
Parallelisation
Tim Harries

openmp versus MPI
• OpenMP works on shared memory, so each thread can read and write to the

same memory

• Implemented as OMP directives in the code (that look like comments)

• Easy to get working

• In MPI each thread has its own memory, and communication is done via
subroutine calls

• More complex to implement but potentially more scalable - you can use
distributed computers (many CPUs working together and communicating
over a network)

Openmp
Core

Memory

A cartoon of a node

Core

Core

Core

Thread

Thread

Thread

Thread

Code memory

MPI

Core

Memory

A cartoon of a node

Core

Core

Core

Thread

Thread

Thread

Thread

Code memory

Code memory

Code memory

Code memory

Core

Memory
Core

Core

Core

Thread

Thread

Thread

Thread

Code

Code

Code

Code

Core

Memory
Core

Core

Core

Thread

Thread

Thread

Thread

Code

Code

Code

Code

Core

Memory
Core

Core

Core

Thread

Thread

Thread

Thread

Code

Code

Code

Code

Core

Memory
Core

Core

Core

Thread

Thread

Thread

Thread

Code

Code

Code

Code

Core

Memory
Core

Core

Core

Thread

Thread

Thread

Thread

Code

Code

Code

Code

Core

Memory
Core

Core

Core

Thread

Thread

Thread

Thread

Code

Code

Code

Code

MPI

Core

Memory
Core

Core

Core

Thread

Thread

Thread

Thread

Code
memory

Hybrid MPI/openmp
Core

Memory
Core

Core

Core

Thread

Thread

Thread

Thread

Code
memory

Core

Memory
Core

Core

Core

Thread

Thread

Thread

Thread

Code
memory

Core

Memory
Core

Core

Core

Thread

Thread

Thread

Thread

Code
memory

Core

Memory
Core

Core

Core

Thread

Thread

Thread

Thread

Code
memory

Core

Memory
Core

Core

Core

Thread

Thread

Thread

Thread

Code
memory

Scattering in a uniform density sphere

OMP parallelisation

OMP parallelisation

OMP parallelisation

w
a
ll
	t
im
e

0

5

10

15

20

25

N	threads

0 5 10 15 20 25 30 35

OMP parallelisation

w
a
ll
	t
im
e

0

10

20

30

40

50

N	threads

0 5 10 15 20 25 30 35

MPI parallelisation

MPI parallelisation

w
a
ll
	t
im
e

0

2

4

6

8

10

N	threads

0 5 10 15 20 25 30 35

Hybrid parallelisation

Hybrid parallelisation

Domain 2Domain 1

Domain 3 Domain 4

Domain decomposition
Each domain corresponds to a thread

Packets buffered at domain
boundaries reduce

communication overhead

Master
thread

Master thread distributes
packets to domains

Domain 2Domain 1 Domain 3 Domain 4

Domain 2

Domain 2

Domain 1 Domain 4

Domain 4

Domain 4Master
thread

Load balancing threads

Ahmdal’s law
The serial parts of your code (in our case typically those
parts outside the main photon loop) won’t benefit from

parallelisation.

This provides a fundamental limit to the possible speed up of your code, which is given by Ahmdal’s law:

S(N) =
1

p
N + s

S(N) is the speed up for N threads
p is the fraction of parallelisable code
s (=1-p) is the fraction of serial code

From a serial run we determine that the parallel fraction is for TORUS thermal equilibrium is 0.99467
which limits the maximum possible speed up to 188 (i.e. in the absence of any other factors scaling
 is limited to around 9 nodes with 20 cores per node).

Scaling of TORUS on a single node

3D Disc thermal equilibrium

3D Disc thermal equilibrium

Exercises
• The source code for the serial, openmp, mpi, and hybrid versions are on

google drive directory linked to from summer school schedule

• There is a readme file in there to tell you how to compile and run the code

• You will need gfortran and an MPI implementation such as Open MPI
(www.open-mpi.org)

• Try running the codes with different thread numbers and look at the speed
up. Also try uncommenting the OMP ATOMIC code in the openmp version
and see how this affects the speed up…

