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Overview:
• Brief introduction to supernovae

• Observations to study

• Considerations for modelling radiation transport for supernovae
• Suitability of MCRT techniques

• Light curve calculations (Lecture 1)
• Simple 1D example

• Spectrum calculations (Lecture 2; Wed afternoon)
• Sobolev treatment of lines
• Macro Atom methods for radiative equilibrium



Supernova (Type Ia) lightcurves

Figure 3: BVRCIC light- and color-curve of SN 2011fe from our data in Table 1. Different colors and symbols identify the telescopes used to
monitor the supernova. The curves are spline fits to the data drawn to guide the eye.

a luminous red giant as a companion star to the progeni-
tor of SN 2011fe, a conclusion supported by sensitive
X-ray and radio non detection during early evolution
(Horesh et al. 2012, Chomiuk et al. 2012). Analysis of
early-time optical spectra was reported by Parrent et al.
(2012), ultraviolet data from Swift satellite by Brown et
al. (2012), and polarization of optical light by Smith et
al. (2012). Being the first close type Ia supernova de-

tected in the CCD era, SN 2011fe will undoubtedly be-
come the best observed thermonuclear supernova, well
into its nebular stage, and a stringent test for theoretical
models.
We began our photometric monitoring of SN 2011fe

on 2011 August 25.891, less than a day after the an-
nouncement of discovery was posted by Nugent et al.
(2011a). We have obtained 236 independent BVRCIC
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SN2011fe
Munari et al. (2012)



Supernova (Type Ia) spectrum

3. Intrinsic variability. The model should contain at least one parameter that
can plausibly account for the observed sequence of explosion strength.

4. Correlation with progenitor system. The explosion strength parameter
must be connected with the state of the progenitor.

Figure 1: Spectrum of SN1992A [20]
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Spectral modelling

Need to consider:

• Velocity field (for supernovae, homologous flow assumption often sufficient)
• not necessarily need for full dynamical coupling in calculation
• …but kinematics are critical to shaping spectrum

• Realistic opacity

• Non-LTE needed for accurate treatment of emission and reprocessing



Homologous flow
normally established within seconds to hours

r = v t

ρ = ρ0 (t / t0 )
−3



Non-grey opacity
Finding interaction points for MCRT method:

• Need to be able to compute rate at which optical depth is 
accumulated by propagating MC packet

• Was trivial for grey opacity assumed in light curve …

• …but still easily accomplished thanks to conditions / 
approximations appropriate to homologous supernovae ejecta
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Non-grey opacity

Pinto & Eastman 2000



Photons in expanding media



Photons in expanding media
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Photons in expanding media
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Fluid-frame frequency evolves in remarkably simple way for radial velocities:

Use cosine rule to differentiate direction cosine along a path:

Provided speed is positive (outflow) and increases outward, always negative! 
For homologous flow, even simpler: independent of position and direction:
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Photons in expanding media

Implication: 

• Fluid-frame frequency of a propagating packet evolves (at a near-constant 
rate) to the red

• Will successively Doppler-shift in and out of resonance with line 
transitions in (inverse) frequency order



Sobolev approximation

Sobolev approximation: 

• Simplification for dealing with line opacity in high velocity-gradient flows



Sobolev approximation
Sketch derivation (Sobolev 1957; see e.g. Lamers & Cassinelli 1999): 
The absorption coefficient for a bound-bound line can be written:

The optical depth traversed by a photon along a short path is:

So integrating along a path element

Use fact that frequency and path-length are related in flow

If resonance region is small
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Sobolev approximation
Resulting optical depth for homologous flow:

Leads to dramatic simplification:
• Easy to compute total optical depth accumulated by packet that passes 

through resonance with a line
• In Sobolev limit, all this opacity encountered in spatially small region 

(approximated as Sobolev point in codes)
• Can be fairly-easily generalized e.g. to include continuum opacity
• …together with continuous red-shifting lends itself to simple algorithm 

with frequency-ordered line list

Issues:
• Overlapping lines
• Still need good level populations!
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Sobolev approximation
Algorithm for finding interaction point (only lines):Line-driven winds with Monte Carlo radiation hydrodynamics 5

once frequency-dependent processes are included, since now pack-
ets with different frequencies accumulate varying amounts of opti-
cal depths on their trajectories.

