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Outline

• Molecular energy levels and transitions

• The equation of radiative transfer

• Molecular excitation

• The coupled problem, and some ways to 
solve it that are not Monte Carlo methods
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Molecular energy levels and transitions

Energy levels | Equation of radiative transfer | Excitation | Solution methods



• Molecular energy levels are found by solving the Schrödinger 
equation HΨ = EΨ,

• where H is the Hamiltonian describing the interactions within the 
system, and Eigenvalues E are the energy levels of the system

• For molecules we need to include in the Hamiltonian

• the interaction of the electrons with the atomic nuclei

• the interaction of the electrons with each other

• the interactions of the nuclei with each other

• Let’s recap what the simpler H-atom looks like...

An excursion to quantum mechanics
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Structure of H atom (or any 1-electron system) can be solved exactly quantum 
mechanically by solving the Schrödinger equation HΨ = EΨ,

with µ the reduced mass,

Z the nuclear charge (1 for H, 2 for He+, 3 for Li++…),
and A the nuclear mass

a) The H-atom

H =
p2

2µ
+ V (r) = −

h̄2

2µ
∇

2
−

Ze2

r

µ ≡
Amp · me

Amp + me

≈ me
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Solution for the H-atom
Discrete energy levels for E<0, characterized by three quantum numbers 
n, l, m

n=1, 2, 3, 4, ...     principal quantum number
l=0, 1, 2, ... n-1     angular quantum number
m=l, l-1, ... -l+1, -l     magnetic quantum number

Energy levels independent of l and m, each one degenerate with n2 
substates

with RH=109,677.585 cm-1 : Rydberg constant for H

E = −

µe4

2h̄2

1

n2
≡ −hcRH

1

n2
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Selection rules
Radiative (electric dipole) transitions are 
only possible between pairs of levels 
that adhere to so-called ‘selection rules’

This can be understood by conservation 
of angular momentum between the 
initial and the final state, which includes 
the photon (spin 1)

Formally one has to calculate quantum 
mechanical transition matrix elements

For hydrogen Δl= ±1; Δm = 0, ±1; no 
limitations on Δn

H spectrum
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b) Molecular energy levels

• All information about molecule is contained in Schrödinger equation 
(R ≡ positions of nuclei,  x ≡ positions of electrons):

• Hamilton operator:
H Ψ(!x, !R) = E Ψ(!x, !R)

H = TN + Te + VNe + Vee + VNN

≡ TN + H
el
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Born-Oppenheimer approximation (1927)

• Mass of nuclei ≫ mass of electrons  ⇒ nuclei move slowly compared with 
electrons  ⇒  

• Separate wave function into electronic and nuclear part, and determine motion 
of electrons first with nuclei held fixed

• Electronic + nuclear levels

• Nuclear level consist of vibrational levels and rotational levels  

Electronic potential
   energy surface

Ψ(!x, !R) = Ψel(!x; !R) Ψnuc(!R)

H
el Ψel(!x; !R) = E

el Ψ(!x; !R)
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Nuclear motion
• Born-Oppenheimer:

   where it is  assumed that

• Diatomic molecule in center-of-mass system:

• J = nuclear angular momentum operator

• µ= reduced mass of system

• Assume 

Radial part Angular part

Angular Radial

(

TN + E
el(!R) − E

)

Ψnuc(!R) = 0

TN Ψ
el

Ψ
nuc

≈ Ψ
el

TN Ψ
nuc

TN = −

1

2µR2

∂

∂R

(

R2
∂

∂R

)

+
J2

2µR2

Ψnuc(!R) = Y (R̂) χ(R)/R
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Nuclear motion (cont’d)

Rotational equation

Vibrational equation

(

−

1

2µ

d2

dR2
+ Eel(R) +

J(J + 1)

2µR2
− Evib

)

χ(R) = 0

( J2

2µR2
− Erot

)

YJM (R̂) = 0
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Vibration
• Take vibrational equation and assume that Eel(R) is bound.     

Take J = 0, and expand Eel(R) around minimum

• Harmonic oscillator equation, solution:

v=0, 1, 2, …

(

−

1

2µ

d2

dR2
+ Eel(R) +

J(J + 1)

2µR2
− Evib

)

χ(R) = 0

E
el(R) = E

el
min(Re) +

1

2

d2

dR2
E

el

∣

∣

∣

Re

(R − Re)
2 + . . .

= −De +
1

2
k(R − Re)

2
⇒

E = −De + Evib, Evib = h̄ωe(v +
1

2
), ωe =

√

k

µ
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Rotation 
• If nuclei fixed at Re  ⇒  rigid rotator equation

• Moment of inertia:

• Rotational constant:

• ΔE between adjacent J levels increases with J, depends on µ:

J=0, 1, 2, …

( J2

2µR2
− Erot

)

YJM (R̂) = 0

⇒ Erot =
h̄2

2µR2
e

J(J + 1) = BeJ(J + 1)

I = µR2

e

Be =
h̄2

2µR2
e

∆E
rot(J) = 2Be(J + 1)
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Molecular transitions (summary)

• The nuclear and electronic motions in molecules are nearly decoupled 
(Born-Oppenheimer approximation)

•  

•  

• Energy difference two electronic states typically a few eV ➞ VIS and UV 
wavelengths

• Energy difference two vibrational states typically 0.1–0.3 eV ➞ 500–3000 
cm-1 ➞ IR wavelengths 

•  Energy difference two rotational states typically 0.001 eV ➞ few cm-1 ➞ 
(sub)millimeter wavelengths

E = E
el
min + E

vib + E
rot withE

el
! E

vib
! E

rot

Eel
: Evib

: Erot
= 1 :

√

me

µ
:

me

µ
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Summary energy levels

Example for CO
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c) Examples  
Rotational Spectra

• CO   J=1–0 ν = 115 GHz       ⇔ λ = 2.6 mm
    J=2–1              ν = 230 GHz       ⇔ λ = 1.3 mm
    J=3–2              ν = 345 GHz         ⇔ λ = 0.87 mm

• Typically λ a few mm for J=1–0 in heavy diatomics (CS, SiO, SO, …)

• Hydrides have much higher rotational frequencies (near λ = 400 µm) because µ 
is much smaller

µ =
m1m2

m1 + m2

=
16 · 12

16 + 12
≈ 7 for 12C16O

=
16 · 1

16 + 1
≈ 1 for 16OH
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Selection rules

• Molecule must have permanent dipole moment ⇒  no strong rotational 
spectra observed for H2, C2, O2, CH4, C2H2, … 

• ΔJ = 1  ⇒  only transitions between adjacent levels

• For symmetric molecules like H2, only quadrupole transitions occur with ΔJ 
= 2, e.g.
• J = 2 → 0  λ= 28 µm
• J = 3 → 1  λ= 17 µm
• J = 4 → 2  λ= 12 µm
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CO vs H2 rotational levels

Note much wider spacing for H2 compared with CO
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Energy levels of NH3
Rotational energy levels of symmetric-top molecules

