
Monte Carlo methods for 
molecular line observations 

at (sub)mm wavelengths
Michiel Hogerheijde
Leiden Observatory

Allegro ALMA ARC node



Outline

• Lecture 1:

• How does molecular line transfer and non-
LTE excitation work?

• Lecture 2:

• How can Monte Carlo methods help?

• How does LIME work?

• Practical work with LIME Q&A (tomorrow)



How can Monte Carlo 
methods help?

How does LIME work?
Michiel Hogerheijde
Leiden Observatory

Allegro ALMA ARC node



Outline

• How Monte Carlo methods can help

• The trouble with Monte Carlo methods

• By-passing some of these problems: 
accelerated methods

• Bernes, RATRAN, and LIME

• How to work with LIME

How MC helps | Trouble with MC | Accelerated MC | Bernes, RATRAN, LIME | How LIME works



Outline

➡How Monte Carlo methods can help

• The trouble with Monte Carlo methods

• By-passing some of these problems: 
accelerated methods

• Bernes, RATRAN, and LIME

• How to work with LIME

How MC helps | Trouble with MC | Accelerated MC | Bernes, RATRAN, LIME | How LIME works



Recap of RT
• Intensity along a ray is increased by emission and decreased by 

absorption

• Rewrite as

• Emission and absorption takes place within a given frequency 
response (‘line profile function’), including contributions from the 
intrinsic line width, thermal, and (micro) turbulent broadening

with mean intensity Jν defined as

Jν ≡
1

4π

∫

Iν dΩ (2.6)

2.2 The Equation of Radiative Transfer

• Intensity is conserved along a ray

dIν

ds
= 0 (2.7)

unless there is emission or absorption

dIν

ds
= −αν Iν + jν (2.8)

with emission coefficient jν in W m−3 sr−1 Hz−1 and absorption

coefficient αν in m−1.
This is the equation of radiative transfer.

• With optical depth

dτν ≡ αν ds (2.9)

and source function

Sν ≡
jν

αν

(2.10)

we can rewrite the radiative transfer equation as

dIν

dτν

= −Iν + Sν (2.11)

• This has the formal solution

Iν(τν) = I0e
−τν +

∫ τν

0
e−(τν−τ ′

ν
) Sν(τ

′
ν) dτ ′

ν (2.12)

Evaluating this expression is not trivial and can often only be done
numerically!!
If Sν is independent of location,

Iν(τν) = I0e
−τν + Sν (1 − e−τν ) = Sν + e−τν (I0 − Sν) (2.13)
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Recap of RT (2)
• Emission and absorption coefficients are given by 

• the Einstein coefficient for spontaneous emission Aij

• the derived coefficients for stimulated emission and absorption 
Bij and Bji.

• and the populations of the involved energy levels nij

2.4 Einstein Coefficients

Linking Kirchhoff’s Law (macroscopic) with microscopic properties.

• For a two-level system with levels E2 > E1, E2 −E1 = hν0, and degen-
eracies g1 and g2, define

– probability for spontaneous emission (s−1) = A21.

– probability for absorption = B12J̄ , where J̄ ≡
∫ ∞
0 Jνφ(ν)dν and

φ(ν) is the profile function. It describes the finite width around
the frequency ν0 where absorption can take place. For a slowly
varying average intensity Jν (like the Planck function), φ(ν) can
be approximated as a δ-function, and J̄ = Jν .

– probability for stimulated emission = B21J̄ .

• The Einstein coefficents A21, B21, and B12 are related by

g1B12 = g2B21 (2.25)

and

A21 =
2hν3

c2
B21. (2.26)

• The macroscopic emission and absorption coefficients can be written in
terms of the microscopic Einstein coefficients as

jν =
hν0

4π
n2A21φ(ν) (2.27)

and

αν =
hν0

4π
(n1B12 − n2B21)φ(ν). (2.28)

Here, absorption also includes stimulated emission (as negative absorp-
tion).

2.5 Scattering

The last term in the equation of radiative transfer, in addition to emission
and absorption.
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A coupled problem
• The eqn of statistical equilibrium includes the average radiation 

field J

• In the limit that the radiation field generated by the atoms / 
molecules is weak, the solution is straightforward

• optically thin limit

• only include the strength of the CMB and any dust continuum 
field

• neither depends on the level populations: the problem is local

• ⇒ calculate excitation based on collisions and J

• ⇒ ray-tracing gives Iν(α,δ)
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A coupled problem (2)
• In the limit that the radiation field generated by the atoms / 

molecules is not negligible, the problem becomes coupled

• optically thick limit

• J follows from solving the RT eqn including line photons
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Table 1.Molecular data used in this paper

Molecule No. Levels References
COa 6 Green & Thaddeus (1976)
COb 26 Schinke et al. (1985)
HCO+ 21 Monteiro (1985)
CS 12 Green & Chapman (1978)
CN 15 Black et al. (1991)c
HCN 36d Green (1994, priv. comm.)e
o-H2CO 20 Green (1991)
a Calculation presented in Appendix B.
b Calculation presented in Sects. 4.1 and 4.2.
c Based on results of Green & Chapman (1978) for CS.
d Levels up to J = 10 in both the ν2 = 0 and ν2 = 1 states.
e See http://www.giss.nasa.gov/data/mcrates.

dius 8000 AU. The total mass of the model is 0.73 M!. The
kinetic temperature follows Tkin = 30 K (r/1000 AU)−0.4,
appropriate for a centrally heated envelope at a luminosity of
∼ 2 L! (Adams et al., 1987, e.g.). The turbulent line width of
0.2 km s−1 is smaller than the systematic velocities except in
the outermost part (Fig. 1b).

3. Solving radiative transfer and molecular excitation

3.1. The coupled problem

The equation of radiative transport reads, in the notation of Ry-
bicki & Lightman (1979),

dIν

ds
= −ανIν + jν , (2)

or, equivalently,

dIν

dτν
= −Iν + Sν . (3)

Here, Iν is the intensity at frequency ν along a particular
line of sight parameterized by ds, αν is the absorption co-
efficient in units cm−1, and jν the emission coefficient with
units erg s−1 cm−3 Hz−1 sr−1. The second form of the equa-
tion is a useful change of variables, with the source function
Sν ≡ jν/αν and the optical depth dτν ≡ ανds. We consider
bothmolecules and dust particles as sources of emission and ab-
sorption (jν = jν(dust)+jν(gas);αν = αν(dust)+αν(gas)),
but ignore scattering. Although not impossible to include in our
code, scattering effects are usually negligible at wavelengths
longer than mid-infrared.

When αν and jν are known at each position in the source,
the distribution of the emission on the sky simply follows from
ray tracing. However, in many cases, αν and jν will depend on
the local mean intensity of the radiation field

Jν ≡
1

4π

∫

IνdΩ. (4)

Here, Jν is the average intensity received from all solid angles
dΩ, and Iν is the solution of Eq. (2) along each direction under
consideration. The latter integration extends formally to infinity,

but in practice only to the edge of the source with any incident
isotropic radiation field like the cosmic microwave background
(CMB) as boundary condition.

For thermal continuum emission from dust, jν(dust) and
αν(dust) are simply given by

jν(dust) = αν(dust)Bν(Tdust), (5)

where Bν is the Planck function at the dust temperature Tdust,
and

αν(dust) = κνρdust, (6)

where κν is the dust opacity in cm−2 per unit (dust) mass and
ρdust is the mass density of dust. Our code can use any descrip-
tion of κν (Ossenkopf & Henning, 1994; Pollack et al., 1994;
Draine & Lee, 1984; Mathis et al., 1977, e.g.).

In the case of emission and absorption in a spectral line,
αul

ν (gas) and jul
ν (gas) are determined by absorption and emis-

sion between radiatively coupled levels u and lwith populations
(in cm−3) nu and nl. The energy difference between levels
∆E = Eu − El corresponds to the rest frequency of the transi-
tion, ν0 = ∆E/h, where h is Planck’s constant. The emission
and absorption coefficients between levels u and l are strongly
peaked around ν0 with a frequency dependence described by a
line-profile function φ(ν),

jul
ν (gas) =

hν0

4π
nuAulφ(ν), (7)

αul
ν (gas) =

hν0

4π
(nlBlu − nuBul)φ(ν). (8)

The EinsteinAul,Blu, andBul coefficients determine the tran-
sition probabilities for spontaneous emission, absorption, and
stimulated emission, respectively, and depend on molecule. In
most interstellar clouds the line profile is dominated by Doppler
broadening due to the turbulent velocity field

φ(ν) =
c

bν0

√
π

exp

(

−
c2(ν − ν0)2

ν2
0b2

)

, (9)

where the turbulence is assumed to beGaussianwith a full width
b. In the presence of a systematic velocity field, the line profile is
angle-dependent and the projection of the local velocity vector
onto the photon propagation direction enters (ν − ν0).