For the current work, we have conceptually restricted the
wealth of physical radiation–matter interactions that packets may
experience to include only frequency-dependent bound-bound pro-
cesses, which we treat as resonant scatterings. All continuum pro-
cesses are neglected, apart from Thomson scattering, which is in-
corporated approximately by reducing the mass of the central star
as outlined in Section 2.1. With respect to the Monte Carlo scheme,
the challenge lies in identifying the total optical depth packets ac-
cumulate along their trajectories due to line interactions. The diffi-
culties arise due to the relativistic Doppler effect, which constantly
shifts the packet frequency in and out of resonance with line tran-
sitions. Thus, an integration over the physical conditions along the
entire packet trajectory would be required to determine the line op-
tical depth. Fortunately, the conditions in line-driven stellar winds
are suitable for the use of the so-called Sobolev approximation (af-
ter Sobolev 1960, see also Lamers & Cassinelli 1999, for a sum-
mary) which reduces the computational effort in the line interac-
tion procedure tremendously (see, e.g., Pauldrach et al. 1986, for a
discussion of the applicability of the Sobolev approximation). The
optical depth determination is now a purely local problem, only de-
pending on the physical conditions at the so-called Sobolev point,
rs. At this location, the packet frequency in the CMF coincides with
the rest-frame frequency of the line transition. In addition to simpli-
fying the optical depth calculation, the Sobolev approximation also
facilitates the handling of a large number of possible atomic line
transitions. Since the line-profile is formally replaced by a delta
function around the rest-frame frequency, no line overlaps occur in
frequency space in this approximation. Thus, at all times, the line
transition a packet comes into resonance with next may be unam-
biguously identified.

For calculating the location of the line-interaction events,
packets experience, we adopt and simplify the optical depth sum-
mation approach of Mazzali & Lucy (1993). On its trajectory, a
packet propagates freely to the Sobolev point of the next line in-
teraction it comes into resonance with. Each time such a resonance
point is reached, the optical depth is incremented instantaneously
by the full line optical depth of the corresponding transition. The
packet undergoes an interaction once the value drawn in (11) is
surpassed by the optical depth accumulated. If this occurs during
the instantaneous increases at one of the Sobolev points, the packet
undergoes a resonant line interaction, otherwise it may leave the
current grid cell uninterrupted. Figure 1, inspired by Mazzali &
Lucy (1993), illustrates this optical depth accumulation scheme.
This procedure may be easily extended to include additional inter-
action types, in particular frequency-independent processes, such
as Thomson scatterings (see Mazzali & Lucy 1993), but for the
current work we have omitted to do so.

3.6 Monte Carlo estimators

In reconstructing the radiation field characteristics from the ensem-
ble of packet interaction histories, we follow the volume-averaged
estimator approach proposed by Lucy (1999a) and refined in Lucy
(2003, 2005). This formalism aims at reducing the statistical fluctu-
ations inherent to the Monte Carlo approach by increasing the num-
ber of contributions to the packet census. This is best illustrated at
the example of reconstructing the radiative energy. Instead of look-
ing at the instantaneous distribution of packets, a cell-averaged ra-
diation energy density is calculated by accounting for all packets
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Figure 1. Illustration of the optical depth summation routine. Between the
Sobolev points, the packet propagates freely along its trajectory l. At each
resonance point, the full line optical depth is added instantly. Depending
on the outcome of the random number experiment of Equation (11), de-
termining the optical depth to the next interaction location, a packet either
interacts with a resonance line (case I) or escapes uninterrupted into the next
cell (case II).

whose trajectories intercept the cell and by letting each packet en-
ergy contribute according to the relative dwell time of the packet
in the cell (c.f. Lucy 1999a). Using analogous considerations, esti-
mators for various other radiation field characteristics may be for-
mulated. For the case of frequency-independent processes being
the only interaction channel, adequate estimators have already been
derived and presented in Noebauer et al. (2012). Similar estimators
are also presented by Roth & Kasen (2014).