 Inversion doubling of rotational 
transitions

 Frequency about 23 GHz
 Used to build first masers
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Rotational levels of  ortho-H2O
Asymmetric rotors
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The equation of radiative 
transfer
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• The first step in solving radiative transfer, is to do a proper 
bookkeeping of the emitted or received radiation

• Flux F defined as energy emitted/received per unit area per unit of 
time (per unit of frequency or wavelength)

• Intensity I defined as flux emitted/received per unit solid angle

An excursion to basic radiative transfer theory

Chapter 2

Radiation Bookkeeping

2.1 Basic Definitions

• The electromagnetic spectrum; λν = c; E = hν

• (Specific) (energy) flux Fν

units: W m−2 Hz−1 or erg s−1 cm−2 Hz−1

dE = Fν dAdt dν (2.1)

Conservation of energy ⇒ Fν ∝ r−2

• (Specific) intensity Iν

units: W m−2 Hz−1 sr−1 or erg s−1 cm−2 Hz−1 sr−1

dE = Iν dAdt dν dΩ (2.2)

⇒ Fν =
∫

Iν cos θ dΩ (2.3)

• (Specific) momentum flux pν

units: N m−2 Hz−1 or dyn cm−2 Hz−1

pν =
1

c

∫

Iν cos2 θ dΩ (2.4)

• (Specific) energy density uν

units: J m−3 Hz−1 or erg cm−3 Hz−1

uν =
4π

c
Jν (2.5)

16

Chapter 2

Radiation Bookkeeping

2.1 Basic Definitions

• The electromagnetic spectrum; λν = c; E = hν

• (Specific) (energy) flux Fν

units: W m−2 Hz−1 or erg s−1 cm−2 Hz−1

dE = Fν dAdt dν (2.1)

Conservation of energy ⇒ Fν ∝ r−2

• (Specific) intensity Iν

units: W m−2 Hz−1 sr−1 or erg s−1 cm−2 Hz−1 sr−1

dE = Iν dAdt dν dΩ (2.2)

⇒ Fν =
∫

Iν cos θ dΩ (2.3)

• (Specific) momentum flux pν

units: N m−2 Hz−1 or dyn cm−2 Hz−1

pν =
1

c

∫

Iν cos2 θ dΩ (2.4)

• (Specific) energy density uν

units: J m−3 Hz−1 or erg cm−3 Hz−1

uν =
4π

c
Jν (2.5)

16

Energy levels | Equation of radiative transfer | Excitation | Solution methods



Conservation of intensity
• Unless some process adds energy (photons) or takes away energy 

(photons), intensity is conserved along a ray.

• Flux decrease as r-2

with mean intensity Jν defined as

Jν ≡
1

4π

∫

Iν dΩ (2.6)

2.2 The Equation of Radiative Transfer

• Intensity is conserved along a ray

dIν

ds
= 0 (2.7)

unless there is emission or absorption

dIν

ds
= −αν Iν + jν (2.8)

with emission coefficient jν in W m−3 sr−1 Hz−1 and absorption

coefficient αν in m−1.
This is the equation of radiative transfer.

• With optical depth

dτν ≡ αν ds (2.9)

and source function

Sν ≡
jν

αν

(2.10)

we can rewrite the radiative transfer equation as

dIν

dτν

= −Iν + Sν (2.11)

• This has the formal solution

Iν(τν) = I0e
−τν +

∫ τν

0
e−(τν−τ ′

ν
) Sν(τ

′
ν) dτ ′

ν (2.12)

Evaluating this expression is not trivial and can often only be done
numerically!!
If Sν is independent of location,

Iν(τν) = I0e
−τν + Sν (1 − e−τν ) = Sν + e−τν (I0 − Sν) (2.13)

17
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The equation of radiative transfer
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Source funtion and opacity
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Formal solution
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Thermal radiation2.3 Thermal Emission

• Thermal emission is radiation emitted by material in thermal equilib-
rium (TE); blackbody radiation (BB) is thermal emission that is in TE
itself.

• BB is independent of material, shape, color, direction, flavor, or coun-
try of origin. It only depends on temperature and wavelength (or fre-
quency)

Iν = f(ν, T ) ≡ Bν(T ). (2.14)

• Kirchhoff’s Law: material emitting thermal radiation has

Sν = Bν(T ), (2.15)

and therefore
jν = αν Bν(T ). (2.16)

• Useful distinction: Thermal radiation has Sν = Bν and blackbody
radiation has Iν = Bν . Thermal radiation becomes blackbody radiation
for τ → ∞.

• From thermodynamic arguments follows Stefan-Boltzmann Law: en-
ergy density

u(T ) = a T 4 (2.17)

with a = 7.56 × 10−15 erg cm−3 K−4. One can also show that

F = σ T 4 (2.18)

with σ = ac

4 = 5.67 × 105 erg cm−2 K−4 s−1.

• The Planck spectrum

Bν(T ) =
2hv3/c2

exp(hν/kT ) − 1
(2.19)

or

Bλ(T ) =
2hc2/λ5

exp(hc/λkT ) − 1
. (2.20)
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Radiative transfer with molecules: 
absorption and emission of line 

photons
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Einstein 
coefficients

2.4 Einstein Coefficients

Linking Kirchhoff’s Law (macroscopic) with microscopic properties.

• For a two-level system with levels E2 > E1, E2 −E1 = hν0, and degen-
eracies g1 and g2, define

– probability for spontaneous emission (s−1) = A21.

– probability for absorption = B12J̄ , where J̄ ≡
∫ ∞
0 Jνφ(ν)dν and

φ(ν) is the profile function. It describes the finite width around
the frequency ν0 where absorption can take place. For a slowly
varying average intensity Jν (like the Planck function), φ(ν) can
be approximated as a δ-function, and J̄ = Jν .

– probability for stimulated emission = B21J̄ .

• The Einstein coefficents A21, B21, and B12 are related by

g1B12 = g2B21 (2.25)

and

A21 =
2hν3

c2
B21. (2.26)

• The macroscopic emission and absorption coefficients can be written in
terms of the microscopic Einstein coefficients as

jν =
hν0

4π
n2A21φ(ν) (2.27)

and

αν =
hν0

4π
(n1B12 − n2B21)φ(ν). (2.28)

Here, absorption also includes stimulated emission (as negative absorp-
tion).

2.5 Scattering

The last term in the equation of radiative transfer, in addition to emission
and absorption.

20
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Line formation: broadening
• Quantum mechanical uncertainty principle causes each transition 

to have a finite width around the frequency given by E=hν

• Thermal motions of the molecules cause a Gaussian broadening of 
the line

• Random, turbulent motions further broaden the line

• In planetary and stellar atmospheres, pressure broadening 
dominates the line profile.

profile function

φ(ν) =
1

∆νD
√

π
e−(ν−ν0)/∆ν2

D , (9.21)

where the Doppler width is given by

∆νD ≡ ν0

c

√
2kT

m
(9.22)

and m is the mass of the atom or molecule. Heavier species will there-
fore produce narrower lines, and vice versa.