Together, collisions and radiation determine the level pop-
ulations through the equation of statistical equilibrium,

nl

[
∑

k<l Alk +
∑

k /=l (BlkJν + Clk)
]

=
∑

k>l nkAkl +
∑

k /=l nk(BklJν + Ckl).
(10)

The collision rates Ckl depend on the density and the colli-
sional rate coefficients of molecular hydrogen and other colli-
sion partners, and on temperature through the detailed balance
of the up- and downward coefficients. Eq. (10) can be easily
solved through matrix inversion for each position in the source
provided the radiation field Jν is known. However, Jν con-
tains contributions by the CMB, dust and spectral lines, and
since the spectral line term depends on the level populations

with mean intensity Jν defined as

Jν ≡
1

4π

∫

Iν dΩ (2.6)
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• With optical depth

dτν ≡ αν ds (2.9)

and source function

Sν ≡
jν

αν

(2.10)

we can rewrite the radiative transfer equation as

dIν

dτν

= −Iν + Sν (2.11)

• This has the formal solution

Iν(τν) = I0e
−τν +

∫ τν

0
e−(τν−τ ′

ν
) Sν(τ

′
ν) dτ ′

ν (2.12)

Evaluating this expression is not trivial and can often only be done
numerically!!
If Sν is independent of location,

Iν(τν) = I0e
−τν + Sν (1 − e−τν ) = Sν + e−τν (I0 − Sν) (2.13)
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Solution methods
• In principle, one can do a full calculation for the excitation at all 

locations in your object, solving RT along all lines of sight, and 
iteratively obtaining a solution

• In practice, this is inpractical

• So either

• perform this iterative calculation for a limited set of locations 
in the object and a limited set of rays

• e.g., Monte Carlo methods, Accelerated Lambda Iteration

• or use an approximation to the long-range RT, and only self-
consistently calculate the local radiative coupling

• e.g., Large Velocity Gradient / Sobolev, Escape Probability

• Many hybrid methods exist, that work well for particular 
situations
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Example: Monte Carlo methods
• If you suspect that a local approximation like an escape 

probability is not good enough for your problem, you need to use 
an iterative method including ‘full’ sampling of the RT, or at least 
a sufficiently good approximation of that

• Methods: Monte Carlo methods (RATRAN, LIME, ...); 
Accelerated Lambda Iteration, ...

• Penalty: (much!) longer calculation times

• Bonus: more accurate line profiles
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a) Monte Carlo method, taking photon point of view.

b) Monte Carlo method, taking cell point of view.

Fig. 2. a In the ‘traditional’ formulation of the Monte Carlo method
for solving radiative transfer, the radiation field is represented by a
certain number of photon packages. Each of these packages originates
in a random position of the cloud, corresponding to spontaneous emis-
sion, and travels in a random direction through the cloud until it either
escapes or is absorbed. To include the CMB field, a separate set of
packages is included, shown as dashed arrows, that originate at the
cloud’s edge. The packages traversing a cell during an iteration give
Jν in that cell. b In our implementation, an equivalent estimate of Jν

is found by choosing a certain number of rays which enter the cell
from infinity (or the cloud’s edge, using the CMB field as a bound-
ary condition) from a random direction and contribute to the radiation
field at a random point in the cell’s volume. As Sect. 3.4 argues, this
formulation allows separation between the incident radiation field and
the locally produced radiation field, which accelerates convergence in
the presence of significant optical depth.

Originally (Bernes, 1979), the Monte Carlo approach was
phrased in terms of randomly generated ‘photon packages’,
which are followed as they travel through the source and which
together approximate the radiation field. Fig. 2 illustrates that a
formulation in terms of randomly chosen directions from each
cell yields an equivalent estimate of Jν . The only difference
is the direction of integration in Eq. (2). Where the former ap-
proach follows the photons as they propagate through the cells,
the latter backtracks the paths of the photons incident on each
cell. As the next section will discuss, this latter approach lends
itself better to improvements in its convergence characteris-
tics. Treatment of non-isotropic scattering is more complicated
in this approach, and since scattering is not important at the
wavelengths of interest here, >∼ 10 µm, scattering is not in-
cluded in the code. Implementations of the Monte Carlo method

more appropriate for scattering are available in the literature
(Wood et al., 1996a; Wood et al., 1996b; Wolf et al., 1999).

3.4. Convergence and acceleration

Besides estimating Jν , an important aspect of non-LTE radiative
transfer is convergence towards the correct solution in a reason-
able amount of time. Since the solution is not a priori known,
convergence is often gauged from the difference between subse-
quent iterative solutions. This relies on the assumption that when
Jν and the populations are far from their equilibrium solution,
corrections in each iteration are large. Large optical depth can
be a major obstacle to this behaviour: emission passing through
an opaque cell will rapidly lose all memory of its incident in-
tensity and quickly tend toward the local source function. The
distance over which the information about changes in excita-
tion can travel is one mean free path per iteration, so that the
required number of iterations grows ∝ τ2 characteristic of ran-
dom walk. This effect makes it hard to determine if the process
has converged.

Accelerated or Approximated Lambda Iteration
(Rybicki & Hummer, 1991, ALI), circumvents this prob-
lem by defining an approximate operator Λ∗ such that

Jν = (Λ − Λ∗) [S†
ul(Jν)] + Λ∗[Sul(Jν)]. (13)

An appropriate choice for Λ∗ is one which is easily invertible
and which steers rapidly toward convergence. This occurs if Jν

is dominated by the second term on the right hand side of the
equation, where Λ∗ works on the current source function as
opposed to the solution from the previous iteration.

After several attempts (Scharmer, 1981), Olson, Auer, &
Buchler (1986) found that a good choice for Λ∗ is the diago-
nal, or sometimes tri-diagonal, part of the full operator Λ. This
choice for Λ∗ describes the radiation field generated locally by
the material in each cell, and its direct neighbours in the case
of the tri-diagonal matrix. Eq. (13) then gives Jν as the sum of
the field incident on each cell due to the previous solution for
the excitation {(Λ − Λ∗)[S†

ul]}, and a self-consistent solution
of the local excitation and radiation field {Λ∗[Sul]}. In opaque
cells, the radiation field is close to the local source function,
and Eq. (13) converges significantly faster than Eq. (12); for op-
tically thin cells, both formalisms converge equally fast.

Formulating the Monte Carlo method in terms of randomly
generated photon packages traveling through the source does
not easily permit separation of the locally generated field and
the incident field for each cell. However, such a separation is
possible when Jν is constructed by summation over a set of rays,
which each start at a random position within the cell and point
in a random direction. For ray i, call the incident radiation on
the cell I0,i and the distance to the boundary of the cell dsi. The
current level populations translate this distance into an opacity
dτi, and give the source function Sul. The average radiation
field from N rays then follows from Eqs. (3) and (7),

Jν =
1

N

∑

i

I0,i e−τi +
1

N

∑

i

Sul [1 − e−τi ] (14)
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Outline

• How Monte Carlo methods can help

➡The trouble with Monte Carlo methods

• By-passing some of these problems: 
accelerated methods

• Bernes, RATRAN, and LIME

• How to work with LIME
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The trouble with MC
• If (line) opacities become large, information is rapidly destroyed 

along a photon propagation

• This means that high excitation only travels slowly

• Slow change in excitation is misinterpreted as convergence!

• This is a common problem, not limited to MC methods
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opposed to the solution from the previous iteration.

After several attempts (Scharmer, 1981), Olson, Auer, &
Buchler (1986) found that a good choice for Λ∗ is the diago-
nal, or sometimes tri-diagonal, part of the full operator Λ. This
choice for Λ∗ describes the radiation field generated locally by
the material in each cell, and its direct neighbours in the case
of the tri-diagonal matrix. Eq. (13) then gives Jν as the sum of
the field incident on each cell due to the previous solution for
the excitation {(Λ − Λ∗)[S†

ul]}, and a self-consistent solution
of the local excitation and radiation field {Λ∗[Sul]}. In opaque
cells, the radiation field is close to the local source function,
and Eq. (13) converges significantly faster than Eq. (12); for op-
tically thin cells, both formalisms converge equally fast.

Formulating the Monte Carlo method in terms of randomly
generated photon packages traveling through the source does
not easily permit separation of the locally generated field and
the incident field for each cell. However, such a separation is
possible when Jν is constructed by summation over a set of rays,
which each start at a random position within the cell and point
in a random direction. For ray i, call the incident radiation on
the cell I0,i and the distance to the boundary of the cell dsi. The
current level populations translate this distance into an opacity
dτi, and give the source function Sul. The average radiation
field from N rays then follows from Eqs. (3) and (7),

Jν =
1

N

∑

i

I0,i e−τi +
1

N

∑

i

Sul [1 − e−τi ] (14)
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A math solution (1)
• In ‘Lambda Iteration’ we write the coupled problem of radiative 

transfer and molecular excitation in the following form

• In other words: the average radiation field is found by having an 
operator Λ work on the source function S, which in it itself is a 
function of the radiation field J.

• Λ describes the RT ‘connection’ between all grid points.

• In principle, one can find the solution of this equation by inverting 
Λ. However, inverting a matrix is an expensive operation. So it is 
easier to find a solution iterarively

• Here S✝ is the previous excitation solution.
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through Eqs. (2), (7) and (8), the problem must be solved iter-
atively. Starting with an initial guess for the level populations,
Jν is calculated, statistical equilibrium is solved and new level
populations are obtained; through the Monte Carlo integration,
the new populations yield a new value for Jν , after which the
populations are updated; etc., until the radiation field and the
populations have converged on a consistent solution.