To determine the radiative acceleration due to spectral line in-
teractions, we consider the energy and momentum transfer in such
an event. Assuming, as already mentioned, that these interactions
occur as resonant scatterings, a packet transfers
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energy and momentum onto the material. Estimators for the radia-
tion force components can be obtained by summing over the trans-
fer terms of all interacting packets. To reduce the statistical fluctua-
tions in these estimators we follow the suggestion of Lucy (1999b)
and include all packets that come into resonance with a line and
weight their contributions with the corresponding interaction prob-
ability given by (1 � e�⌧s). Here, ⌧s denotes the Sobolev opti-
cal depth, whose explicit form will be introduced in Section 3.7.
Taking the forward-backward symmetry of the re-emission into ac-
count, thus neglecting all terms that are of odd power in µf

0
, the

following estimators for the radiation force due to line interactions
are obtained, assuming isotropic re-emission:
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Combining with the contributions due to continuous processes,
which may be reconstructed employing estimators as presented in
Noebauer et al. (2012), the total radiation force can be calculated
and used in the final splitting step to update the fluid state.

c� 0000 RAS, MNRAS 000, 000–000

Packet trajectory length
(figure from U. Noebauer)
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Sobolev approximation
Process for finding interaction point (generalized to include continuum):

Packet trajectory length
(figure from Mazzali & Lucy 1993)
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Line interaction events

…what to do when absorption occurs….



Redistribution in metal lines

(figure from Kromer & Sim 2009)



Line interaction events

Radiative equilibrium means any Monte Carlo packet absorbed by a line 
transition must be replaced.

An attractive way to handle this is by insisting packets are indestructible and
indivisible (Lucy method). To implement this need rules to govern packet 
interactions.

Extremely simple to use resonance scattering approximation:
• In homologous flow Sobolev escape probabilities are isotropic
• Empirically seems to do quite well for optical spectra of SNe Ia

Alternative schemes based on “down branching” (Mazzali & Lucy 1993) and 
Lucy’s (2002, 2003) “macro atom” / “k-packet” methods give more physical 
realism.



Macro atom methods
(Lucy 2002/2003)

“Macro atom” is terminology introduced by Lucy (2002,2003) as part of a 
scheme designed to handle non-LTE interactions between radiation and 
matter (Monte Carlo energy packet scheme).

• Packets are indestructible and indivisible. 
• Rules governing the interaction of packets with atomic energy levels are 

set up to enforce some desirable set of conservation laws: initially (and
usually) statistical equilibrium (the construct for this is the “macro atom”).

• Similar rules set up to enforce energy flow to/from the thermal energy 
reservoir of the gas, typically based on thermal equilibrium (described by 
the “k-packet” reservoir).



Macro atom methods
(Lucy 2002/2003)

“Macro atom” is terminology introduced by Lucy (2002,2003) as part of a 
scheme designed to handle non-LTE interactions between radiation and 
matter (Monte Carlo energy packet scheme).

• Packets are indestructible and indivisible. 
• Rules governing the interaction of packets with atomic energy levels are 

set up to enforce some desirable set of conservation laws: initially (and
usually) statistical equilibrium (the construct for this is the “macro atom”).

• Similar rules set up to enforce energy flow to/from the thermal energy 
reservoir of the gas, typically based on thermal equilibrium (described by 
the “k-packet” reservoir).

Power of the method is that:
• ensures energy conservation conditions are exactly fulfilled locally within 

the simulation
• places energy conservation on a “higher footing” that current values of 

simulation properties (temperature, populations etc.)



Macro atom background
(Lucy 2002/2003)

For full derivation of scheme, see Lucy 2002/2003 (further comments in our 
review article, Noebauer & Sim 2019).