• In addition to these random thermal motions, additional turbulence
is often present in astrophysical media. Assuming that these also are
distributed as a Gaussian with a width ξ, these can be incorporated by
defining

∆νD ≡ ν0

c

√
2kT

m
+ ξ2. (9.23)

• Because of the uncertainty principle, no exact frequency can be de-
fined for a given transition. For an ensemble of atoms this results in a
broadening of the line. This so-called natural broadening is given by

φ(ν) =
γ/4π2

(ν − ν0)2 + (γ/4π)2
, (9.24)

where the factor γ is defined by γ ≡ ∑
n′ Ann′ , the sum of the Einstein

A-coefficients over all lower levels n′. Note that this profile does not
have a Gaussian shape but a Lorentz shape (sharper peak and wider
wings).

• In systems with high pressures such as planetary and stellar atmo-
spheres, collisions are frequent, and they also cause frequency shifts of
the photons, and a broadening of the lines. This so-called collisional
or pressure broadening is given by

φ(ν) =
Γ/4π2

(ν − ν0)2 + (Γ/4π)2
, (9.25)

where Γ = γ + 2νcol, with νcol the frequency of the collisions. This
mechanism is only relevant when many collisions occur within the typ-
ical time the system spends before undergoing spontaneous emission of
a photon.
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have a Gaussian shape but a Lorentz shape (sharper peak and wider
wings).

• In systems with high pressures such as planetary and stellar atmo-
spheres, collisions are frequent, and they also cause frequency shifts of
the photons, and a broadening of the lines. This so-called collisional
or pressure broadening is given by

φ(ν) =
Γ/4π2

(ν − ν0)2 + (Γ/4π)2
, (9.25)

where Γ = γ + 2νcol, with νcol the frequency of the collisions. This
mechanism is only relevant when many collisions occur within the typ-
ical time the system spends before undergoing spontaneous emission of
a photon.
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The relation with continuum emission
• For high optical depth, the intensity of any emission (& associated 

absorption) process approaches the Planck function

• For line emission, this happens first at line center

• Flat topped line + wider line

• Solid material have fewer degrees of freedom than gas-phase (free 
moving) atoms/molecules

• Fewer emission frequencies

• Much wider ‘bands’ because individual atoms/molecules have 
slightly different surroundings (energies)

• If energy within a system is completely equilibrated (the system is 
in TE)

• emission becomes blackbody
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Excitation: Tex and LTE
• In TE, the populations of two connected levels are given by a 

Boltzmann distribution

• Even if the excitation is not in TE, for given ni and nj one can 
always define an excitation temperature Tex

Chapter 9

Astronomical Spectroscopy

In the previous chapter we looked at the energy level structure of atoms and
molecules, and we looked at the probability of radiative transitions between
levels. In this chapter we will look at the excitation of atoms or molecules,
and the relation with radiative transfer determining the strength of the emis-
sion or absorption lines. We will also look at the processes that affect the
shape of the spectral lines.

In much of this chapter we will give the relevant equations for two-level
systems. Generelization to multi-level systems is straightforward but requires
more complicated notation. For clarity we do not specifically discuss multi-
level systems here, but all principles hold unchanged for these as well.

9.1 Excitation in thermodynamic equilibrium

9.1.1 Thermodynamic equilibrium: the Boltzmann equa-
tion

If the energy level structure of an atom (or molecule) is known, we can
calculate what the likelihood is that an atom is excited to a given level.
When we look at an ensemble of atoms, we can calculate what fraction is
excited to a given level: we call this the population of the level.

If the atoms are in thermodynamic equilibrium at a temperature T , the
ratio of the populations of two levels is simply given by a Boltzmann dis-
tribuion,

ni

nj
=

gi

gj
e−

Ei−Ej
kT . (9.1)
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Why is ISM is not in Thermal Equilibrium?
• The interstellar radiation field is far from thermal equilibrium 

• peak at 2000 Å  ➝Tcolor=104 K, but energy content ∼1 eV cm-3 ≡ 3 K

Spectrum does not
look like a blackbody!
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Units in ‘radio’ astronomy
• Express intensity as a temperature of a blackbody that has the 

same intensity at the observing frequency as your measurement

• furthermore, approximate Planck function by the Rayleigh-
Jeans limit

• Antenna temperature TA = c2/(2kν2) × Iν

• Often expressed as ‘main beam antenna temperature’: average 
intensity observed over the main lobe of the antenna pattern, 
correcting for the empty sky seen by the sidelobes

• If the emission is optically thin, TA < true temperature

• In the submillimeter, the RJ limit is generally not valid, and TA 
always < true temperature!

• Convert to flux: Fν = (2kν2)/c2 × TA × Ωbeam
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Recap of RT
• Intensity along a ray is increased by emission and decreased by 

absorption

• Rewrite as

• Emission and absorption takes place within a given frequency 
response (‘line profile function’), including contributions from the 
intrinsic line width, thermal, and (micro) turbulent broadening

with mean intensity Jν defined as

Jν ≡
1

4π

∫

Iν dΩ (2.6)

2.2 The Equation of Radiative Transfer

• Intensity is conserved along a ray

dIν

ds
= 0 (2.7)

unless there is emission or absorption

dIν

ds
= −αν Iν + jν (2.8)

with emission coefficient jν in W m−3 sr−1 Hz−1 and absorption

coefficient αν in m−1.
This is the equation of radiative transfer.

• With optical depth

dτν ≡ αν ds (2.9)

and source function

Sν ≡
jν

αν

(2.10)

we can rewrite the radiative transfer equation as

dIν

dτν

= −Iν + Sν (2.11)

• This has the formal solution

Iν(τν) = I0e
−τν +

∫ τν

0
e−(τν−τ ′

ν
) Sν(τ

′
ν) dτ ′

ν (2.12)

Evaluating this expression is not trivial and can often only be done
numerically!!
If Sν is independent of location,

Iν(τν) = I0e
−τν + Sν (1 − e−τν ) = Sν + e−τν (I0 − Sν) (2.13)
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Recap of RT (2)
• Emission and absorption coefficients are given by 

• the Einstein coefficient for spontaneous emission Aij

• the derived coefficients for stimulated emission and absorption 
Bij and Bji.

• and the populations of the involved energy levels nij

2.4 Einstein Coefficients

Linking Kirchhoff’s Law (macroscopic) with microscopic properties.

• For a two-level system with levels E2 > E1, E2 −E1 = hν0, and degen-
eracies g1 and g2, define

– probability for spontaneous emission (s−1) = A21.

– probability for absorption = B12J̄ , where J̄ ≡
∫ ∞
0 Jνφ(ν)dν and

φ(ν) is the profile function. It describes the finite width around
the frequency ν0 where absorption can take place. For a slowly
varying average intensity Jν (like the Planck function), φ(ν) can
be approximated as a δ-function, and J̄ = Jν .