When the physical conditions do not vary much
over the model, an approximate value of Jν can be
found from the local conditions alone. This idea is
the basis of the Large Velocity Gradient method, the
Sobolev method, microturbulence, or the escape proba-
bility formalism (Sobolev, 1960; Goldreich and Kwan, 1974;
Leung & Liszt, 1976; de Jong et al., 1980, e.g.). Also, in spe-
cific geometries, the integration over all solid angles and along
the full lengthof the line of sight ofEqs. (3) and (4) canbegreatly
reduced, making the problem tractable. This sort of technique
has most application in stellar and planetary atmospheres; the
Eddington approximation is an example.

However, in many astrophysical situations including the
example of Sect. 2, such simplifications cannot be made, and
Eqs. (3) and (4) need to be fully solved to get Jν . Compared
to the relative ease with which statistical equilibrium can be
solved (Eq. 10), obtaining Jν becomes the central issue. Direct
integration of Eqs. (3) and (4) with, e.g., Romberg’s method, is
infeasible for realistic models, but based on a finite set of di-
rections a good approximation of Jν can be obtained. The next
two sections describe two different methods to choose this set
and construct Jν in this way.

3.2. Constructing Jν and the Λ-operator

For computational purposes, sourcemodels are divided into dis-
crete grid cells, each with constant properties (density, temper-
ature, molecular abundance, turbulent line width, etc.). It is also
assumed that the molecular excitation can be represented by a
single value in each cell, which requires instantaneous spatial
and velocity mixing of the gas. Appropriate source models have
small enough cells that the assumption of constant excitation is
valid. The systematic velocity field is the only quantity that is
a vector field rather than a scalar field, and in our code it is al-
lowed to vary in a continuous way within each cell. We divide
the integration along a ray into subunits within a cell to track
the variation of the velocity projected on the ray.

Such a gridded source model lends itself easily to the con-
struction of a finite set of integration paths to build up Jν . The
average radiation field can be thought of as the sum of the emis-
sion received in cell i from each of the other cells j after propa-
gation through the intervening cells and weighted with the solid
angle subtended by each of these cells j as seen from cell i. The
combination of radiative transfer and statistical equilibrium can
be written as

Jν = Λ [Sul(Jν)]. (11)

This equation states that the radiation field is given by an oper-
ator Λ acting on the source function Sul, which depends on the

level populations and hence Jν (Eqs. 7, 8, 10). Considering the
narrow frequency interval around the transition u–l, we have re-
placed Sν by Sul ≡ [jν0

(dust) +
∫

jul
ν (gas)dν]/[αν0

(dust) +
∫

αul
ν (gas)dν]. This corresponds to the assumption of instan-

teous redistribution of excitation mentioned above. In a gridded
source model, one can think of Λ as a matrix describing how
the radiation field in cell i depends on the excitation in all other
cells. The elements in the matrix then represent the radiative
coupling between cell pairs.

Eq. (11) can be solved iteratively, where an updated value of
Jν is obtained by havingΛ operate on the previous populations,
S†

ul,

Jν = Λ[S†
ul(Jν)]. (12)

Since S†
ul is already known, this only involves matrix multipli-

cation, compared to the much more expensive matrix inversion
required to solve Eq. (11). Because of this elegant notation, it-
erative schemes for non-LTE excitation and radiative transfer
are commonly referred to as Λ-iteration, even if no Λ-operator
is ever actually constructed. These methods share the use of
the same set of rays throughout the calculation, in contrast to
Monte Carlo methods, which use random rays as discussed in
Sects. 3.3 and 3.5.

Constructing the Λ-operator in multidimensional source
models is taxing on computer memory because of all
the possible connections to keep track of simultane-
ously. Techniques exist to reduce the number of elements
(Dullemond and Turolla, 2000), but these are complex and may
require some fine-tuning for individual source geometries. Al-
ternatively, computer memory can be exchanged for computing
time by solving the problem serially, calculating the radiation
field in each of the cells due to the other cells one at a time.

3.3. The Monte Carlo method

One way of solving Eq. (12) is to directly sum the contribution
from all other cells to the radiation field in each of the individual
cells. This corresponds to replacing the integral in Eq. (4) by a
summation. With a judiciously chosen fixed set of directions or
rays, as most Λ-iteration codes do, a good approximation of Jν

can be found in this way (Phillips, 1999, e.g.). However, this
procedure requires care, since the necessary angular sampling
depends, in principle, on the characteristics of the excitation
solution of the problem at hand.

Since our aim is to construct a method that can be applied
to many different source models without too much fine-tuning,
we adopt the Monte Carlo approach to obtain Jν . Analogous
to the Monte Carlo method to solve the definite integral of a
function [see chapter 7 of Press et al. (1992) for a discussion
of Monte Carlo integration, and for further references], Eq. (4)
can be approximated by the summation over a random set of
directions. This has the advantage that all directions are sampled
to sufficient detail: if too fewdirections are included, subsequent
realizations will give different estimates of Jν (see Sect. 3.5 for
further discussion of this issue).
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through Eqs. (2), (7) and (8), the problem must be solved iter-
atively. Starting with an initial guess for the level populations,
Jν is calculated, statistical equilibrium is solved and new level
populations are obtained; through the Monte Carlo integration,
the new populations yield a new value for Jν , after which the
populations are updated; etc., until the radiation field and the
populations have converged on a consistent solution.

When the physical conditions do not vary much
over the model, an approximate value of Jν can be
found from the local conditions alone. This idea is
the basis of the Large Velocity Gradient method, the
Sobolev method, microturbulence, or the escape proba-
bility formalism (Sobolev, 1960; Goldreich and Kwan, 1974;
Leung & Liszt, 1976; de Jong et al., 1980, e.g.). Also, in spe-
cific geometries, the integration over all solid angles and along
the full lengthof the line of sight ofEqs. (3) and (4) canbegreatly
reduced, making the problem tractable. This sort of technique
has most application in stellar and planetary atmospheres; the
Eddington approximation is an example.

However, in many astrophysical situations including the
example of Sect. 2, such simplifications cannot be made, and
Eqs. (3) and (4) need to be fully solved to get Jν . Compared
to the relative ease with which statistical equilibrium can be
solved (Eq. 10), obtaining Jν becomes the central issue. Direct
integration of Eqs. (3) and (4) with, e.g., Romberg’s method, is
infeasible for realistic models, but based on a finite set of di-
rections a good approximation of Jν can be obtained. The next
two sections describe two different methods to choose this set
and construct Jν in this way.

3.2. Constructing Jν and the Λ-operator

For computational purposes, sourcemodels are divided into dis-
crete grid cells, each with constant properties (density, temper-
ature, molecular abundance, turbulent line width, etc.). It is also
assumed that the molecular excitation can be represented by a
single value in each cell, which requires instantaneous spatial
and velocity mixing of the gas. Appropriate source models have
small enough cells that the assumption of constant excitation is
valid. The systematic velocity field is the only quantity that is
a vector field rather than a scalar field, and in our code it is al-
lowed to vary in a continuous way within each cell. We divide
the integration along a ray into subunits within a cell to track
the variation of the velocity projected on the ray.

Such a gridded source model lends itself easily to the con-
struction of a finite set of integration paths to build up Jν . The
average radiation field can be thought of as the sum of the emis-
sion received in cell i from each of the other cells j after propa-
gation through the intervening cells and weighted with the solid
angle subtended by each of these cells j as seen from cell i. The
combination of radiative transfer and statistical equilibrium can
be written as

Jν = Λ [Sul(Jν)]. (11)

This equation states that the radiation field is given by an oper-
ator Λ acting on the source function Sul, which depends on the

level populations and hence Jν (Eqs. 7, 8, 10). Considering the
narrow frequency interval around the transition u–l, we have re-
placed Sν by Sul ≡ [jν0

(dust) +
∫

jul
ν (gas)dν]/[αν0

(dust) +
∫

αul
ν (gas)dν]. This corresponds to the assumption of instan-

teous redistribution of excitation mentioned above. In a gridded
source model, one can think of Λ as a matrix describing how
the radiation field in cell i depends on the excitation in all other
cells. The elements in the matrix then represent the radiative
coupling between cell pairs.

Eq. (11) can be solved iteratively, where an updated value of
Jν is obtained by havingΛ operate on the previous populations,
S†

ul,

Jν = Λ[S†
ul(Jν)]. (12)

Since S†
ul is already known, this only involves matrix multipli-

cation, compared to the much more expensive matrix inversion
required to solve Eq. (11). Because of this elegant notation, it-
erative schemes for non-LTE excitation and radiative transfer
are commonly referred to as Λ-iteration, even if no Λ-operator
is ever actually constructed. These methods share the use of
the same set of rays throughout the calculation, in contrast to
Monte Carlo methods, which use random rays as discussed in
Sects. 3.3 and 3.5.

