computing sheet. The last illustrates how extensively von Neumann had applied himself to the details of a neutron-diffusion calculation.

132 Los Alamos Science Special Issue 1987



Just in case you think you’re doing something new…

John von Neumann had Monte Carlo radiation 
transport coupled with hydrodynamics all figured 

out… in 1947!!

Dear Bob,

I have been thinking a good deal about the possibility of using statistical methods 
to solve the neutron diffusion and multiplication problem, in accordance with the 
principle suggested by Stan Ulam…

If and when the problem of neutron diffusion has been satisfactorily handled… 
it will be time to investigate the more general case, where hydrodynamics 
also come into play… I think I know how to set up this problem, too…



Recap of radiation transfer basics

• Intensities
• Opacities
• Mean free path
• Equation of radiation transfer



Specific Intensity

€ 

dEν = Iν cosθdAdtdν dΩ

Units of In: J/m2/s/Hz/sr  (ergs/cm2/s/Hz/sr)
Function of position and direction
Independent of distance when no sources or sinks

dA

q

In(r, n)
dW
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s is normal to dA



Mean Intensity
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Determines heating, ionization, level populations, etc



What is Jn at r from a star with uniform specific 
intensity I* across its surface?

R*

r

q*

I*

I = I* for 0 < q < q* (µ* < µ < 1);  µ = cos q
I = 0 for q > q* (µ < µ*)
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Monochromatic Flux
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Energy passing through a surface.  Units: J/s/m2/Hz



Stellar Luminosity
Flux = energy/second per area/Hz
Luminosity = energy/second/Hz

Assume In = Bn and integrate to get total luminosity:

Lν =Fν A* = 4π R*
2 π Iν
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Energy Density & 
Radiation Pressure

uν =
1
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Iν dΩ∫ =
4π
c
Jν ∫ Ω= dcos1 2θνν I

c
p

un : J/m3/Hz pn : N/m2/Hz

Isotropic radiation: pn= un/3

Radiation pressure analogous to gas pressure: 
pressure of the photon gas



Moments of the Radiation Field
First three moments of specific intensity are named 
J (zeroth moment), H (first), and K (second):
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Photon Interactions

• Scattering: change direction (and energy)
• Absorption: energy added to K.E. of particles: 

photon thermalized
• Emission: energy taken from thermal energy 

of particles 



Emission Coefficient
Ω≡ ddddd ννν tVjE

Energy, dEn, added: stimulated emission
spontaneous emission
thermal emission
energy scattered into the beam

Intensity contribution from emission along ds:

ds)()(d sjsI νν =



Extinction Coefficient
Energy removed from beam 
Defined per particle, per mass, or per volume

ds)(d ννν αIsI −= an: units of m-1

ds)(d nIsI ννν σ−=
sn = cross section per particle (m2) 
n = particle density (m-3) 

ds)(d ρκννν IsI −=
kn: units m2 kg-1

r = density (kg m-3)



Source Function

Same units as intensity:
ν

ν
ν α

jS ≡

Multiple processes contribute to emission and extinction: 
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hn = anl/ anc = line-to-continuum extinction ratio; 
Snc, Snl are continuum and line source functions



Optical Depth
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Function of frequency via the opacity, and direction

Physically tn is number of photon mean free paths

Mean free path = 1 / a = 1 / ( n s ) = 1 / ( r k )
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Equation of Radiation Transfer
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Goal: Determine source function!

Show analytic solution for slab



Interconnectedness
Moments (Jn, Hn, Kn) depend on In
Need to solve ERT to get In
In (and hence Jn) depends on position  and direction
In depends on Sn, hence on emissivity and opacity
Opacity depends on temperature and ionization
Temperature and ionization depends on Jn
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Example: Model H II Region
• Sources of ionizing photons
• Opacity from neutral H: bound-free
• 1st iteration:

– Medium fully ionized (no neutral H) so opacity is zero 
– Solve ERT throughout medium to get Jn
– Solve for ionization structure, some regions neutral

• 2nd iteration: 
– new opacity structure, 
– different solution for ERT, different Jn values  
– new ionization and opacity structure

• Iterate until get convergence: solution of ERT, Jn,
ionization structure do not change with further
iterations



Monte Carlo Radiation Transfer I

• Monte Carlo “packets” and interactions
• Sampling from probability distributions 
• Optical depths, isotropic emission, scattering 



Monte Carlo Basics
• Emit luminosity packet, hereafter a “packet”
• Packet travels some distance
• Something happens…

