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3-D Radiation Transfer	

•  Transfer Equation	


–  Ray-tracing (requires lambda-iteration)	


–  Monte Carlo (exact integration using random paths)	

•  May avoid lambda-iteration	

•  automatically an adaptive mesh method	


–  Paths sampled according to their importance	
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Monte Carlo Radiation Transfer	

•  Transfer equation traces flow of energy	

•  Divide luminosity into equal energy packets (“photons”)	


–  Number of physical photons	


–  Packet may be partially polarized	


    E! = L!t / N!

    n = E! / h"

      

I = 1
Q = (E! !E") / E!
U = (E" !E#) / E!
V = (E! !E") / E!



Monte Carlo Radiation Transfer	

•  Split luminosity between star and envelope	
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Monte Carlo Radiation Transfer	

•  Pick random starting location, frequency, and 

direction	

–  Sample from appropriate probability distributions:	


•  Location on star:	


•  Frequency:	


•  Direction:	


    

µI! =
dE / dt

dAd!d!
dP

dA
" H

dP

d!
" H!

dP

d!
" µI!

(flux)	


(stellar spectrum)	


(intensity)	
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most CPU time	


Monte Carlo Radiation Transfer	

•  Doppler Shift photon packet as necessary	


–  packet energy is frame-dependent	


•  Transport packet to random interaction location 	

    E! ! wE! w  is photon "weight"



Monte Carlo Radiation Transfer	

•  Randomly scatter or absorb photon packet	


•  If photon hits star, reemit it locally	

•  When photon escapes, place in observation bin (direction, 

frequency, and location)	


REPEAT 106-109 times 
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Monte Carlo Maxims	


•  Monte Carlo is EASY	

–  to do wrong (G.W. Collins III)	

–  code must be tested quantitatively	

–  being clever is dangerous	

–  try to avoid discretization	


•  The Improbable event WILL happen	

–  code must be bullet proof	

–  and error tolerant	




Sampling and Measurements	


•  MC simulation produces random events	

– Photon escapes	

– Photon interactions	

– Cell wall crossings	

– Photon motion	


•  Events are sampled/counted	

– Cumulative energy => measurements (flux)	

– Histogram => distribution function (spectrum)	




SEDs and Images	


•  Sampling Photon Escapes	
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SEDs and Images	

•  Advanced Sampling	


– Photon interactions: scattering, emission���
(source function samping)	


– Photon motion (Lucy path length sampling)	
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Error Estimation	

•  Unweighted Photons	


– Number in bin has a binomial distribution	


•  Weighted Photons	

– Each photon track is statistically independent	
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Parallel Monte Carlo	


•  Photon paths are independent	

– Divide total among different CPUs	

– Each CPU independently runs its batch of 

photons	

– Co-add results at end	

– Embarrassingly parallel	




Parallel Implementation	

•  Master/Slave:	


–  Master sends messages to slaves:	

•  Initialize (includes simulation parameters)	

•  Run batch of N photons	

•  Retrieve results	

•  Reinitialize (zero all counters)	

•  Die	


–  Each slave reports back to master when done	

–  Master gives slave new batch of photons	


•  Automatic CPU load balancing	

–  Results collected when all slaves are finished	


•  Minimizes network load	




Monte Carlo Assessment	


•  Advantages	

–  Inherently 3-D	

–  Microphysics easily added (little increase in CPU time)	

–  Modifications do not require large recoding effort	

–  Embarrassingly parallelizable 	


•  Disadvantages	

–  High S/N requires large number of photons	

–  Achilles heel = no photon escape paths; i.e., large 

optical depth	




Improving Run Time	


•  Photon paths are random	

–  Can reorder calculation to improve efficiency	


•  Adaptive Monte Carlo	

–  Modify execution as program runs	


•  High Optical Depth	

–  Use analytic solutions in “interior” + MC 
“atmosphere”	


•  Diffusion approximation (static media)	

•  Sobolev approximation (for lines in expanding media)	