Constructing the Λ-operator in multidimensional source
models is taxing on computer memory because of all
the possible connections to keep track of simultane-
ously. Techniques exist to reduce the number of elements
(Dullemond and Turolla, 2000), but these are complex and may
require some fine-tuning for individual source geometries. Al-
ternatively, computer memory can be exchanged for computing
time by solving the problem serially, calculating the radiation
field in each of the cells due to the other cells one at a time.

3.3. The Monte Carlo method

One way of solving Eq. (12) is to directly sum the contribution
from all other cells to the radiation field in each of the individual
cells. This corresponds to replacing the integral in Eq. (4) by a
summation. With a judiciously chosen fixed set of directions or
rays, as most Λ-iteration codes do, a good approximation of Jν

can be found in this way (Phillips, 1999, e.g.). However, this
procedure requires care, since the necessary angular sampling
depends, in principle, on the characteristics of the excitation
solution of the problem at hand.

Since our aim is to construct a method that can be applied
to many different source models without too much fine-tuning,
we adopt the Monte Carlo approach to obtain Jν . Analogous
to the Monte Carlo method to solve the definite integral of a
function [see chapter 7 of Press et al. (1992) for a discussion
of Monte Carlo integration, and for further references], Eq. (4)
can be approximated by the summation over a random set of
directions. This has the advantage that all directions are sampled
to sufficient detail: if too fewdirections are included, subsequent
realizations will give different estimates of Jν (see Sect. 3.5 for
further discussion of this issue).
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A math solution (2)
• This iterative solution suffers from the same problem as MC: if 

opacities are large, the terms in Λ allow very little change in the 
solution from iteration to iteration, which can be misunderstood as 
convergence.

• Rybicki & Hummer (1991) suggested a method called 
‘accelerated Lambda iteration’ (ALI), by splitting Λ in a diagonal 
(Λ*) and a non-diagonal (Λ -Λ *) part

• Because a diagonal matrix can be easily inverted, the next 
iteration is found by the combination of the non-diagonal part 
working on the previous solution, and the true solution of the 
diagonal part working on S.

• This converges much faster.
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a) Monte Carlo method, taking photon point of view.

b) Monte Carlo method, taking cell point of view.

Fig. 2. a In the ‘traditional’ formulation of the Monte Carlo method
for solving radiative transfer, the radiation field is represented by a
certain number of photon packages. Each of these packages originates
in a random position of the cloud, corresponding to spontaneous emis-
sion, and travels in a random direction through the cloud until it either
escapes or is absorbed. To include the CMB field, a separate set of
packages is included, shown as dashed arrows, that originate at the
cloud’s edge. The packages traversing a cell during an iteration give
Jν in that cell. b In our implementation, an equivalent estimate of Jν

is found by choosing a certain number of rays which enter the cell
from infinity (or the cloud’s edge, using the CMB field as a bound-
ary condition) from a random direction and contribute to the radiation
field at a random point in the cell’s volume. As Sect. 3.4 argues, this
formulation allows separation between the incident radiation field and
the locally produced radiation field, which accelerates convergence in
the presence of significant optical depth.

Originally (Bernes, 1979), the Monte Carlo approach was
phrased in terms of randomly generated ‘photon packages’,
which are followed as they travel through the source and which
together approximate the radiation field. Fig. 2 illustrates that a
formulation in terms of randomly chosen directions from each
cell yields an equivalent estimate of Jν . The only difference
is the direction of integration in Eq. (2). Where the former ap-
proach follows the photons as they propagate through the cells,
the latter backtracks the paths of the photons incident on each
cell. As the next section will discuss, this latter approach lends
itself better to improvements in its convergence characteris-
tics. Treatment of non-isotropic scattering is more complicated
in this approach, and since scattering is not important at the
wavelengths of interest here, >∼ 10 µm, scattering is not in-
cluded in the code. Implementations of the Monte Carlo method

more appropriate for scattering are available in the literature
(Wood et al., 1996a; Wood et al., 1996b; Wolf et al., 1999).

3.4. Convergence and acceleration

Besides estimating Jν , an important aspect of non-LTE radiative
transfer is convergence towards the correct solution in a reason-
able amount of time. Since the solution is not a priori known,
convergence is often gauged from the difference between subse-
quent iterative solutions. This relies on the assumption that when
Jν and the populations are far from their equilibrium solution,
corrections in each iteration are large. Large optical depth can
be a major obstacle to this behaviour: emission passing through
an opaque cell will rapidly lose all memory of its incident in-
tensity and quickly tend toward the local source function. The
distance over which the information about changes in excita-
tion can travel is one mean free path per iteration, so that the
required number of iterations grows ∝ τ2 characteristic of ran-
dom walk. This effect makes it hard to determine if the process
has converged.

Accelerated or Approximated Lambda Iteration
(Rybicki & Hummer, 1991, ALI), circumvents this prob-
lem by defining an approximate operator Λ∗ such that

Jν = (Λ − Λ∗) [S†
ul(Jν)] + Λ∗[Sul(Jν)]. (13)

An appropriate choice for Λ∗ is one which is easily invertible
and which steers rapidly toward convergence. This occurs if Jν

is dominated by the second term on the right hand side of the
equation, where Λ∗ works on the current source function as
opposed to the solution from the previous iteration.

After several attempts (Scharmer, 1981), Olson, Auer, &
Buchler (1986) found that a good choice for Λ∗ is the diago-
nal, or sometimes tri-diagonal, part of the full operator Λ. This
choice for Λ∗ describes the radiation field generated locally by
the material in each cell, and its direct neighbours in the case
of the tri-diagonal matrix. Eq. (13) then gives Jν as the sum of
the field incident on each cell due to the previous solution for
the excitation {(Λ − Λ∗)[S†

ul]}, and a self-consistent solution
of the local excitation and radiation field {Λ∗[Sul]}. In opaque
cells, the radiation field is close to the local source function,
and Eq. (13) converges significantly faster than Eq. (12); for op-
tically thin cells, both formalisms converge equally fast.

Formulating the Monte Carlo method in terms of randomly
generated photon packages traveling through the source does
not easily permit separation of the locally generated field and
the incident field for each cell. However, such a separation is
possible when Jν is constructed by summation over a set of rays,
which each start at a random position within the cell and point
in a random direction. For ray i, call the incident radiation on
the cell I0,i and the distance to the boundary of the cell dsi. The
current level populations translate this distance into an opacity
dτi, and give the source function Sul. The average radiation
field from N rays then follows from Eqs. (3) and (7),

Jν =
1

N

∑

i

I0,i e−τi +
1

N

∑

i

Sul [1 − e−τi ] (14)
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A math solution (3)
• ALI converges much faster than regular LI in the presence of 

large opacity. 

• This is a math trick, but it must have a root in physics.

• What is the diagonal part of the operator?

• It is the interaction of the grid point with itself

• which, in the presence of large opacity, is largely (but not 
entirely) responsible for the local radiation field.

• So finding the full solution to this ‘self-interaction’ fast, 
speeds up convergence!

‣ Aha, we can use that for MC as well!
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Outline

• How Monte Carlo methods can help

• The trouble with Monte Carlo methods

➡By-passing some of these problems: 
accelerated methods

• Bernes, RATRAN, and LIME

• How to work with LIME
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• Random photon packages make it easy to separate the 
locally produced radiation field from the global field.

• But you can think of MC as a method to solve the integral

• Now it is much easier to separate the two radiation fields! M.R. Hogerheijde & F.F.S. van der Tak: An accelerated Monte Carlo method 701
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Fig. 2. a In the ‘traditional’ formulation of the Monte Carlo method
for solving radiative transfer, the radiation field is represented by a
certain number of photon packages. Each of these packages originates
in a random position of the cloud, corresponding to spontaneous emis-
sion, and travels in a random direction through the cloud until it either
escapes or is absorbed. To include the CMB field, a separate set of
packages is included, shown as dashed arrows, that originate at the
cloud’s edge. The packages traversing a cell during an iteration give
Jν in that cell. b In our implementation, an equivalent estimate of Jν

is found by choosing a certain number of rays which enter the cell
from infinity (or the cloud’s edge, using the CMB field as a bound-
ary condition) from a random direction and contribute to the radiation
field at a random point in the cell’s volume. As Sect. 3.4 argues, this
formulation allows separation between the incident radiation field and
the locally produced radiation field, which accelerates convergence in
the presence of significant optical depth.

Originally (Bernes, 1979), the Monte Carlo approach was
phrased in terms of randomly generated ‘photon packages’,
which are followed as they travel through the source and which
together approximate the radiation field. Fig. 2 illustrates that a
formulation in terms of randomly chosen directions from each
cell yields an equivalent estimate of Jν . The only difference
is the direction of integration in Eq. (2). Where the former ap-
proach follows the photons as they propagate through the cells,
the latter backtracks the paths of the photons incident on each
cell. As the next section will discuss, this latter approach lends
itself better to improvements in its convergence characteris-
tics. Treatment of non-isotropic scattering is more complicated
in this approach, and since scattering is not important at the
wavelengths of interest here, >∼ 10 µm, scattering is not in-
cluded in the code. Implementations of the Monte Carlo method

more appropriate for scattering are available in the literature
(Wood et al., 1996a; Wood et al., 1996b; Wolf et al., 1999).