To illustrate principle here, will instead work with some simple examples: 
two- and three-level radiation dominated atoms…



Two-level atom
(radiation dominated)
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Ȧ2 = R12✏2

Ė2 = R21✏2
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Ȧ3 = R13✏3 +R23(✏3 � ✏2)
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Two-level atom
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Ȧ3 = R13✏3 +R23(✏3 � ✏2)
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Ė2 = R21✏2
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Ȧ3 = R13✏3 +R23(✏3 � ✏2)
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Ȧ3 � Ė3 = (R13 �R31)✏3 + (R23 �R32)(✏3 � ✏2)
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Ȧ3 = R13✏3 +R23(✏3 � ✏2)
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Simple algorithm (“scatter”):

Every time a line absorbs an energy packet immediately replace it 
with a new energy packet emitted by the same line. Effectively a 
scattering  event – just need a new direction.

[Some codes generalize to include collisional destruction (e.g. Long 
& Knigge 2002)] 
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Simple algorithm (“scatter”):

Every time a line absorbs an energy packet immediately replace it 
with a new energy packet emitted by the same line. Effectively a 
scattering  event – just need a new direction.

[Some codes generalize to include collisional destruction (e.g. Long 
& Knigge 2002)] 

Note: This algorithm means that the 
rate of emission in the line is set by
the rate of absorption, not an estimate 
of the upper level population (which
would depend on an accurate non-LTE
level population).
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Ȧ3 � Ė3 = R13✏3 �R31✏3 +R23✏3 �R23✏2 �R32✏3 +R32✏2

R13 +R23 �R31 �R32 = 0

1

✏1 = 0

✏2

✏3
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Ė2 = R21✏2
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Ė3 = R31✏3 +R32(✏3 � ✏2)
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Ė2 = R21✏2
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Ȧ3 � Ė3 = R13✏3 �R31✏3 +R23✏3 �R23✏2 �R32✏3 +R32✏2

R13 +R23 �R31 �R32 = 0

1

✏1 = 0

✏2

✏3
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Ȧ3 � Ė3 = R13✏3 �R31✏3 +R23✏3 �R23✏2 �R32✏3 +R32✏2

R13 +R23 �R31 �R32 = 0

1

Resonance line scattering assumption:

Advantages: 
Very simple to implement in MCRT
Should be reasonable for many cases

Problem: 
Neglects a lot of atomic physics!

R13 +R23 �R31 �R32 = 0

R12 +R32 �R21 �R23 = 0

R13✏3 +R23✏3 �R31✏3 �R32✏3 = 0

Ȧ3 +R23✏2 = Ė3 +R32✏2

Ȧ2 +R32✏2 = Ė2 +R23✏2

R12 = R21

R23 = R32

R13 = R31
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Ȧ3 = R13✏3 +R23(✏3 � ✏2)
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Ė3 = R31✏3 +R32(✏3 � ✏2)
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Ė3 = R31✏3 +R32(✏3 � ✏2)
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Ȧ3 � Ė3 = (R13 �R31)✏3 + (R23 �R32)(✏3 � ✏2)
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“Down-branching” approach:

Following excitation to an atomic level:

1. Randomly select a transition out of 
that level based on energy flow rates 
(Lucy 1999)

2. Emit an energy packet in that 
transition (energy equal to absorbed 
packet energy)
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Ė2 = R21✏2
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Ȧ2 = R12✏2
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Ė3 = R31✏3 +R32(✏3 � ✏2)

Ȧ2 = R12✏2
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Ė2 = R21✏2
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“Down-branching” approach:

E.g., following excitation to level 3, 
choose remission with

Advantages: 
Only minor complication to MCRT
Major improvement for many cases

Problem: 
Still neglects a lot of atomic physics!

R13 +R23 �R31 �R32 = 0

R12 +R32 �R21 �R23 = 0

R13✏3 +R23✏3 �R31✏3 �R32✏3 = 0

Ȧ3 +R23✏2 = Ė3 +R32✏2

Ȧ2 +R32✏2 = Ė2 +R23✏2

R12 = R21

R23 = R32

R13 = R31

p31 =
R31✏3

R31✏3 +R32(✏3 � ✏2)

p32 =
R32(✏3 � ✏2)

R31✏3 +R32(✏3 � ✏2)

R21 = n2A21psob

R12 = n1 B12 psob Jb

✓
1� n2

n1

g1
g2

◆

dn2

dt
= R12 �R21 = 0 ! R12 = R21

psob =
1� e⌧s

⌧s
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Figure 13. Each panel illustrates the wavelength redistribution that occurred during the last interaction of escaping packets (co-moving frame wavelength prior
to interaction versus wavelength after interaction) for calculations at texp = 18 days (scatter mode left, downbranch mode centre, macroatom mode
right).