–  Match boundary conditions	




MC Radiative Equilibrium	

•  Sum energy absorbed by each cell	

•  Radiative equilibrium gives temperature	


•  When photon is absorbed, reemit at new frequency, 
depending on T	

–  Energy conserved automatically	


•  Problem:  Don’t know T a priori	

•  Solution:  Change T each time a photon is absorbed and 

correct previous frequency distribution	

avoids iteration 

 

Eabs = Eemit
nabsE! = 4"mi# PB(Ti )



Temperature Correction	
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T Tauri Envelope Absorption	
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Disk Temperature	


Bjorkman 1998 



Disk Temperature	
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Effect of Disk on Temperature	

•  Inner edge of disk	


–  heats up to optically thin radiative equilibrium 
temperature	


•  At large radii	

–  outer disk is shielded by inner disk	

–  temperatures lowered at disk mid-plane	




CTTS Model SED	




Protostar Evolutionary Sequence	


i =80 i =30 

Mid IR Image Density SED 

Whitney, Wood, Bjorkman, & Cohen 2003 



Protostar Evolutionary Sequence	

Mid IR Image Density SED 

i =80 i =30 
Whitney, Wood, Bjorkman, & Cohen 2003 



Planet Gap-Clearing Model	


Rice et al. 2003 



Protoplanetary Disks	

Surface Density 

i = 5 i = 75 i = 30 



Spectral Lines	

•  Lines very optically thick	


–  Cannot track millions of scatterings	

•  Use Sobolev Approximation (moving gas)	


–  Sobolev length	


–  Sobolev optical depth 	


–  Assume S, rho, etc. constant (within l)	
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   J = J local + Jdiffuse

•  Split Mean Intensity	


•  Solve analytically for Jlocal	

•  Effective Rate Equations	


Spectral Lines	
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Resonance Line Approximation	


•  Two-level atom => pure scattering	

•  Find resonance location	


•  If photon interacts	

– Reemit according to escape probability	


– Doppler shift photon; adjust weight	
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Wind Line Profiles	
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NLTE Monte Carlo RT	

•  Gas opacity depends on:	


–  temperature	

–  degree of ionization 	

–  level populations	


•  During Monte Carlo simulation:	

–  sample radiative rates	


•  Radiative Equilibrium	

–  Whenever photon is absorbed, re-emit it	


•  After Monte Carlo simulation:	

–  solve rate equations	

–  update level populations and gas temperature	

–  update disk density (integrate HSEQ)	


determined by radiation field 
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What are Be stars?	

B stars (T ~ 20000 K)  with hydrogen 
emission lines 
 
Detected by: 
è Spectral lines in emission 

(frequently double peaked) 
 
è IR excess (ff+bf emission) 
 
è Linear polarization (scattering in 

the disk) 
 
Rapidly rotating (non-supergiants) 
with a circumstellar disk   
 
Disk is geometrically thin 

z Tau 



Viscous Decretion Disk	


•  Lee, Saio, Osaki 1991	


H	




Be Star Disk 
Temperature	


Carciofi & Bjorkman 2004 



Disk Density	


Carciofi & Bjorkman 2004 



NLTE Level Populations	


Carciofi & Bjorkman 2004 



SED and Polarization	


Carciofi & Bjorkman 2004 



Emission Line Formation:���
Iso-Velocity Contours	


Poeckert & Marlborough 78 



Emission Line Formation 
Continuum V = 175 km/s V = -175 km/s 

V = -75 km/s V = 75 km/s 

V = 25 km/s V = -25 km/s V = 0 km/s 



V/R Variations	

LS I+61 235 

Coe	




•  Kato 1983, Okazaki 1991  
•  Elliptical Orbits in Disk 

- Periastron 
  speed high => low density 
- Apastron 
  speed low  => high density 

 
 
 
•  Orbits can precess (Papaloizou, 
Savonije & Henrichs 1992) 

- Density wave rotates  
  at precession period 

Global Disk Oscillations	


Okazaki"



Precessing Density Wave	




Amber/VLTI Brg 
Observations  
(Stefl et al. 2009) 

Carciofi et al. (2009)"

Zeta Tau:���
Precessing 
Density Wave	


Phase	
 Visibility	
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