• Scattering, absorption, re-emission



Luminosity Packets
Total luminosity = L (J/s, erg/s)
Each packet carries energy Ei = L Dt / N, 
N = number of Monte Carlo packets.  
MC packet represents Ng real photons, where Ng = Ei / hni
MC packet moving in direction q contributes to the 
specific intensity:
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In is a distribution function.  MC works with discrete
energies.  Binning the packets into directions, 
frequencies, etc, enables us to simulate a distribution 
function: Spectrum: bin in frequency

Scattering phase function: bin in angle
Images: bin in spatial locationI

n (spectrum)
q (phase function)



Photon Interactions

Energy removed from beam per particle /t / n / dW= In s
A

Volume = A dl

Number density n

dl
Cross section s



Intensity differential over dl is dIn = - In n s dl.  Therefore
In (l) = In (0) exp(-n s l)

Fraction scattered or absorbed / length = n s
n s = volume absorption coefficient = r k
Mean free path = 1 / n s = average dist between interactions
Probability of interaction over dl is n s dl
Probability of traveling dl without interaction is 1 – n s dl

Probability of traveling L before interacting is 
P(L) =  (1 – n s L / N) (1 – n s L / N) …

=  (1 – n s L / N)N = exp(-n s L) (as N -> infty)
P(L) =  exp(-t)

t = number of mean free paths over distance L.

L

N segments of length L / N



PDF for packets to travel t before an interaction is exp(-t).  
If we pick t uniformly over the range 0 to infinity we will 
not reproduce exp(-t).  Want 
to pick lots of small t and fewer 
large t.  Same with a scattering 
phase function: want to get the 
correct number of packets 
scattered into different directions, 
forward and back scattering, etc.

exp(-t)N

t

Probability Distribution Function



Cumulative Distribution Function

∫== xxP d)( under PDFArea CDF

Randomly choose t, q, l, … so that PDF is reproduced

XxP(x)
X

a

⇒= ∫ dξ 1d =∫
b

a

xP(x)
x is a random number 
uniformly chosen in 
range [0,1]

This is the fundamental principle behind Monte Carlo 
techniques and is used to sample randomly from PDFs.



e.g., P(q) = cos q and we want to map x to q. Choose 
random qs to “fill in” P(q)
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Sample many random qi in this way and “bin” them, we 
will reproduce the curve P(q) = cos q.



P(t) =  exp(-t), i.e., packet travels t before interaction
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Since x is in range [0,1], then (1-x) is 
also in range [0,1], so we may write: ξτ log−=

Choosing a Random Optical Depth

Physical distance, L, that the packet has traveled from:

sn
L

∫=
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dστ



Random Isotropic Direction
Solid angle is dW = sin q dq df, choose (q, f) so they 
fill in PDFs  for q and f. P(q) normalized over [0, p], 
P(f) normalized over [0, 2p]:

P(q) = ½ sin q P(f) = 1 / 2p
Using fundamental principle from above:
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Use this for emitting packets isotropically from a point 
source, or choosing isotropic scattering direction.



Rejection Method
Used when we cannot invert the PDF as in the above 
examples to obtain analytic formulae for random q, l, etc.

a bx1 x2

y2

y1

Pmax

P(x)

x

e.g., P(x) can be complex
function or tabulated

Multiply two random 
numbers:
uniform probability / area

Pick x1 in range [a, b]: x1 = a + x(b - a), calculate P(x1)
Pick y1 in range [0, Pmax]: y1 = x Pmax
If y1 > P(x1), reject x1.  Pick x2, y2 until y2 < P(x2): accept x2
Efficiency = Area under P(x)



Calculate p by the Rejection Method
Pick N random positions (xi, yi):
xi in range [-R, R]: xi = (2x - 1) R
yi in range [-R, R]: yi = (2x - 1) R
Reject (xi, yi) if   xi2 + yi2 > R2

Number accepted / N = p R2 / 4R2

NA / N = p / 4
Increase accuracy (S/N): large N

do i = 1, N
x = 2.*ran – 1.
y = 2.*ran –1.
if ( (x*x + y*y) .lt. 1. ) NA = NA + 1

end do
pi = 4.*NA / N

FORTRAN 77:

2 R



Albedo
Packet gets to interaction location at randomly chosen t, 
then decide whether it is scattered or absorbed.  Use the 
albedo or scattering probability.  Ratio of scattering to total 
cross section:

AS

Sa
σσ

σ
+

=

To decide if a packet is scattered: pick a random number in 
range [0, 1] and scatter if x < a, otherwise packet absorbed

Now have the tools required to write a Monte Carlo 
radiation transfer program for isotropic scattering in a 
constant density slab or sphere



Monte Carlo II
Scattering Codes

• Plane parallel scattering atmosphere
• Optical depths & physical distances
• Emergent flux & intensity
• Internal intensity moments



Constant density slab, vertical optical depth tmax = n s zmax
Could use normalized length units z = z / zmax, so 0 < z < 1

Emit packets
Packet scatters in slab until:

absorbed: terminate, start new packet
z < 0: re-emit packet 
z > zmax: escapes, “bin” packet

Loop over packets
Pick optical depths, test for absorption, test if still in slab



z = zmax

z = 0

tmax = n s zmax

Bin this packet in angle

Re-start this packet

q

Packet absorbed
Start next packet



Emitting packets:  Packets need an initial starting location 
and direction.  Uniform specific intensity from a surface.  

Start packet at (x, y, z) = (0, 0, 0)

Sample µ from P(µ) = µ I (µ) using cumulative distribution.  
Normalization: emitting outward from lower boundary, 
so 0 < µ < 1
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Distance Traveled:  Random optical depth t = -log x, 
and t = n s L, so distance traveled is:

Scattering:  Assume isotropic scattering, so new packet 
direction is:

Absorb or Scatter:  Scatter if x < a, otherwise packet 
absorbed, exit “do while in slab” loop and start a new 
packet.
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Structure of FORTRAN 77 program:
do i = 1, npackets
1 call emit_packet

do while ( (z .ge. 0.) .and. (z .le. zmax) )    ! packet is in slab
L = -log(ran) * zmax / taumax
z = z + L * nz ! update packet position, x,y,z
if ((z.lt.0.).or.(z.gt.zmax)) goto 2    ! packet exits
if  (ran .lt. albedo) then 

call scatter
else

goto 3 ! Terminate acket
end if

end do
2 if (z .le. 0.) goto 1 ! re-start packet

bin packet according to direction
3 continue ! exit for absorbed packets, start a new packet
end do



Intensity Moments
The moments of the radiation field are:

Compute these moments throughout the slab.  First 
split the slab into layers, then tally number of packets, 
weighted by powers of their direction cosines to obtain 
J, H, K.  Contribution to specific intensity from a single 
packet is:
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Substitute into intensity moment equations and convert the 
integral to a summation to get:

Note the mean flux, H, is just the net energy passing 
each level: number of packets traveling up minus number 
traveling down.

Pathlength formula (Lucy 1999)
Long history of use in neutronics
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Some Monte Carlo photon packets may pass through a cell without interacting 
(scatter or absorbed), but the path length estimator ensures they still contribute 
to the estimates for mean intensity, absorbed energy, radiation pressure, etc

Ji =
L

4π N ΔVi
l∑



Summing path lengths gives better estimates for intensities, 
absorbed energy, radiation pressure, etc. More photons pass 
through a cell than interact with a cell

Mean intensity, J, related to photon energy density, u, via

u related to time photon spends in a cell, t = l/c, so 
can form Monte Carlo estimator:

Where en = MC packet energy = L Dt / N. Hence, get estimator 
for J which will be accurate in optically thin regions:
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How much energy absorbed in a cell? Could count number of 
absorption events in each cell, but this is inaccurate for optically 
thin systems. We know the change in intensity for radiation 
passing through a medium with absorbing particles is 

dI = - I n sabs dl = - I dtabs

Hence, a Monte Carlo estimator for absorbed energy:

!"abs =
'

( Δ*"
+,-abs .



Net displacement of a single photon from starting position after N mean free paths
between scatterings is:

Square and average to get distance |R | travelled :

The cross terms are all of the form:

where d is the angle of deflection during the scattering.
For isotropic scattering, <cos d> = 0, cross-terms vanish.
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Random walks



Thus, for a random walk we have

Using:

If the medium is optically thin, then the probability of scattering is 

Using then

Therefore will be roughly correct for any optical depth
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2 +...+ rN
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Student exercises: write codes to…

- Calculate pi via rejection method

- Sample random optical depths and produce histogram vs tau

- Monte Carlo isotropic scattering code for uniform density sphere 
illuminated by central isotropic point source. Compute average 
number of scatterings vs radial optical depth of sphere.

-Make scattered light images for uniform sphere using 
“peeling off” technique (“next event estimator”)