– probability for stimulated emission = B21J̄ .

• The Einstein coefficents A21, B21, and B12 are related by

g1B12 = g2B21 (2.25)

and

A21 =
2hν3

c2
B21. (2.26)

• The macroscopic emission and absorption coefficients can be written in
terms of the microscopic Einstein coefficients as

jν =
hν0

4π
n2A21φ(ν) (2.27)

and

αν =
hν0

4π
(n1B12 − n2B21)φ(ν). (2.28)

Here, absorption also includes stimulated emission (as negative absorp-
tion).

2.5 Scattering

The last term in the equation of radiative transfer, in addition to emission
and absorption.
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Molecular excitation
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Molecular excitation
• Collisions can cause the excitation of an atom or molecule to 

increase or decrease

• collisions with H2, He, and e- dominate

• collision rates usually given as collision rate coefficient qij

• =cross section to collisional (de)excitation averaged over 
Maxwell distribution at temperature T

• units cm3s-1 

• upward and downward rate coefficients related as

• collision rate (in s-1) obtained after multiplication with 
density of collision partner: n(H2) qul

qlu =

gu

gl

qul e
−∆Eul

kTΔEul

u

l
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Molecular excitation (2)
• Radiative transition only exist between levels where they are 

allowed (dipole, magnetic dipole, quadrupole, etc)

• De-excitation follows spontaneous emission

• Sponteneous emission rate Aul

• De-excitation follows stimulated emission (Bul)

• Excitation follows absorption of a photon of the right 
frequency (within the line profile function) (Blu)

• Rates for stimulated emission and for absorption depend on the 
average intensity of the surrounding radiation field

• ...which may depend on the photon emitted (and absorbed) by 
other atoms/molecules of the same species

• coupling of excitation over large distances.

ΔEul

u

l
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Critical density
• Consider two levels connected by collisional and radiative 

transitions, with the system in the excited state at level u

• if the density of collision partners is low, de-excitation will 
occur via spontaneous emission

• if the density of collision partners is sufficiently high, 
collisional excitation will occur before spontaneous emission 
happens

• the density where de-excitation through collisions and via 
spontaneous emission are equally likely is called the critical 
density

• for n>ncrit, efficient collisions make sure that the level 
populations reach thermal equilibrium

• for n<ncrit, we call the excitation regime sub-thermal

where nc is the density of collision partners and qlu is the collisional excitation
rate for l → u; qlu = gl

gu
qul exp(−∆E/kt). We assume here that there is only

one dominant collision partner, e.g., H+, H, or H2. If there are more species
that contribute, e.g., He or e−, additional terms should be included, each
with their appropriate collision rates. These collision rates can be found
from quantum mechanical calculations.

In eq. (9.3) we have assumed (for now) that there is no appreciable ra-
diation field present, so spontaneous emission is the only relevant radiative
term to take into account. It is useful to consider a few limiting cases:

• In the limit of low nc, ncqul # Aul, every collisional excitation if im-
mediately followed by spontaneous emission and we have

nu

nl
=

ncqul

Aul
. (9.4)

• In the limit of high nc, ncqul $ Aul, the collisions dominate the excita-
tion and de-excitation events. The system now equilibrates to the tem-
perature of the collision partners and follows a Boltzmann distribution.
In other words, the system is driven to thermodynamic equilibrium.

nu

nl
=

qul

qlu
=

gu

gl
e−

∆E
kT . (9.5)

• A useful concept is that of critical density , the density above which the
system reaches thermal equilibrium. We define ncrit ≡ Aul/qul. Because
Aul ∝ ν3, while qul usually does not have such a strong dependency,
higher lying transitions have much higher critical densities.

However, qul is different for different transitions. For example, the O II
3726 2D3/2–4S3/2 line has ncrit = 1.6 × 104 cm−3, while the O II 3729
2D5/2–4S3/2 line has ncrit = 3.1 × 103 cm−3. The ratio of the line
strengths of these two transitions therefore can be used as a measure
of density, for example in H II regions, planetary nebulae, and AGNs.

What happens if an external radiation field is present? In other words,
when absorption and stimulated emission also need to be taken into account?
We now get for the equation of statistical equlibrium,

nl

(
ncqlu + BluJ̄ν

)
= nu

(
ncqul + BulJ̄ν + Aul

)
, (9.6)
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l

Energy levels | Equation of radiative transfer | Excitation | Solution methods



The “Genzel” plot

Genzel 1990, 1992

Energy levels | Equation of radiative transfer | Excitation | Solution methods



LTE vs Statistical Equilibrium
• For n>ncrit, efficient collisions make sure that the level 

populations reach thermal equilibrium

• For n<ncrit, we call the excitation regime sub-thermal

• Need to solve the statistical equilibrium of collisional and 
radiative excitation and de-excitation of ensemble of atoms / 
molecules

• (2-level system, u–l)

• Can always write the solution as a Boltzmann distribution at 
T=Tex

where nc is the density of collision partners and qlu is the collisional excitation
rate for l → u; qlu = gl

gu
qul exp(−∆E/kt). We assume here that there is only
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hand, the radiation field can be characterized by a temperature Tr, i.e.,
nγ → [exp(hν/kTr) − 1]−1, then

nu

nl
=

gu

gl
e−hν/kTr . (9.15)

In other words, the atoms will follow a thermal distribution at the tem-
perature of the photons . E.g., the populations of the levels connected
by the [O I] lines at 63 and 145 µm are strongly affected by the thermal
continuum emitted by dust particles at 40–200 K, while the CO J=1–0,
2–1, . . . lines are affected by the 2.735 K cosmic microwave background
radiation.

9.2.2 Solution methods

To fully solve the problem of radiative transfer for spectral lines, we need to
evaluate

dIν

ds
= −ανIν + jν , (9.16)

with

jν =
hν

4π
nuAulφν (9.17)

αν =
hν

4π

(
nlBlu − nuBul

)
φν . (9.18)

The exact form of φν we will discuss in the next section.
Through the definitions of αν and jν , eq. (9.16) depends on nu and nl.