3.4. Convergence and acceleration

Besides estimating Jν , an important aspect of non-LTE radiative
transfer is convergence towards the correct solution in a reason-
able amount of time. Since the solution is not a priori known,
convergence is often gauged from the difference between subse-
quent iterative solutions. This relies on the assumption that when
Jν and the populations are far from their equilibrium solution,
corrections in each iteration are large. Large optical depth can
be a major obstacle to this behaviour: emission passing through
an opaque cell will rapidly lose all memory of its incident in-
tensity and quickly tend toward the local source function. The
distance over which the information about changes in excita-
tion can travel is one mean free path per iteration, so that the
required number of iterations grows ∝ τ2 characteristic of ran-
dom walk. This effect makes it hard to determine if the process
has converged.

Accelerated or Approximated Lambda Iteration
(Rybicki & Hummer, 1991, ALI), circumvents this prob-
lem by defining an approximate operator Λ∗ such that

Jν = (Λ − Λ∗) [S†
ul(Jν)] + Λ∗[Sul(Jν)]. (13)

An appropriate choice for Λ∗ is one which is easily invertible
and which steers rapidly toward convergence. This occurs if Jν

is dominated by the second term on the right hand side of the
equation, where Λ∗ works on the current source function as
opposed to the solution from the previous iteration.

After several attempts (Scharmer, 1981), Olson, Auer, &
Buchler (1986) found that a good choice for Λ∗ is the diago-
nal, or sometimes tri-diagonal, part of the full operator Λ. This
choice for Λ∗ describes the radiation field generated locally by
the material in each cell, and its direct neighbours in the case
of the tri-diagonal matrix. Eq. (13) then gives Jν as the sum of
the field incident on each cell due to the previous solution for
the excitation {(Λ − Λ∗)[S†

ul]}, and a self-consistent solution
of the local excitation and radiation field {Λ∗[Sul]}. In opaque
cells, the radiation field is close to the local source function,
and Eq. (13) converges significantly faster than Eq. (12); for op-
tically thin cells, both formalisms converge equally fast.

Formulating the Monte Carlo method in terms of randomly
generated photon packages traveling through the source does
not easily permit separation of the locally generated field and
the incident field for each cell. However, such a separation is
possible when Jν is constructed by summation over a set of rays,
which each start at a random position within the cell and point
in a random direction. For ray i, call the incident radiation on
the cell I0,i and the distance to the boundary of the cell dsi. The
current level populations translate this distance into an opacity
dτi, and give the source function Sul. The average radiation
field from N rays then follows from Eqs. (3) and (7),

Jν =
1

N

∑

i

I0,i e−τi +
1

N

∑

i

Sul [1 − e−τi ] (14)

Example: Monte Carlo methods

with mean intensity Jν defined as

Jν ≡
1

4π

∫

Iν dΩ (2.6)

2.2 The Equation of Radiative Transfer

• Intensity is conserved along a ray

dIν

ds
= 0 (2.7)

unless there is emission or absorption

dIν

ds
= −αν Iν + jν (2.8)

with emission coefficient jν in W m−3 sr−1 Hz−1 and absorption

coefficient αν in m−1.
This is the equation of radiative transfer.

• With optical depth

dτν ≡ αν ds (2.9)

and source function

Sν ≡
jν

αν

(2.10)

we can rewrite the radiative transfer equation as

dIν

dτν

= −Iν + Sν (2.11)

• This has the formal solution

Iν(τν) = I0e
−τν +

∫ τν

0
e−(τν−τ ′

ν
) Sν(τ

′
ν) dτ ′

ν (2.12)

Evaluating this expression is not trivial and can often only be done
numerically!!
If Sν is independent of location,

Iν(τν) = I0e
−τν + Sν (1 − e−τν ) = Sν + e−τν (I0 − Sν) (2.13)
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• How Monte Carlo methods can help

• The trouble with Monte Carlo methods

• By-passing some of these problems: 
accelerated methods

➡Bernes, RATRAN, and LIME

• How to work with LIME
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Bernes 1979
• First MC code for molecular line RT

• FOTRAN77, with numerical routines 
from IBM
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Bernes 1979

Bernes’ code served as the basis of many MC codes.
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RATRAN
• Hogerheijde & van der Tak (2000)

• Splitting the local and global radiation fields

• Sub-iterations on the local field & excitation speed up the code, 
because the correct solution to locally optically thick conditions is 
quickly found
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Abstract. We present a numerical method and computer code
to calculate the radiative transfer and excitation of molecular
lines. Formulating the Monte Carlo method from the view-
point of cells rather than photons allows us to separate local
and external contributions to the radiation field. This separa-
tion is critical to accurate and fast performance at high opti-
cal depths (τ >∼ 100). The random nature of the Monte Carlo
method serves to verify the independence of the solution to the
angular, spatial, and frequency sampling of the radiation field.
These features allow use of our method in a wide variety of
astrophysical problems without specific adaptations: in any ax-
ially symmetric source model and for all atoms or molecules
for which collisional rate coefficients are available. Continuum
emission and absorption by dust is explicitly taken into account
but scattering is neglected. We illustrate these features in cal-
culations of (i) the HCO+ J=1–0 and 3–2 emission from a
flattened protostellar envelope with infall and rotation, (ii) the
CO, HCO+, CN and HCN emission from a protoplanetary disk
and (iii) HCN emission from a high-mass young stellar object,
where infrared pumping is important. The program can be used
for optical depths up to 103–104, depending on source model.
We expect this program to be an important tool in analysing data
frompresent and future infrared and (sub)millimetre telescopes.

Key words: line: formation – radiative transfer – methods: nu-
merical – stars: formation – ISM: molecules

1. Introduction

The dense and cool material in the interstellar medium of galax-
ies plays an important role in the life cycle of stars, from the
earliest phases of star formation to the shells around evolved
stars and the gas and dust tori around active galactic nuclei. Line
emission from atoms and molecules, and continuum emission
from dust particles, at radio, (sub)millimetre and infraredwave-
lengths are indispensable tools in the study of a wide variety of
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astrophysical problems. This is illustrated by the large number
of infrared and submillimetre observatories planned for the near
future, such as the Smithsonian Millimeter Array (SMA), the
AtacamaLargeMillimeter Array (ALMA), the Far-Infrared and
Submillimetre Space Telescope (FIRST) and the Stratospheric
Observatory for Infrared Astronomy (SOFIA).

An essential step in the interpretation of the data from
these instruments is the comparison with predicted emission
from models. This paper presents a numerical method to solve
the radiative transfer and molecular excitation in spherically
symmetric and cylindrically symmetric source models. At the
comparatively low densities of interstellar gas, the excitation
of many molecules is out of local thermodynamic equilib-
rium (LTE), and the transfer of line (and continuum) radiation
plays a significant role in determining the molecular excitation
(Leung & Liszt, 1976; Black, 2000). Geometry thus becomes
an important element, and the high spatial resolution of cur-
rent and future instruments often demands that at least two-
dimensional (axisymmetric) source structures are considered.
In the implementation of our method discussed in this paper,
we have limited the source structure to spherical and cylindrical
symmetries. The large and often multidimensional parameter
space further requires a fast and reliable method, which needs
to be easily applicable tomany different astrophysical problems.

This need for reliable and flexible tools calls for the use
of Monte Carlo techniques, where the directions of integra-
tion are chosen randomly. This approach was first explored by
Bernes (1979) for non-LTE molecular excitation; later, Choi et
al. (1995), Juvela (1997) and Park & Hong (1998) augmented it
and expanded it to multiple dimensions. However, Monte Carlo
methods can be quite slow, especially at large optical depths
(τ >∼ 100), which has limited their use so far. We will show that
this problem can be overcome by using a technique inspired
on Accelerated Lambda Iteration: the local radiation field and
excitation are solved self-consistently and separated from the
overall radiative transfer problem (see Sect. 3.4). The greatest
virtue of our code is its ability to deal with a wide variety of
source models for many atomic and molecular species, with or
without a dust continuum. Although for any individual prob-
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Fig. 3. Evolution of the fractional error in the level populations of
HCO+ as function of iteration step with (‘accelerated’; solid line)
and without (‘not accelerated’; dashed line) separation of local and
incident radiation field. For the optically thin H13CO+ molecule, both
methods converge equally fast. The solid symbols indicate the iteration
where the first stage of the calculation has converged (see Sect. 3.5);
after that random noise starts to dominate the fractional error, which
is controlled by the increase in rays per cell. The source model is that
described in Sect. 2. The ‘not accelerated’ HCO+ formally converged
at iteration 18, because the difference with iteration 17 became smaller
than 1/30, even though the difference from the real solution exceeds
that value. This illustrates that acceleration is not only computationally
convenient, but may also essential for a correct solution.