Figure 14. Comparison between Jb
lu obtained using the estimators in Equa-

tion 17 (dashed) and Jb
lu = WB(⌫) (solid) for selected transitions at

texp=18 days. For clarity we have applied offsets to each curve (increment
5 ⇥ 10�5).

combining the nebular ionization / dilute-lte excitation
plasma modes with the dilute-blackbody and macroatom
interaction modes as a viable (computationally manageable) mode
of operation. To fit a particular observation, a user would need to
supply the luminosity and then develop a model by choosing a
density profile [which could be empirical or based on an explo-
sion model such as W7 (Nomoto et al. 1984)] and a set of ejecta
abundances (which can be uniform or stratified). The density and
abundances can then be modified to attempt to improve the fit (and
therefore constrain the SN properties, as in e.g. Stehle et al. 2005;
Mazzali et al. 2008; Hachinger et al. 2009; Tanaka et al. 2011).
However, we stress that this is only one potential use/mode of op-
eration for TARDIS and we encourage potential users to refer to the
manual http://tardis.rtfd.org for further details.

In the near future, we plan to focus on two distinct TARDIS
projects. First and foremost, the implementation of additional
physics (bound-free/thermalization processes) with the goal of
adding modules that include more sophisticated ionization approx-
imations and allow for spectral synthesis for SNe II (Klauser &
Kromer et al., in prep.). Secondly, since TARDIS was mainly de-
veloped to provide a means to fit SNe Ia with an approach similar
to Mazzali et al. (2007), we aim to couple TARDIS with a suitable
algorithm for automatic fitting of observations. We have explored

Figure 15. Comparison of spectra obtained for detailed and
dilute-blackbody radiative rates modes (Si II treated in nlte ex-
citatrion mode; all other ions in dilute-lte mode).

this problem already, using the ML93 spectral synthesis code and
genetic algorithms as the optimization algorithm and find that this
is a promising approach (see Kerzendorf 2011, priv. comm. S.
Hachinger, P. Mazzali).
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Ȧ3 � Ė3 = R13✏3 �R31✏3 +R23✏3 �R23✏2 �R32✏3 +R32✏2

R13 +R23 �R31 �R32 = 0

1

✏1 = 0

✏2

✏3
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Ȧ3 � Ė3 = R13✏3 �R31✏3 +R23✏3 �R23✏2 �R32✏3 +R32✏2

R13 +R23 �R31 �R32 = 0

1

✏1 = 0

✏2

✏3
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Ȧ2 = R12✏2
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(see Lucy 2002)
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Ȧ2 = R12✏2
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Ė3 = R31✏3 +R32(✏3 � ✏2)
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Ė2 = R21✏2
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Ȧ3 � Ė3 = (R13 �R31)✏3 + (R23 �R32)(✏3 � ✏2)
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Algebra with rates and stat. eqm. 
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Interpret as traffic flow problem: 
“Macro Atom” (see Lucy 2002)
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Absorption of radiation packets
Emission of packets
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Ȧ3 � Ė3 = (R13 �R31)✏3 + (R23 �R32)(✏3 � ✏2)
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Ė2 = R21✏2
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Ȧ3 � Ė3 = (R13 �R31)✏3 + (R23 �R32)(✏3 � ✏2)
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Ȧ3 � Ė3 = R13✏3 �R31✏3 +R23✏3 �R23✏2 �R32✏3 +R32✏2

R13 +R23 �R31 �R32 = 0

1

✏1 = 0

✏2

✏3
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Ȧ2 = R12✏2
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Ė3 = R31✏3 +R32(✏3 � ✏2)
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Absorption of radiation packets
Emission of packets
Internal macro atom (radiationless) 
transition out of level
Internal macro atom (radiationless) 
transition into level
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Ȧ3 � Ė3 = R13✏3 �R31✏3 +R23✏3 �R23✏2 �R32✏3 +R32✏2