These populations in turn are given by the equation for statistical equilib-
rium, eq. (9.11),

nl

(
ncqlu + BluJ̄ν

)
= nu

(
ncqul + BulJ̄ν + Aul

)
, (9.19)

where

J̄ν =
1

4π

∫
IνdΩ. (9.20)

All these equtions are coupled: the radiation field is found by integrating
over the absorption and emission of photons by the atoms; the absorption
and emission properties of the atoms depend on their excitation; and these
in turn depend on the strength of the radiation field.
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Statistical Equilibrium
• For multi-level systems the equation of statistical equilibrium 

becomes

• where the notation Cij is used instead of qij for collision rate 
coefficients,

• and the additional constraint
∑

j

nj = n
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Table 1.Molecular data used in this paper

Molecule No. Levels References
COa 6 Green & Thaddeus (1976)
COb 26 Schinke et al. (1985)
HCO+ 21 Monteiro (1985)
CS 12 Green & Chapman (1978)
CN 15 Black et al. (1991)c
HCN 36d Green (1994, priv. comm.)e
o-H2CO 20 Green (1991)
a Calculation presented in Appendix B.
b Calculation presented in Sects. 4.1 and 4.2.
c Based on results of Green & Chapman (1978) for CS.
d Levels up to J = 10 in both the ν2 = 0 and ν2 = 1 states.
e See http://www.giss.nasa.gov/data/mcrates.

dius 8000 AU. The total mass of the model is 0.73 M!. The
kinetic temperature follows Tkin = 30 K (r/1000 AU)−0.4,
appropriate for a centrally heated envelope at a luminosity of
∼ 2 L! (Adams et al., 1987, e.g.). The turbulent line width of
0.2 km s−1 is smaller than the systematic velocities except in
the outermost part (Fig. 1b).

3. Solving radiative transfer and molecular excitation

3.1. The coupled problem

The equation of radiative transport reads, in the notation of Ry-
bicki & Lightman (1979),

dIν

ds
= −ανIν + jν , (2)

or, equivalently,

dIν

dτν
= −Iν + Sν . (3)

Here, Iν is the intensity at frequency ν along a particular
line of sight parameterized by ds, αν is the absorption co-
efficient in units cm−1, and jν the emission coefficient with
units erg s−1 cm−3 Hz−1 sr−1. The second form of the equa-
tion is a useful change of variables, with the source function
Sν ≡ jν/αν and the optical depth dτν ≡ ανds. We consider
bothmolecules and dust particles as sources of emission and ab-
sorption (jν = jν(dust)+jν(gas);αν = αν(dust)+αν(gas)),
but ignore scattering. Although not impossible to include in our
code, scattering effects are usually negligible at wavelengths
longer than mid-infrared.

When αν and jν are known at each position in the source,
the distribution of the emission on the sky simply follows from
ray tracing. However, in many cases, αν and jν will depend on
the local mean intensity of the radiation field

Jν ≡
1

4π

∫

IνdΩ. (4)

Here, Jν is the average intensity received from all solid angles
dΩ, and Iν is the solution of Eq. (2) along each direction under
consideration. The latter integration extends formally to infinity,

but in practice only to the edge of the source with any incident
isotropic radiation field like the cosmic microwave background
(CMB) as boundary condition.

For thermal continuum emission from dust, jν(dust) and
αν(dust) are simply given by

jν(dust) = αν(dust)Bν(Tdust), (5)

where Bν is the Planck function at the dust temperature Tdust,
and

αν(dust) = κνρdust, (6)

where κν is the dust opacity in cm−2 per unit (dust) mass and
ρdust is the mass density of dust. Our code can use any descrip-
tion of κν (Ossenkopf & Henning, 1994; Pollack et al., 1994;
Draine & Lee, 1984; Mathis et al., 1977, e.g.).

In the case of emission and absorption in a spectral line,
αul

ν (gas) and jul
ν (gas) are determined by absorption and emis-

sion between radiatively coupled levels u and lwith populations
(in cm−3) nu and nl. The energy difference between levels
∆E = Eu − El corresponds to the rest frequency of the transi-
tion, ν0 = ∆E/h, where h is Planck’s constant. The emission
and absorption coefficients between levels u and l are strongly
peaked around ν0 with a frequency dependence described by a
line-profile function φ(ν),

jul
ν (gas) =

hν0

4π
nuAulφ(ν), (7)

αul
ν (gas) =

hν0

4π
(nlBlu − nuBul)φ(ν). (8)

The EinsteinAul,Blu, andBul coefficients determine the tran-
sition probabilities for spontaneous emission, absorption, and
stimulated emission, respectively, and depend on molecule. In
most interstellar clouds the line profile is dominated by Doppler
broadening due to the turbulent velocity field

φ(ν) =
c

bν0

√
π

exp

(

−
c2(ν − ν0)2

ν2
0b2

)

, (9)

where the turbulence is assumed to beGaussianwith a full width
b. In the presence of a systematic velocity field, the line profile is
angle-dependent and the projection of the local velocity vector
onto the photon propagation direction enters (ν − ν0).

Together, collisions and radiation determine the level pop-
ulations through the equation of statistical equilibrium,

nl

[
∑

k<l Alk +
∑

k /=l (BlkJν + Clk)
]

=
∑

k>l nkAkl +
∑

k /=l nk(BklJν + Ckl).
(10)

The collision rates Ckl depend on the density and the colli-
sional rate coefficients of molecular hydrogen and other colli-
sion partners, and on temperature through the detailed balance
of the up- and downward coefficients. Eq. (10) can be easily
solved through matrix inversion for each position in the source
provided the radiation field Jν is known. However, Jν con-
tains contributions by the CMB, dust and spectral lines, and
since the spectral line term depends on the level populations
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A coupled problem, and some 
ways to solve this that are not 

Monte Carlo methods
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A coupled problem
• The eqn of statistical equilibrium includes the average radiation 

field J

• In the limit that the radiation field generated by the atoms / 
molecules is weak, the solution is straightforward

• optically thin limit

• only include the strength of the CMB and any dust continuum 
field

• neither depends on the level populations: the problem is local

• ⇒ calculate excitation based on collisions and J

• ⇒ ray-tracing gives Iν(α,δ)
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A coupled problem (2)
• In the limit that the radiation field generated by the atoms / 

molecules is not negligible, the problem becomes coupled

• optically thick limit

• J follows from solving the RT eqn including line photons
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Table 1.Molecular data used in this paper

Molecule No. Levels References
COa 6 Green & Thaddeus (1976)
COb 26 Schinke et al. (1985)
HCO+ 21 Monteiro (1985)
CS 12 Green & Chapman (1978)
CN 15 Black et al. (1991)c
HCN 36d Green (1994, priv. comm.)e
o-H2CO 20 Green (1991)
a Calculation presented in Appendix B.
b Calculation presented in Sects. 4.1 and 4.2.
c Based on results of Green & Chapman (1978) for CS.
d Levels up to J = 10 in both the ν2 = 0 and ν2 = 1 states.
e See http://www.giss.nasa.gov/data/mcrates.

dius 8000 AU. The total mass of the model is 0.73 M!. The
kinetic temperature follows Tkin = 30 K (r/1000 AU)−0.4,
appropriate for a centrally heated envelope at a luminosity of
∼ 2 L! (Adams et al., 1987, e.g.). The turbulent line width of
0.2 km s−1 is smaller than the systematic velocities except in
the outermost part (Fig. 1b).