= Jexternal
ν + J local

ν . (15)

Here, Sν and dτi contain both line and continuum terms, and
I0,i includes the CMB. The radiation field is now the sum of
the external (Jexternal

ν ) and internal (J local
ν ) terms. Since the

external term is evaluated using populations from the previous
Monte Carlo iteration (through τi and Sul), this scheme is akin
to accelerated Λ-iteration. Within Monte Carlo iterations, sub-
iterations are used to find the locally self-consistent solution of
Sul and τi for given Jexternal

ν .
The main computational cost of this strategy lies in follow-

ing a sufficient number of rays out of each cell through the
source. Iteration on Eq. (14) is relatively cheap and speeds up
convergence considerably in the presence of opaque cells. Fig. 3
illustrates this, by showing the evolution of the fractional error
of the solution of the simple problem posed in Sect. 2 for opti-
cally thick HCO+ and thin H13CO+ excitation (for a fixed set
of directions – see below).

Population inversions require careful treatment in radiative
transfer codes, since the associated opacity is negative and the
intensity grows exponentially. In general, an equilibriumwill be
reached where the increased radiation field quenches the maser.
Since iterative schemes solve the radiative transfer before deriv-
ing a new solution for the excitation, the radiation field can grow
too fast if population inversions are present. Our code handles
negative opacities by limiting the intensity to a fixed maximum

which is much larger than any realistic field. Proper treatment
requires that the grid is well chosen, so that masing regions are
subdivided into small cells where the radiation field remains
finite. Our code can deal with the small population inversions
that occur in many problems including the model presented in
Sect. 2. However, to model astrophysical masers, specialized
codes are required (Spaans & van Langevelde, 1992, e.g.).

3.5. The role of variance in Monte Carlo calculations

Because theMonte Carlo method estimates Jν from a randomly
chosen set of directions, the result has a variance, σ, which de-
pends on the number N of included directions as σ ∝ 1/

√
N .

As explained above (Sect. 3.3), this variance is a strength rather
than a weakness of the Monte Carlo method. Since it is not a
priori known how many directions are required for a fiducial
estimate of Jν , this method automatically arrives at an appro-
priate sampling by increasingN until the variance drops below
a predefined value.

The variance of a solution is usually estimated from the
largest relative difference between subsequent iterations. In our
implementation (see appendix), the number N of rays making
up Jν in a particular cell is doubled each time the variance
in that cell exceeds a certain value; the variance is evaluated
using the largest relative difference between three subsequent
solutions with the same N . This cell-specific scheme ensures
that the radiation field is sufficiently sampled everywhere, and
at the same time prevents oversampling of cells which are close
to LTE and/or weakly coupled to other regions.

The variance as estimated from the difference between sub-
sequent solutions only reflects the noise if random fluctuations
dominate the difference. There will be systematic differences
between subsequent solutions if these are still far from conver-
gence. Therefore, many Monte Carlo methods consist of two
stages. In the first stage, a fixed number of photons will yield a
roughly converged solution; in the second stage, the number of
photons is increased until the noise becomes sufficiently small.

In our implementation, this first stage consists of iterations
with a fixed number of directions making up Jν in each cell,
N0, which depends on the model. The directions are randomly
distributed, but in each iteration, the same set of random direc-
tions is used by resetting the random number generator each
iteration. Without random fluctuations in Jν , the difference be-
tween subsequent solutions purely reflects the evolution toward
convergence. The first stage is considered converged when this
‘noise’ is a factor of ten smaller than the user-specified level.

For a sufficiently large N0 (typically a few hundred), the
excitation in each cell now is close to the final solution, except
for imperfections in the sampling ofJν . In the second stage, each
iteration uses a different set of random directions to estimate Jν :
the random number generator is no longer reset. Based on the
resulting variance, the number of rays in each cell is doubled
each iteration, until the noise on the level populations in each
cell is below a given value. If N0 was initially insufficient, the
variance will contain a significant contribution from systematic
differences between iterations. Even though this will slow down
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RATRAN
• Code consists of two steps

• AMC: calculates excitation

• output: level populations at all grid points

• SKY: calculates image on the sky

• for a source at given distance and orientation

• output: FITS or MIRIAD image cube(s)
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RATRAN
• RATRAN requires a user-defined grid

• in 1D: concentric shells

• in 2D: nested cylinders

• needs to fill entire space between rmin & rmax (and zmin & 
zmax)

• needs to follow excitation gradient well

• difficult to ‘see’ very small cells from distant cells: limits on 
dynamic range of spatial scales
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LIME
• LIME (Brinch & Hogerheijde 2010) was designed to overcome 

this problem

• fully 3D, using grid points instead of grid cells

• Place cells randomly with probability proportional to density0.2

• mean separation proportional to opacity

• other weighting schemes can be used
A&A 523, A25 (2010)

Fig. 2. The leftmost panel shows a random point distribution. In the middle panel, the points have been Delaunay triangulated. The rightmost panel
shows the corresponding Voronoi tessellation.

shape of its cells, Voronoi grids do not suffer from the aliasing
effects which are inherent to regular Cartesian grids.

When the grid points have been distributed throughout the
model domain, it is inevitable, due to the stochastic nature of the
sampling method, that some points end up much closer than the
local separation expectation value and some will be much fur-
ther apart. This results in a Delaunay triangulation that is very
irregular with some triangles being very long and narrow. This
irregularity can be remedied by applied what is known as Lloyds
algorithm (Lloyd 1982; Springel 2010), which iteratively moves
a grid point slightly toward its Voronoi cells center of mass. In
our implementation, each grid point is moved slightly away from
its nearest neighbor for a preset number of iterations. The effect
is illustrated in Fig. 3 for a random 2D sampling of a Gaussian
density profile. The top panels shows the initial unsmoothed dis-
tribution while the lower panels showed the triangulated point
distribution after the smoothing algorithm has been applied. The
plots in the right column show the neighbor distances as a func-
tion of radius. In the smoothed grid, the distances are much less
scattered and follows the Gaussian profile (shown as the light
colored full curve) much more accurately than in the top panel.
The smoothing strategy should not be exaggerated, i.e., moving
the points too slowly and iterating trough too many steps, be-
cause the algorithm will then act as an annealing process and it
will result in a perfectly regular grid where all variations in the
point distribution due to the underlying density field is smeared
out. By doing it right, however, a smooth grid can be obtained
while the underlying density structure is still preserved in the
grid. We have found empirically that by using 25 iterations and
moving the closest neighbors about 10% of the distance away
from each other results in a sufficiently smooth grid that pre-
serves the underlying physical structure well.

During gridding of our source model, we also distribute
a number of points randomly on the surface of a sphere sur-
rounding our model. These points are also Delaunay triangu-
lated and connected to the model grid points, but they do not
represent anything except the surface of our computational do-
main. Whenever a photon reaches one of these sink points, it is
considered to have escaped the model.

3.2. Photon propagation

The photon transport itself goes along Delaunay lines only,
from one point to another, which makes integration of Eq. (1)
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Fig. 3. An unsmoothed (top) and smoothed (bottom) Delaunay grid
based on a Gaussian density distribution. The right hand column shows
the neighbor point separations as function of radius. The yellow lines
are aids to the eye. They show a Gaussian distribution that describes the
density distribution.

particularly simple and very fast. In the three-dimensional
Delaunay triangulation, the expectation value for the number of
lines attached to a grid point is approximately 16 (Ritzerveld &
Icke 2006) and the spatial sampling of Jν is thus limited to this
number of directions. However, we still need to trace a num-
ber of photons along each Delaunay line, not only in order to
sample the frequency band properly, but also because we can-
not conserve momentum stringently with a single photon on this
grid. In principle, a photon passing a grid point from a certain
direction should continue to travel in the exact same direction.
This is in general not possible due to the random orientation of
the Delaunay lines, so instead we choose one of the two outgo-
ing Delaunay lines ("1 and "2) that make the smallest angle with
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example for uniform density
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LIME
• Only follow RT from grid point to grid point

• Choose direction randomly with probability largest along 
continuation of incoming ray

• Based on SIMPLEX method (Ritzerveld & Icke 2006) developed 
for continuum radiative transfer

• Main difference: for line transfer, opacity changes from 
iteration to iteration, so separation no longer fixed in opacity.

C. Brinch and M. R. Hogerheijde: LIME – a flexible, non-LTE line excitation and radiation transfer method

Fig. 4. The propagation of photons from one point in one particular ini-
tial direction. As the photons step through the grid they choose the fol-
lowing step by weighing the probability with the inverse angle the direc-
tion makes with the initial direction, i.e., a large angle produces a small
probability of going in that direction. The inset shows the distribution
of photon arriving at the surface. A Gaussian distribution is overplotted
for comparison.

the original direction of the photon. The outgoing line is picked
at random, but weighted by the ratio of the two angles,

p(!2) = (∠1/∠2)p(!1), (9)

where ∠1 < ∠2. The same procedure is used at all subsequent
grid points (using the original momentum vector to determine
the outgoing direction) until the photons escape the model. By
sending a number of photons along each initial Delaunay line,
we thus probe, not a single line of sight, but rather a cone, while
still conserving momentum on average. An example of the pho-
ton propagation is shown in Fig. 4 for a single point and a sin-
gle direction. Because of the relative low number of photons
needed to probe the spatial directions, we can allow ourself to
increase the number of photons used to sample different frequen-
cies, while we still maintain a low (initial) number of photons per
grid point. The inset in Fig. 4 shows the distribution of the lo-
cation where the photons reach the surface of the grid. This dis-
tribution is reasonably well described by a Gaussian distribution
around the intersection of the original momentum vector and the
surface. The number of initial photons is a user-defined setting,
but as a default value, we use five times the number of neighbor
points, so that each neighbor is initially probed by five photons.
These photons are distributed evenly across a frequency range
of ±3σ with respect to the line center so that the median pho-
ton coincides with the local rest frequency. σ is determined by
the local turbulent velocity dispersion through the user-defined
Doppler b-parameter.