R13 +R23 �R31 �R32 = 0

1

✏1 = 0

✏2

✏3
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2

Algorithm:

1. Following activation of some state, select either an emission or internal 
transition (probabilities proportion to terms above) 

2a. If select emission emit a photon (as in “down-branch” scheme)
2b. If select an internal transition, change the macro atom state and GOTO 1
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Fig. 1. Schematic representation of the interaction of a macro-
atom with a packet of energy ϵ0. The macro atom is activated
by absorbing the energy packet, makes two internal transitions,
and then de-activates by emitting a packet of energy ϵ0.

enforce energy-packet indivisibility and yet do not have to
adopt any simplifications with regard to line formation. If
this can be achieved, then Monte Carlo codes for general
NLTE transfer problems become feasible.

2. Macro-atoms

As discussed in Sect. 1, it is common in Monte Carlo
transfer codes to quantize radiation into monochromatic
energy packets. But matter is not quantized, neither nat-
urally into individual atoms nor artificially into parcels of
matter. Instead, the continuum description of matter is
retained, with macroscopic absorption and scattering co-
efficients governing the interaction histories of the energy
packets.

Nevertheless, it now proves useful to imagine that mat-
ter is quantized into macro-atoms whose properties are
such that their interactions with energy packets asymp-
totically reproduce the emissivity of a gas in statistical
equilibrium. But these macro-atoms, unlike energy pack-
ets, do not explicitly appear in the Monte Carlo code. As
conceptual constructs, they facilitate the derivation and
implementation of the Monte Carlo transition probabili-
ties that allow an accurate treatment of line formation.

The general properties of macro-atoms are as follows:
1) Each macro-atom has discrete internal states in one-

to-one correspondence with the energy levels of the atomic
species being represented.

2) An inactive macro-atom can be activated to one of
its internal states i by absorbing a packet of kinetic energy
or a packet of radiant energy of an appropriate co-moving
frequency.

3) An active macro-atom can undergo an internal tran-
sition from state i to any other state j without absorbing
or emitting an energy packet.

4) An active macro-atom becomes inactive by emitting
a packet of kinetic energy or a packet of radiant energy of
an appropriate co-moving frequency.

5) The de-activating packet has the same energy in
the macro-atom’s frame as the original activating packet.
Figure 1 illustrates these general rules. An inactive macro-
atom, with internal states shown schematically, encounters

a packet of energy ϵ0 and is activated to one of these states.
The active macro-atom then undergoes two internal tran-
sitions before de-activating itself by emitting a packet of
energy ϵ0.

Subsequently, energy packets will in general be referred
to as e-packets but also as r- or k-packets when specifying
their contents to be radiant or kinetic energy, respectively.

3. Transition probabilities

In Sect. 2, the concept of a macro-atom was introduced
by stating some general properties concerning its inter-
action with e-packets. The challenge now is to derive ex-
plicit rules governing a macro-atom’s activation, its subse-
quent internal transitions, and its eventual de-activation.
Asymptotically, the result of obeying these rules must be
the emissivity corresponding to statistical equilibrium.

3.1. Energy flow rates

For the moment, we drop the notion of a macro-atom and
consider a real atomic species interacting with its environ-
ment. Let ϵi denote the excitation plus ionization energy of
level i and let Rij denote the radiative rate for the transi-
tion i → j. The rates per unit volume at which transitions
into and out of i absorb and emit radiant energy are then

ȦR
i = Rℓiϵiℓ and ĖR

i = Riℓϵiℓ, (1)

respectively, where ϵiℓ = hνiℓ = ϵi − ϵℓ. Note the sum-
mation convention adopted for the suffix ℓ, which ranges
over all levels <i, including those of lower ions. Similarly,
below, the suffix u implies summation over all levels >i,
including those of higher ions.