3. Solving radiative transfer and molecular excitation

3.1. The coupled problem

The equation of radiative transport reads, in the notation of Ry-
bicki & Lightman (1979),

dIν

ds
= −ανIν + jν , (2)

or, equivalently,

dIν

dτν
= −Iν + Sν . (3)

Here, Iν is the intensity at frequency ν along a particular
line of sight parameterized by ds, αν is the absorption co-
efficient in units cm−1, and jν the emission coefficient with
units erg s−1 cm−3 Hz−1 sr−1. The second form of the equa-
tion is a useful change of variables, with the source function
Sν ≡ jν/αν and the optical depth dτν ≡ ανds. We consider
bothmolecules and dust particles as sources of emission and ab-
sorption (jν = jν(dust)+jν(gas);αν = αν(dust)+αν(gas)),
but ignore scattering. Although not impossible to include in our
code, scattering effects are usually negligible at wavelengths
longer than mid-infrared.

When αν and jν are known at each position in the source,
the distribution of the emission on the sky simply follows from
ray tracing. However, in many cases, αν and jν will depend on
the local mean intensity of the radiation field

Jν ≡
1

4π

∫

IνdΩ. (4)

Here, Jν is the average intensity received from all solid angles
dΩ, and Iν is the solution of Eq. (2) along each direction under
consideration. The latter integration extends formally to infinity,

but in practice only to the edge of the source with any incident
isotropic radiation field like the cosmic microwave background
(CMB) as boundary condition.

For thermal continuum emission from dust, jν(dust) and
αν(dust) are simply given by

jν(dust) = αν(dust)Bν(Tdust), (5)

where Bν is the Planck function at the dust temperature Tdust,
and

αν(dust) = κνρdust, (6)

where κν is the dust opacity in cm−2 per unit (dust) mass and
ρdust is the mass density of dust. Our code can use any descrip-
tion of κν (Ossenkopf & Henning, 1994; Pollack et al., 1994;
Draine & Lee, 1984; Mathis et al., 1977, e.g.).

In the case of emission and absorption in a spectral line,
αul

ν (gas) and jul
ν (gas) are determined by absorption and emis-

sion between radiatively coupled levels u and lwith populations
(in cm−3) nu and nl. The energy difference between levels
∆E = Eu − El corresponds to the rest frequency of the transi-
tion, ν0 = ∆E/h, where h is Planck’s constant. The emission
and absorption coefficients between levels u and l are strongly
peaked around ν0 with a frequency dependence described by a
line-profile function φ(ν),

jul
ν (gas) =

hν0

4π
nuAulφ(ν), (7)

αul
ν (gas) =

hν0

4π
(nlBlu − nuBul)φ(ν). (8)

The EinsteinAul,Blu, andBul coefficients determine the tran-
sition probabilities for spontaneous emission, absorption, and
stimulated emission, respectively, and depend on molecule. In
most interstellar clouds the line profile is dominated by Doppler
broadening due to the turbulent velocity field

φ(ν) =
c

bν0

√
π

exp

(

−
c2(ν − ν0)2

ν2
0b2

)

, (9)

where the turbulence is assumed to beGaussianwith a full width
b. In the presence of a systematic velocity field, the line profile is
angle-dependent and the projection of the local velocity vector
onto the photon propagation direction enters (ν − ν0).

Together, collisions and radiation determine the level pop-
ulations through the equation of statistical equilibrium,

nl

[
∑

k<l Alk +
∑

k /=l (BlkJν + Clk)
]

=
∑

k>l nkAkl +
∑

k /=l nk(BklJν + Ckl).
(10)

The collision rates Ckl depend on the density and the colli-
sional rate coefficients of molecular hydrogen and other colli-
sion partners, and on temperature through the detailed balance
of the up- and downward coefficients. Eq. (10) can be easily
solved through matrix inversion for each position in the source
provided the radiation field Jν is known. However, Jν con-
tains contributions by the CMB, dust and spectral lines, and
since the spectral line term depends on the level populations

with mean intensity Jν defined as

Jν ≡
1

4π

∫

Iν dΩ (2.6)

2.2 The Equation of Radiative Transfer

• Intensity is conserved along a ray

dIν

ds
= 0 (2.7)

unless there is emission or absorption

dIν

ds
= −αν Iν + jν (2.8)

with emission coefficient jν in W m−3 sr−1 Hz−1 and absorption

coefficient αν in m−1.
This is the equation of radiative transfer.

• With optical depth

dτν ≡ αν ds (2.9)

and source function

Sν ≡
jν

αν

(2.10)

we can rewrite the radiative transfer equation as

dIν

dτν

= −Iν + Sν (2.11)

• This has the formal solution

Iν(τν) = I0e
−τν +

∫ τν

0
e−(τν−τ ′

ν
) Sν(τ

′
ν) dτ ′

ν (2.12)

Evaluating this expression is not trivial and can often only be done
numerically!!
If Sν is independent of location,

Iν(τν) = I0e
−τν + Sν (1 − e−τν ) = Sν + e−τν (I0 − Sν) (2.13)
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2.4 Einstein Coefficients

Linking Kirchhoff’s Law (macroscopic) with microscopic properties.

• For a two-level system with levels E2 > E1, E2 −E1 = hν0, and degen-
eracies g1 and g2, define

– probability for spontaneous emission (s−1) = A21.

– probability for absorption = B12J̄ , where J̄ ≡
∫ ∞
0 Jνφ(ν)dν and

φ(ν) is the profile function. It describes the finite width around
the frequency ν0 where absorption can take place. For a slowly
varying average intensity Jν (like the Planck function), φ(ν) can
be approximated as a δ-function, and J̄ = Jν .

– probability for stimulated emission = B21J̄ .

• The Einstein coefficents A21, B21, and B12 are related by

g1B12 = g2B21 (2.25)

and

A21 =
2hν3

c2
B21. (2.26)

• The macroscopic emission and absorption coefficients can be written in
terms of the microscopic Einstein coefficients as

jν =
hν0

4π
n2A21φ(ν) (2.27)

and

αν =
hν0

4π
(n1B12 − n2B21)φ(ν). (2.28)

Here, absorption also includes stimulated emission (as negative absorp-
tion).

2.5 Scattering

The last term in the equation of radiative transfer, in addition to emission
and absorption.

20

&
with mean intensity Jν defined as

Jν ≡
1

4π

∫

Iν dΩ (2.6)

2.2 The Equation of Radiative Transfer

• Intensity is conserved along a ray

dIν

ds
= 0 (2.7)

unless there is emission or absorption

dIν

ds
= −αν Iν + jν (2.8)

with emission coefficient jν in W m−3 sr−1 Hz−1 and absorption

coefficient αν in m−1.
This is the equation of radiative transfer.