Any given grid point will see more Delaunay connections
coming from high density regions than from low density regions,
simply because the grid point density is higher in high density re-
gions. Because of this inhomogeneity in the angular distribution

Fig. 5. A comparison of Jν between LIME and RATRAN. The small
black dots are the values from the LIME code and the yellow dots are
the cell values from RATRAN. The blue dots in panel d) are also from
a LIME model, but where all the grid points have been distributed ran-
domly over the model domain (with no density weighting).

of Delaunay connection, care must be taken when averaging the
radiation field using Eq. (6). In our implementation, this equa-
tion reduces to a discrete sum

Jν =
1

4π

∑

ν

N∑

i=0

Ii,νωiφ(ν), (10)

where N is the number of Delaunay neighbors. ωi is a weight
that is proportional to the solid angle represented by the i’th
Delaunay line. This angle corresponds strictly to a surface area
on a unit sphere, but we use the area of the Voronoi facet
that corresponds to the Delaunay line as a good approximation
(within 10%).

Figure 5 shows a comparison of Jν between LIME and
RATRAN. The input model is a thin flat disk with a density pro-
file ∝r−1. The radius is 500 AU and the height is 50 AU. The
disk is placed in an ambient low density field, n = 104 cm−3. For
LIME the model is sampled by 8000 points, whereas RATRAN
uses 400 grid cells. The radiation field of first three levels are
shown in panels a)–c) in Fig. 5. The LIME points are shown as
black points and the RATRAN points in yellow. The points for
each transition makes up two distinct populations, an almost hor-
izontal branch and a scattered population below. The tight hori-
zontal distribution of points are the ones that lie inside the disk.
These points are extremely well matched between the two codes.
The scattered population of points are the ones that fall outside
of the disk radius and these are also well matched. The LIME
points in the ambient low density region scatters a bit more than
the corresponding RATRAN points do. This is not a dilution of
the radiation field due to poor spatial sampling or erroneous pho-
ton propagation on the Delaunay grid, but simply because the
LIME grid has a much higher resolution than the RATRAN grid.
The proof of this can be seen in panel d) in Fig. 5 where a sim-
ilar comparison of the J = 3–2 transition between LIME and
RATRAN has been made, but with a LIME grid which is not
density weighted at all, which means that all spatial regions are
equally well sampled. This distribution is indistinguishable from
the one in panel c).
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LIME
• Only follow RT from grid point to grid point

• Choose direction randomly with probability largest along 
continuation of incoming ray

• Properties of grid point are applied to all locations closer to that 
point than to any other grid point (Voronoi tesselation)

A&A 523, A25 (2010)

Fig. 2. The leftmost panel shows a random point distribution. In the middle panel, the points have been Delaunay triangulated. The rightmost panel
shows the corresponding Voronoi tessellation.

shape of its cells, Voronoi grids do not suffer from the aliasing
effects which are inherent to regular Cartesian grids.

When the grid points have been distributed throughout the
model domain, it is inevitable, due to the stochastic nature of the
sampling method, that some points end up much closer than the
local separation expectation value and some will be much fur-
ther apart. This results in a Delaunay triangulation that is very
irregular with some triangles being very long and narrow. This
irregularity can be remedied by applied what is known as Lloyds
algorithm (Lloyd 1982; Springel 2010), which iteratively moves
a grid point slightly toward its Voronoi cells center of mass. In
our implementation, each grid point is moved slightly away from
its nearest neighbor for a preset number of iterations. The effect
is illustrated in Fig. 3 for a random 2D sampling of a Gaussian
density profile. The top panels shows the initial unsmoothed dis-
tribution while the lower panels showed the triangulated point
distribution after the smoothing algorithm has been applied. The
plots in the right column show the neighbor distances as a func-
tion of radius. In the smoothed grid, the distances are much less
scattered and follows the Gaussian profile (shown as the light
colored full curve) much more accurately than in the top panel.
The smoothing strategy should not be exaggerated, i.e., moving
the points too slowly and iterating trough too many steps, be-
cause the algorithm will then act as an annealing process and it
will result in a perfectly regular grid where all variations in the
point distribution due to the underlying density field is smeared
out. By doing it right, however, a smooth grid can be obtained
while the underlying density structure is still preserved in the
grid. We have found empirically that by using 25 iterations and
moving the closest neighbors about 10% of the distance away
from each other results in a sufficiently smooth grid that pre-
serves the underlying physical structure well.

During gridding of our source model, we also distribute
a number of points randomly on the surface of a sphere sur-
rounding our model. These points are also Delaunay triangu-
lated and connected to the model grid points, but they do not
represent anything except the surface of our computational do-
main. Whenever a photon reaches one of these sink points, it is
considered to have escaped the model.

3.2. Photon propagation

The photon transport itself goes along Delaunay lines only,
from one point to another, which makes integration of Eq. (1)
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Fig. 3. An unsmoothed (top) and smoothed (bottom) Delaunay grid
based on a Gaussian density distribution. The right hand column shows
the neighbor point separations as function of radius. The yellow lines
are aids to the eye. They show a Gaussian distribution that describes the
density distribution.

particularly simple and very fast. In the three-dimensional
Delaunay triangulation, the expectation value for the number of
lines attached to a grid point is approximately 16 (Ritzerveld &
Icke 2006) and the spatial sampling of Jν is thus limited to this
number of directions. However, we still need to trace a num-
ber of photons along each Delaunay line, not only in order to
sample the frequency band properly, but also because we can-
not conserve momentum stringently with a single photon on this
grid. In principle, a photon passing a grid point from a certain
direction should continue to travel in the exact same direction.
This is in general not possible due to the random orientation of
the Delaunay lines, so instead we choose one of the two outgo-
ing Delaunay lines ("1 and "2) that make the smallest angle with
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example for uniform density

points RT lines Voronoi cells
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LIME
• Some smoothing of grid points needed to avoid very small 

separation of points

• Need outer layer of grid points in empty space to connect photon 
paths to the rest of the Universe

• Very fast even for high opacities, can therefore use very many 
grid points

• One calculation for excitation and sky-image: cannot output 
populations for so many grid points

• As always: make sure afterwards that the grid is appropriate for 
the obtained solution!

A&A 523, A25 (2010)
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Fig. 11. Visualization of the upper right quadrant of the disk model described in Sect. 4. Panel a) shows the H2 density with the insert showing the
gap (shell) carved out around 5 AU. Panel b) shows the temperature and c) shows the molecular density which has a discontinuity around 90 K
where water freezes out. The last panel, d), shows a cut through the grid, color coded according to the density.

The density structure is given by

n(r, z) = n0(r/r0)−1.5e−(z/h)2
, (18)

where

h =

√
2T kB r3

GM∗
· (19)

We consider HCO+, H2O, and CH3OH gas at a fractional abun-
dance of 2×10−9 with respect to the H2 density. With these three
species we illustrate the possibility of utilizing a large dynamic
range in scales (HCO+), very opaque models (H2O), and multi-
ple overlapping lines (CH3OH).

The temperature is given by a power-law

T (r) = T0(r/r0)−0.5. (20)

In a more realistic model the temperature would be calculated
self-consistently based on the radiation properties of the cen-
tral source and the temperature would drop toward the mid-
plane because this region would be shielded from stellar ra-
diation by the upper layers of the disk. In our example we
mimic this effect by lowering the temperature in a wedge
shaped region around the mid-plane to 20 K. By letting wa-
ter freeze out at temperatures below 90 K, we can simulate a
complex abundance structure often used in protoplanetary disks

(Jonkheid et al. 2007; Woitke et al. 2009). The disk extends to
500 AU and the values for n0 and T0 are 108 cm−3 and 90 K at the
radius of 100 AU. In addition we have added a 2 AU wide gap
around a radius of 5 AU from the center. The disk is in Keplerian
rotation. Figure 11 shows the density, temperature, and H2O den-
sity of our disk. Of other parameters that describes the disk are
the turbulent velocity dispersion set to 150 ms−1, stellar mass
of 1 M$, and a gas-to-dust ratio of 100. We use thin mantled
grains with 107 years of coagulation and the resulting disk mass
is 0.02 M$.

To break the azimuthal symmetry and make the model fully
3D, we have placed a protoplanetary condensation in the gap.
The protoplanet has the same qualitative properties as the one
described in Narayanan et al. (2006). The protoplanet has been
modeled by placing a spherical distribution of grid points at the
desired spot and giving the grid points an H2 number density of
2×1015 cm−3, which, given a radius of 1000 Jupiter radii, results
in a mass of about 1.4 MJ . The temperature of the condensation
is kept at 150 K.