The corresponding rates at which kinetic energy is ab-
sorbed from, or contributed to, the thermal pool by tran-
sitions to and from level i are

ȦC
i = Cℓiϵiℓ and ĖC

i = Ciℓϵiℓ, (2)

where Cij is the collisional rate per unit volume for the
transition i → j.

If we now define the total rate for the transition i → j
to be Rij = Rij + Cij , then the net rate at which level i
absorbs energy is

ȦR
i + ȦC

i − ĖR
i − ĖC

i = (Rℓi −Riℓ)(ϵi − ϵℓ). (3)

This is an identity that follows directly from the defining
Eqs. (1) and (2); it is therefore quite general and does not
assume statistical equilibrium.

3.2. Statistical equilibrium

We now assume that the level populations ni are in sta-
tistical equilibrium. For level i, this implies that

(Rℓi −Riℓ) + (Rui −Riu) = 0. (4)

A useful alternative representation of statistical equilib-
rium is obtained by multiplying Eq. (4) by ϵi and then

Lucy 2002
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Downbranch v                      Macro Atom

16 Kerzendorf & Sim

Figure 13. Each panel illustrates the wavelength redistribution that occurred during the last interaction of escaping packets (co-moving frame wavelength prior
to interaction versus wavelength after interaction) for calculations at texp = 18 days (scatter mode left, downbranch mode centre, macroatom mode
right).

Figure 14. Comparison between Jb
lu obtained using the estimators in Equa-

tion 17 (dashed) and Jb
lu = WB(⌫) (solid) for selected transitions at

texp=18 days. For clarity we have applied offsets to each curve (increment
5 ⇥ 10�5).

combining the nebular ionization / dilute-lte excitation
plasma modes with the dilute-blackbody and macroatom
interaction modes as a viable (computationally manageable) mode
of operation. To fit a particular observation, a user would need to
supply the luminosity and then develop a model by choosing a
density profile [which could be empirical or based on an explo-
sion model such as W7 (Nomoto et al. 1984)] and a set of ejecta
abundances (which can be uniform or stratified). The density and
abundances can then be modified to attempt to improve the fit (and
therefore constrain the SN properties, as in e.g. Stehle et al. 2005;
Mazzali et al. 2008; Hachinger et al. 2009; Tanaka et al. 2011).
However, we stress that this is only one potential use/mode of op-
eration for TARDIS and we encourage potential users to refer to the
manual http://tardis.rtfd.org for further details.

In the near future, we plan to focus on two distinct TARDIS
projects. First and foremost, the implementation of additional
physics (bound-free/thermalization processes) with the goal of
adding modules that include more sophisticated ionization approx-
imations and allow for spectral synthesis for SNe II (Klauser &
Kromer et al., in prep.). Secondly, since TARDIS was mainly de-
veloped to provide a means to fit SNe Ia with an approach similar
to Mazzali et al. (2007), we aim to couple TARDIS with a suitable
algorithm for automatic fitting of observations. We have explored

Figure 15. Comparison of spectra obtained for detailed and
dilute-blackbody radiative rates modes (Si II treated in nlte ex-
citatrion mode; all other ions in dilute-lte mode).

this problem already, using the ML93 spectral synthesis code and
genetic algorithms as the optimization algorithm and find that this
is a promising approach (see Kerzendorf 2011, priv. comm. S.
Hachinger, P. Mazzali).
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Generalization (Lucy 2003)
For full solution in radiative and thermal equilibrium can extend 

to include third energy pool:

… coupling to energy in the thermal pool of random particle velocities (“k-packe”t
pool).

Transfer of energy to/from this reservoir is governed by heating/cooling processes:
• Some processes (e.g. free-free) can be viewed as transferring energy from 

radiation energy pool to thermal pool
• Others (e.g. inelastic collisions between electrons and atoms) transfer energy 

between atomic excitation pool and thermal pool

Governing equation is thermal balance:

…also lends itself to traffic flow interpretation of thermal pool: heating rates are 
flow to thermal pool, cooling rates are flows out from thermal pool.
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to also include coupling to the thermal pool. This can be addressed in several
ways, however. As noted by Lucy (2002), the macro atom algorithm can be
viewed as recursive application of the set of transition/deactivation probabili-
ties and recently, Ergon et al (2018) have presented a Markov-chain approach
to the macro-atom machinery. This method e↵ectively solves the problem with-
out the need to follow internal macro-atom state transitions which can be a
substantial advantage in terms of computational e�ciency.