• With optical depth

dτν ≡ αν ds (2.9)

and source function

Sν ≡
jν

αν

(2.10)

we can rewrite the radiative transfer equation as

dIν

dτν

= −Iν + Sν (2.11)

• This has the formal solution

Iν(τν) = I0e
−τν +

∫ τν

0
e−(τν−τ ′

ν
) Sν(τ

′
ν) dτ ′

ν (2.12)

Evaluating this expression is not trivial and can often only be done
numerically!!
If Sν is independent of location,

Iν(τν) = I0e
−τν + Sν (1 − e−τν ) = Sν + e−τν (I0 − Sν) (2.13)
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Solution methods
• In principle, one can do a full calculation for the excitation at all 

locations in your object, solving RT along all lines of sight, and 
iteratively obtaining a solution

• In practice, this is inpractical

• So either

• perform this iterative calculation for a limited set of locations 
in the object and a limited set of rays

• e.g., Monte Carlo methods, Accelerated Lambda Iteration

• or use an approximation to the long-range RT, and only self-
consistently calculate the local radiative coupling

• e.g., Large Velocity Gradient / Sobolev, Escape Probability

• Many hybrid methods exist, that work well for particular 
situations
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Simplest example
• The two simplest approximations are

• Assume LTE

• OK if densities are well above critical density

• Assume optically thin regim

• OK is abundance of species is very low

• In both these limits, the level populations are easily obtained, and 
the eqn of RT can be solved without iterations
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Example: rotation diagrams
• One or both of these assumptions is (implicitely) adopted when 

using rotation diagrams

• If many lines, from different energies, of the same species are 
observed, plot relative strength (converted to column density) vs 
energy of the upper level

• Useful for species such as CH3OH and CH3CN that have many 
transitions close together in frequency

• Assumes optically thin lines; can make correction for (known 
or guessed) opacity

• In LTE, a single temperature corresponds 
to straight line

• Steeper line means lower temperature

• If not in LTE, at least gives excitation 
temperature (Trot)

Energy levels | Equation of radiative transfer | Excitation | Solution methods



Example: Escape probability
• Another simple assumption is that the radiative coupling only 

occurs locally

• E.g., because the line photons are Doppler shifted by more 
than the width of the line profile function after a short distance: 
Large Velocity Gradient

• One can calculate a probability of a photon escaping the 
medium: Escape Probability

• fraction β radiation is trapped

• fraction 1-β disappears to outer space

• Given a source geometry (usually simple, like a sphere or 
an infinite slab), β follows from the line opacity 

• These methods often assume a homogenous medium (single 
density, single temperature, single abundance)

• But can be generalized to include arbitrarily complex structures

⇒ No need to solve RT!
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Escape probabilities

3.2 Escape probability

The problem is how to “decouple” the radiative transfer calculations from
the calculations of the level populations. A popular approach for this is the
escape probability method, first introduced by Sobolev (5) for expanding
envelopes. The basic idea is to invent a factor that determines the chance
that a photon at some position in the cloud can escape the system.

Remember that we need to estimate J̄ to calculate the level populations.
Where does this intensity come from? It is the amount of radiation “inside”
the source, so for a completely opaque source it equals the (profile averaged)
source function S. If β is the chance that a newly created photon can escape
from the cloud then J̄ = S(1−β). Now the statistical equilibrium equations
take a very easy form:

dn2

dt
= n1C12 − n2C21 − βn2A21.

So now we can solve the level populations and the radiation field separately;
they are decoupled. In principle we can also easily add the contribution
from background radiation here. We just take the background intensity, the
average chance that it penetrates into the source is (1− β).

Now we are left with the task to estimate the escape probability. The
method is based on the assumption that we can find some expression for this
β depending on geometry and optical depth but not on the radiation field.
Several forms have been proposed that depend on geometry; remember that
we have to find a form that estimates the average local escape probability
over all directions.

A very crude form of β in a one-dimensional case can be estimated as:

β =< e−τ >=
1

τ

� τ

0
e−τ �

dτ � =
1− e−τ

τ
.

In other expressions one usually expresses β in terms of the optical depth τ
in the direction of the observer. It happens that the from of β for a radially
expanding sphere is equal to the result above. This is called the Sobolev or
large velocity gradient (LVG) approximation; see for example Elitzur (2), p.
44 for a derivation:

β =
1− e−τ

τ
For a homogeneous slab is found:

β =
(1− e−3τ )

3τ
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Also for a turbulent medium an escape probability has been estimated:

β =
1

τ
�

π ln(τ/2)

Finally for a uniform sphere, Osterbrock (6) derives

β =
1.5

τ
[1− 2

τ 2
+ (

2

τ
+

2

τ 2
)e−τ

].

RADEX uses this last formula to estimate the excitation and radiation field

in the following way. (For high optical depth, only the first term of the

formula is retained; at low optical depth, a power series approximation is

used.) As a first guess the level populations in the optically thin case (or for

LTE) are calculated; this then gives the optical depth and hence the escape

probability, from which the new level populations can be directly calculated.

The program iterates this procedure to find a consistent level population and

optical depth, and computes all line strengths for that solution. Practical

details are given in the next section.

3.3 Optically thin radiation

We have seen that the problems with the coupling between radiation and

level populations make a complex calculating scheme necessary. There are

two limiting cases in which this complication disappears. First, when the

radiation field in the lines is unimportant for the determination of the level

populations, and second, when the level populations are in thermal equilib-

rium (LTE), although not necessarily in equilibrium with the radiation field

(see next section).

Assuming that the level populations are not affected by radiation in the

lines makes it possible to write all transition probabilities for the equations

of statistical equilibrium, and you can solve directly the level populations.

Thus one can calculate the line strengths from that. Note that for instance

the Tbg = 2.73 K cosmic background radiation field always affects the lower

level populations of heavy rotors like CO and CS. Because we assume the

lines are optically thin we can easily take this into account.

3.4 Local Thermal Equilibrium

In local thermal equilibrium we assume that the level populations are gov-

erned by the Boltzmann equation and are thus independent of the radiation

field. On Earth only in very special cases (e.g. inside lasers) does this as-

sumption break down. But in most of the interstellar medium, the density

10
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RADEX
• RADEX

• http://www.sron.rug.nl/~vdtak/radex/radex.php

• Van der Tak et al. 2007
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Using line ratios
• Under these simple assumptions, theoretical plots 

can be made of line ratio as function of density and 
temperature

• not dependent on abundance (if optically thin)

• obtain n and T from observing just 3 lines!

Van Dishoeck et al. 1993, 1995
Jansen et al. 1993

van der Tak et al. 2007
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Example: Monte Carlo methods
• If you suspect that a local approximation like an escape 

probability is not good enough for your problem, you need to use 
an iterative method including ‘full’ sampling of the RT, or at least 
a sufficiently good approximation of that

• Methods: Monte Carlo methods (RATRAN, LIME, ...); 
Accelerated Lambda Iteration, ...

• Penalty: (much!) longer calculation times

• Bonus: more accurate line profiles
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a) Monte Carlo method, taking photon point of view.

b) Monte Carlo method, taking cell point of view.