Using this setup we have first made an edge-on view of
the grid, which can be seen in panel d) of Fig. 11. The grid
points (and their connections) are color coded according to den-
sity, where blue is lower density and red is higher density. The
number of grid points in this simulation is 104 for the disk
and 5000 for the planet. The disk is clearly seen to stand out
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Fig. 11. Visualization of the upper right quadrant of the disk model described in Sect. 4. Panel a) shows the H2 density with the insert showing the
gap (shell) carved out around 5 AU. Panel b) shows the temperature and c) shows the molecular density which has a discontinuity around 90 K
where water freezes out. The last panel, d), shows a cut through the grid, color coded according to the density.

The density structure is given by

n(r, z) = n0(r/r0)−1.5e−(z/h)2
, (18)

where

h =

√
2T kB r3

GM∗
· (19)

We consider HCO+, H2O, and CH3OH gas at a fractional abun-
dance of 2×10−9 with respect to the H2 density. With these three
species we illustrate the possibility of utilizing a large dynamic
range in scales (HCO+), very opaque models (H2O), and multi-
ple overlapping lines (CH3OH).

The temperature is given by a power-law

T (r) = T0(r/r0)−0.5. (20)

In a more realistic model the temperature would be calculated
self-consistently based on the radiation properties of the cen-
tral source and the temperature would drop toward the mid-
plane because this region would be shielded from stellar ra-
diation by the upper layers of the disk. In our example we
mimic this effect by lowering the temperature in a wedge
shaped region around the mid-plane to 20 K. By letting wa-
ter freeze out at temperatures below 90 K, we can simulate a
complex abundance structure often used in protoplanetary disks

(Jonkheid et al. 2007; Woitke et al. 2009). The disk extends to
500 AU and the values for n0 and T0 are 108 cm−3 and 90 K at the
radius of 100 AU. In addition we have added a 2 AU wide gap
around a radius of 5 AU from the center. The disk is in Keplerian
rotation. Figure 11 shows the density, temperature, and H2O den-
sity of our disk. Of other parameters that describes the disk are
the turbulent velocity dispersion set to 150 ms−1, stellar mass
of 1 M$, and a gas-to-dust ratio of 100. We use thin mantled
grains with 107 years of coagulation and the resulting disk mass
is 0.02 M$.

To break the azimuthal symmetry and make the model fully
3D, we have placed a protoplanetary condensation in the gap.
The protoplanet has the same qualitative properties as the one
described in Narayanan et al. (2006). The protoplanet has been
modeled by placing a spherical distribution of grid points at the
desired spot and giving the grid points an H2 number density of
2×1015 cm−3, which, given a radius of 1000 Jupiter radii, results
in a mass of about 1.4 MJ . The temperature of the condensation
is kept at 150 K.

Using this setup we have first made an edge-on view of
the grid, which can be seen in panel d) of Fig. 11. The grid
points (and their connections) are color coded according to den-
sity, where blue is lower density and red is higher density. The
number of grid points in this simulation is 104 for the disk
and 5000 for the planet. The disk is clearly seen to stand out
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Outline

• How Monte Carlo methods can help

• The trouble with Monte Carlo methods

• By-passing some of these problems: 
accelerated methods

• Bernes, RATRAN, and LIME

➡How to work with LIME
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Installing LIME
• http://www.nbi.dk/~brinch/lime.php

Register at the user 
forum to download 

LIME
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Installing LIME
• Here’s how to install on a Mac

• make sure Xcode is up-to-date

• get macports

• > sudo port install gsl

• > sudo port install qhull

• > sudo port install cfitsio

• download LIME

• > source sourceme.(csh|bash)

• lime model.c

• download paraview

LIME requires qhull, 
gsl, and cfitsio

this installs LIME

this runs LIME for a 
model defined in 

model.c

use paraview to inspect 
the grid
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Running LIME

• Define your model

• Define weighting scheme (experts only!)

• Define molecule, transitions, distance, 
orientation

•> lime model.c

• Output: grid.vtk, populations.pop, 
image0.fits
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Example: a power-law sphere

• The ‘standard’ LIME example, calculating HCO+ J=3-2

• spherical cloud, 0.5–2000 AU

• nH2 = 1.5x106 (r/300AU)-1.5 cm-3

• T 45...15 K (tabulated)

• X(HCO+)=1x10-9

• b=0.2 km/s

• v: free fall to 1.0 Msun object

• d=140 pc
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Defining the LIME model

• Edit model.c
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Running LIME
•> lime model.c
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Inspecting the grid with paraview
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paraview commands

• open grid.vtk ➔ apply

• select slice ➔ apply and 
rotate

• edit color scheme ➔ apply

• filters ➔ alphabetical ➔ 
extract edges ➔ apply
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Monitoring progress
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Inspecting the output

• for example using ds9 or other programs 
to process submm data
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• disk mass 0.01 Msun

• stellar mass 0.6 Msun

• Rout=250 AU

• d=56 pc, i=6˚

• CO 3–2: X=2x10-7 if T<19K, 2x10-4 if 
T>19K

Example: a circumstellar disk
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Example: a circumstellar disk
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Example: a circumstellar disk
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Channel maps and 
double-peaked line 
profile: Keplerian 

rotation

(line profile for i=60˚)



Manual and Cheat Sheet
Lime Cheat sheet 

Version 1.3
Christian Brinch, 2013

void
input(inputPars *par, image *img)
{ 
 par->parameter = value;
 img[i].parameter = value;
}

Required parameters:

(double) par->radius
Outer model radius in meters.

(double) par->minScale
Smallest scales sampled by grid.

(integer) par->pIntensity
Number of grid points.

(integer) par->sinkPoints
Number of surface grid points.

Optional parameters:

(integer) par->sampling
0 for spherical sampling, 1 for Cartesian 
sampling. Default is 0.

(double) par->tcmb
Temperature of the microwave background . The 
default value is 2.725 K.

(string) par->moldatfile[i]
Path to the i’th molecular data file. 

(string) par->dust
Path to dust opacity table. The moldatfile and 
dust parameters are optional in the sense that at 
least one of them (or both) should be set.

(string) par->outputfile
Path to level population ascii output.

(string) par->binoutputfile
Path to level population binary output used to 
restart LIME.

(string) par->restart
File used to restart LIME with previously 
calculated populations stored in binary format.

(string) par->gridfile
Path to VTK grid output file.

(string) par->pregrid
Path to a file containing a predefined grid.

(integer) par->lte_only
Perform an LTE calculation only. 

(integer) par->blend
Set this parameter to take line blending into 
account. The default is unset.

(integer) par->antialias
This parameter determines the level of 
antialiasing in the output images. A higher 
number makes better images but the code takes 
longer to run.

(integer) par->polarization
For continuum polarization calculations, this 
parameter should be set to 1. Default is 0.

Image parameters:
The img structure is an array so that img[i].value 
denotes the setting for the i’th image. Multiple 
images can be defined, i.e., img[0], img[1], etc.

Required image parameters:

(integer) img[i].pxls
Number of pixels per dimension.
(double) img[i].imgres
Image resolution in arcsec per pixel.

(double) img[i].theta
Inclination from 0 (face-on) to π/2 (edge-on)

(double) img[i].distance
Object distance in meters.

(integer) img[i].unit
0 for Kelvin, 1 for Jansky per pixel, 2 for SI units, 
and 3 for Solar luminosities per pixel. 4 gives a 
tau image cube.

(string) img[i].filename
Path to the output fits image file.

Optional image parameters:

(double) img[i].phi
Object rotation from 0 to 2π. Default is 0.

(double) img[i].source_vel
Source velocity offset. Default is 0.

(integer) img[i].nchan
Number of frequency channels.

(double) img[i].velres
Velocity resolution in meters per second.

LIME USER MANUAL

Version 1.3, March 2013

Christian Brinch, 
Niels Bohr Institutet, University of Copenhagen 

brinch@nbi.dk, http://www.nbi.dk/~brinch/lime.php
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A GUI interface: ARTIST

• ARTIST provides a GUI for running LIME

• use pre-defined star-formation models or a 
user-defined input model

• less flexibility and less customization than 
stand-alone LIME, but great for the novice 
user

• http://youngstars.nbi.dk/artist/Welcome.html
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Further reading
• van Dishoeck & Blake 1998, ARA&A 36, 317 

• Tielens: The Interstellar Medium (book)

• Rybicki & Lightman: Radiative Processes in Astrophysics (book)

• RADEX: www.strw.leidenuniv.nl/~moldata/radex.html

• http://www.strw.leidenuniv.nl/~brinch/website/lime.html

• LAMDA: www.strw.leidenuniv.nl/~moldata

• http://www.strw.leidenuniv.nl/~brinch/website/lime.html

• RATRAN: www.strw.leidenuniv.nl/~michiel

• http://www.strw.leidenuniv.nl/~brinch/website/lime.html

• LIME: http://www.strw.leidenuniv.nl/~brinch/website/lime.html

• http://www.strw.leidenuniv.nl/~brinch/website/lime.html
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