7.4.5 The thermal energy pool

The macro atom scheme is readily generalisable to include additional energy
pools relevant to the simulation. In particular, the thermal pool of particle
kinetic energies. In the nomenclature of Lucy (2002), interactions with the
thermal pool are described as kinetic packet (k-packet) events, and the pro-
cessing rules are derived by considering energy flow into and out of the k-packet
pool. Here, the relevant “transition” processes are all heating and cooling rates
corresponding to a flow of energy into and out of the thermal pool. These
include, in particular, direct radiative heating rate (HR), which includes pro-
cesses such as free-free absorption, heating by collisional de-excitation of e.g.
atomic states (HC), and their inverse cooling processes (rates CR and CC).
Energy flow through the thermal pool is governed by an assumption of TE
(analogous to the assumption of statistical equilibrium for the atomic energy
levels descried in the macro atom scheme):

HR + HC = CR + CC. (69)

Thus, whenever a physical process representing the flow of energy into the
thermal pool (e.g. absorption of a MC radiation energy packet via a heating
process which is a realisation of the HR term), the process governing the fate of
that energy is determined by randomly sampling all available cooling processes
with probabilities proportional to their respective rates. This can lead either to
direct remission of a radiation energy packet with photon-frequency, direction
etc. randomly assigned by one of the radiative cooling processes (i.e. simulating
part of the CR term) or by activation of a macro atom (associated with the
collisional cooling process, CC). We note that the scheme can also be applied
to physical processes that involve cross-talk between multiple energy pools: for
example, bound-free processes, which involve both changes in the populations
of atomic states and heating/cooling (see Lucy 2003).

7.5 Indivisible energy packets beyond radiative equilibrium

In the preceding sections we have discussed how equilibrium assumptions (ra-
diative, statistical, thermal) can be used to devise rules for MCRT algorithms
that can handle complicated non-resonance scattering/fluorescent processes
without sacrificing rigorous conservation of energy. Formulated in this way,
however, such approaches will not be immediately suitable for problems in



Generalization (Lucy 2003)

Radiation
energy pool

Excitation
energy pool

Line+photoionization
absorption

Line+radiative
recombination

Thermal kinetic
energy pool

Electron collisions
Free-free and 

photoionization

For full solution in radiative and thermal equilibrium can extend 
to include third energy pool:

(for SNe implementation e.g. Kromer & Sim 2009)



Macro Atom implementation
• Use Macro Atom implementation in our ARTIS supernova code (Kromer & 

Sim 2009) and TARDIS spectral synthesis code (Kerzendorf & Sim 2014)

• Also implemented now in non-homologous flow codes, both Python (Long 
& Knigge 2002) and Sim et al. (2008, 2010)

• Implemented by Ergon et al. (2018) in full time-dependent SN code – uses 
additional step to avoid explicit sampling of internal transitions.

TARDIS: open source code for spectral synthesis of supernovae

On public release (regular updates):
- Available on github, 

http://github.com/tardis-sn/tardis
http://tardis.readthedocs.org/

http://github.com/tardis-sn/tardis
http://tardis.readthedocs.org/


TARDIS example work (Magee et al. 2016):

SN2015H
Magee+2016
(22 days)



Summary
• Lecture 1:

• MCRT methods work well for rapidly expanding environments
• Critical ingredients are the special relativistic effects associated with 

frame transformations
• For time dependent applications (e.g. light curves) tracking photon

flight times is central (but trivial).

• Lecture  2:

• Opacity in expanding media can be complicated due to Doppler 
shifting of photons – particularly relevant for line absorption

• Sobolev approximation to line opacity provides huge simplification 
and lends itself to very efficient algorithms

• Macro Atom formalism of Lucy is effective way of dealing with non-LTE 
emissivities based on strict energy conservation.