Fig. 2. a In the ‘traditional’ formulation of the Monte Carlo method
for solving radiative transfer, the radiation field is represented by a
certain number of photon packages. Each of these packages originates
in a random position of the cloud, corresponding to spontaneous emis-
sion, and travels in a random direction through the cloud until it either
escapes or is absorbed. To include the CMB field, a separate set of
packages is included, shown as dashed arrows, that originate at the
cloud’s edge. The packages traversing a cell during an iteration give
Jν in that cell. b In our implementation, an equivalent estimate of Jν

is found by choosing a certain number of rays which enter the cell
from infinity (or the cloud’s edge, using the CMB field as a bound-
ary condition) from a random direction and contribute to the radiation
field at a random point in the cell’s volume. As Sect. 3.4 argues, this
formulation allows separation between the incident radiation field and
the locally produced radiation field, which accelerates convergence in
the presence of significant optical depth.

Originally (Bernes, 1979), the Monte Carlo approach was
phrased in terms of randomly generated ‘photon packages’,
which are followed as they travel through the source and which
together approximate the radiation field. Fig. 2 illustrates that a
formulation in terms of randomly chosen directions from each
cell yields an equivalent estimate of Jν . The only difference
is the direction of integration in Eq. (2). Where the former ap-
proach follows the photons as they propagate through the cells,
the latter backtracks the paths of the photons incident on each
cell. As the next section will discuss, this latter approach lends
itself better to improvements in its convergence characteris-
tics. Treatment of non-isotropic scattering is more complicated
in this approach, and since scattering is not important at the
wavelengths of interest here, >∼ 10 µm, scattering is not in-
cluded in the code. Implementations of the Monte Carlo method

more appropriate for scattering are available in the literature
(Wood et al., 1996a; Wood et al., 1996b; Wolf et al., 1999).

3.4. Convergence and acceleration

Besides estimating Jν , an important aspect of non-LTE radiative
transfer is convergence towards the correct solution in a reason-
able amount of time. Since the solution is not a priori known,
convergence is often gauged from the difference between subse-
quent iterative solutions. This relies on the assumption that when
Jν and the populations are far from their equilibrium solution,
corrections in each iteration are large. Large optical depth can
be a major obstacle to this behaviour: emission passing through
an opaque cell will rapidly lose all memory of its incident in-
tensity and quickly tend toward the local source function. The
distance over which the information about changes in excita-
tion can travel is one mean free path per iteration, so that the
required number of iterations grows ∝ τ2 characteristic of ran-
dom walk. This effect makes it hard to determine if the process
has converged.

Accelerated or Approximated Lambda Iteration
(Rybicki & Hummer, 1991, ALI), circumvents this prob-
lem by defining an approximate operator Λ∗ such that

Jν = (Λ − Λ∗) [S†
ul(Jν)] + Λ∗[Sul(Jν)]. (13)

An appropriate choice for Λ∗ is one which is easily invertible
and which steers rapidly toward convergence. This occurs if Jν

is dominated by the second term on the right hand side of the
equation, where Λ∗ works on the current source function as
opposed to the solution from the previous iteration.

After several attempts (Scharmer, 1981), Olson, Auer, &
Buchler (1986) found that a good choice for Λ∗ is the diago-
nal, or sometimes tri-diagonal, part of the full operator Λ. This
choice for Λ∗ describes the radiation field generated locally by
the material in each cell, and its direct neighbours in the case
of the tri-diagonal matrix. Eq. (13) then gives Jν as the sum of
the field incident on each cell due to the previous solution for
the excitation {(Λ − Λ∗)[S†

ul]}, and a self-consistent solution
of the local excitation and radiation field {Λ∗[Sul]}. In opaque
cells, the radiation field is close to the local source function,
and Eq. (13) converges significantly faster than Eq. (12); for op-
tically thin cells, both formalisms converge equally fast.

Formulating the Monte Carlo method in terms of randomly
generated photon packages traveling through the source does
not easily permit separation of the locally generated field and
the incident field for each cell. However, such a separation is
possible when Jν is constructed by summation over a set of rays,
which each start at a random position within the cell and point
in a random direction. For ray i, call the incident radiation on
the cell I0,i and the distance to the boundary of the cell dsi. The
current level populations translate this distance into an opacity
dτi, and give the source function Sul. The average radiation
field from N rays then follows from Eqs. (3) and (7),

Jν =
1

N

∑

i

I0,i e−τi +
1

N

∑

i

Sul [1 − e−τi ] (14)
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Collision rate coefficients
• All methods (except LTE) require the knowledge of collision rate 

coefficients

• Very few of these are measured in the laboratory

• They require quantum mechanical calculation, usually involing 
some sort of approximation

• Often calculated for He and scaled to H2

• Or obtained from a very similar species, e.g., H2O → H2S

• May need to include different rates for ortho-H2 and para-H2

• Needs to be available for sufficient range of temperatures

• Several databases collect available rates from the literature

• basecol: basecol.obspm.fr

• lamda: www.strw.leidenuniv.nl/~moldata
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Physical model

Sky brightness distribution

excitationtransitions
Intensity ration different

Convolution with beam pattern
Spatial filtering (interferometer)

Calculate excitation and
radiative transfer through
detailed physical model

opacity

Telescope beam

Abundance

isotopes
Intensity ratio different

Column density

Raw spectral line data

Brightness temperature

Telescope beam

Antenna temperature

Calibration: correction for atmospheric
effects and telescope losses

Estimates of source size
and relative filling factors

by comparison to column
density of ‘standard’ with
known abundance (e.g., CO)

Obtain absolute abundance

of different components

Figure 8. The steps involved in deriving molecular abundances from spectral line data.
The left-hand side shows the ‘homogeneous’ approach, the right-hand side the ‘detailed’
approach.

solids is poorly constrained.

5.1. TRANSLUCENT CLOUDS

In order to study the effect of YSOs on the chemistry and test the basic
chemical networks, the abundances in quiescent clouds prior to star for-
mation need to be constrained. The best clouds for this purpose are the
translucent and high-latitude clouds with visual extinctions of a few mag
and densities of a few thousand cm−3. These clouds have been studied by
optical absorption lines against reddened stars (e.g., Gredel et al. 1993),
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GIGO
• Remember

• your fit results are only as good as the assumptions you make!

• Garbage In = Garbage Out

• Even when using a very accurate method to solve molecular 
excitation and radiative transfer, your results will be no better than 
the quality of your model

• more model parameters

• ‘better’ fit

• ...but also better understanding?

• Sometimes / often you learn more from a simple approach !
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Further reading
• van Dishoeck & Blake 1998, ARA&A 36, 317 

• Tielens: The Interstellar Medium (book)

• Rybicki & Lightman: Radiative Processes in Astrophysics (book)

• RADEX: www.strw.leidenuniv.nl/~moldata/radex.html

• http://www.strw.leidenuniv.nl/~brinch/website/lime.html

• LAMDA: www.strw.leidenuniv.nl/~moldata

• http://www.strw.leidenuniv.nl/~brinch/website/lime.html

• RATRAN: www.strw.leidenuniv.nl/~michiel

• http://www.strw.leidenuniv.nl/~brinch/website/lime.html

• LIME: http://www.strw.leidenuniv.nl/~brinch/website/lime.html

• http://www.strw.leidenuniv.nl/~brinch/website/lime.html
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