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ABSTRACT
A new Monte Carlo algorithm for calculating time-dependent radiative transfer under the
assumption of local thermodynamic equilibrium is presented. Unlike flux-limited diffusion,
the method is polychromatic, includes scattering, and is able to treat the optically-thick and
free-streaming regimes simultaneously. The algorithm is tested on a variety of 1D and 2D
problems, and good agreement with benchmark solutions is found. The method is used to
calculate the time-varying spectral energy distribution from a circumstellar disc illuminated
by a protostar whose accretion luminosity is varying. It is shown that the time-lag between
the optical variability and the infrared variability results from a combination of the photon
traveltime and the thermal response in the disc, and that the lag is an approximately linear
function of wavelength.

Key words: radiative transfer – methods: numerical – protoplanetary discs – stars: pre-main-
sequence.

1 INTRODUCTION

Theoretical astrophysics often necessitates computing the energy
balance between gas and an ambient radiation field. Most frequently
this involves solving the equation of radiative equilibrium, and a
wide variety of theoretical tools have been developed to tackle this
problem efficiently, ranging from those which make simplifying as-
sumptions both to the geometry (spherical or plane-parallel) and to
the underlying microphysics (e.g. the grey approximation) through
to a full polychromatic treatment in multiple dimensions.

Although most radiation transfer (RT) codes assume thermal bal-
ance, many interesting phenomena occur out of equilibrium, and
here a time-dependent approach is required. A spectacular example
of this occurs during supernova explosions, and progress is being
made in time-dependent modelling of such objects (see e.g. Jack
et al. 2009; Kromer & Sim 2009).

Time-dependent methods are also required for radiation hydro-
dynamics (RHD). Broadly speaking, the transport methods can be
split into those concerned with ionizing radiation, which generally
adopt ray-casting methods (e.g. Dale, Ercolano & Clarke 2007; Mac
Low et al. 2007), and those that deal with transport in dusty media
which use either short-characteristic methods, Monte Carlo (MC)
techniques or the diffusion approximation (e.g. Turner & Stone
2001; Höfner et al. 2003; Woitke 2006). RHD codes may be further
subdivided into those which are applicable to situations in which
the radiation transport/thermal equilibrium time-scale for the gas is
shorter than the characteristic hydrodynamical time-scale and those
in which the hydrodynamical time-scale is shorter. In the former
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case, the radiation transport may be conducted as a sequence of
pseudo-equilibrium steps (e.g. Höfner et al. 2003; Woitke 2006;
Dale, Ercolano & Clarke 2007; Mac Low et al. 2007; Freytag &
Höfner 2008; Acreman, Harries & Rundle 2010). However, when
the thermal time-scale becomes comparable to, or indeed larger
than, the hydrodynamical time-scale, the time-dependent form of
the RT equations must be solved (e.g. Krumholz, Stone & Gardiner
2007).

In many situations, RT is implemented assuming energy transport
occurs via radiative diffusion of photons. This is a good assumption
for optically-thick regions, but breaks down in the optically-thin
regime, since the mean free path of photons (and thus the speed
of the diffusing radiation field) can become arbitrarily large; a flux
limiter is adopted to control this problem. Flux-limited diffusion
(FLD) is normally implemented in the grey approximation (Turner
& Stone 2001; Whitehouse & Bate 2004; Whitehouse, Bate &
Monaghan 2005; Krumholz et al. 2007), although comparisons with
a polychromatic treatment demonstrate that this is often quite a
poor approximation (Preibisch, Sonnhalter & Yorke 1995). Opaque
obstacles also cause problems for FLD, since the radiation field can
diffuse around the obstacle when in fact a shadow should be cast.

A modified version of the MC radiative equilibrium method
developed by Lucy (1999) offers an attractive route to full time-
dependent RT, since it would allow a full polychromatic treatment
within which multiple scattering may be incorporated. The method
is computationally demanding, but it has the advantage of being ex-
tremely efficient to parallelize. Indeed the feasibility of using such
a method has already been demonstrated, at least in the case where
the thermal time-scales are short (Acreman et al. 2010).

Here I present an algorithm for calculating the matter and radi-
ation field energy densities, as a function of time, for an arbitrary
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distribution photon of sources embedded in an arbitrary distribution
of gas under local thermodynamic equilibrium (LTE) conditions. I
describe 1D benchmark tests of the method and detail its incor-
poration into the TORUS RT code. I test the new version of TORUS

against a 2D disc benchmark (Pascucci et al. 2004). Finally, I give
a simple application of the code demonstrating the effect of a vary-
ing accretion luminosity from a protostar on its surrounding dusty
circumstellar disc.

2 METHOD

We describe the physical quantities (densities, temperatures, etc.)
on a cell-centred grid. For a gas in LTE at temperature T , the rate at
which it emits energy is given by

Ė = 4π

∫ ∞

0
kνBν dν, (1)

where kν is the absorption coefficient and Bν is the Planck function.
The rate at which the same gas absorbs energy is given by

Ȧ = 4π

∫ ∞

0
kνJν dν, (2)

where Jν is the mean intensity of the radiation field. Clearly, if the
gas is in radiative equilibrium, then Ȧ = Ė and we find

T =
(

Ȧ

4σκP

)1/4

, (3)

where κP is the Planck-mean absorption coefficient. However, if we
consider gas that is not in radiative equilibrium, then the nett change
in the energy density of the gas

u̇g = Ȧ − Ė (4)

and, mutatis mutandis, the rate of change in the energy density of
the radiation field is

u̇r = Ė − Ȧ . (5)

Now we consider a gas of volume V at time t. Within this volume
is a star of luminosity L∗. The luminosity of the gas is given by

Lg =
∫

V

Ė dV . (6)

We assume that the temperature of the gas is constant over a single
time-step %t. During this time-step, we assume that the gas and
the star produce Ng and N∗ new photon packets, respectively. The
individual photon packet energies are given by

εg = Lg%t

Ng
, ε∗ = L∗%t

N∗
. (7)

The energy density is related to the temperature by

ug = RT ρ

(γ − 1)µ
, (8)

where R is the gas constant, ρ is the mass density, γ is the ratio of
specific heats and µ is the mean molecular weight. We follow Lucy
(1999) and use the result that the energy density of the radiation
field in the interval (ν, ν + dν) is given by

ur,ν = 4πJν dν
c

. (9)

A photon packet moving between events (scatterings, absorptions,
crossing grid-cell boundaries) contributes an energy εν for time )/c
(where ) is the distance between events) to the local energy density.
The photon energy density is therefore

ur = 1
%t

1
V

1
c

∑
εν) , (10)

where the summation is over all photon packets. Now combining
equations (2) and (9) with equation (10), we obtain an expression
for the energy absorption rate:

Ȧ = 1
V

1
%t

∑
kνεν). (11)

The new energy density of the gas may then be calculated as

un+1
g = un

g + (Ȧ − Ė)%t . (12)

This explicit integration scheme will require a careful choice of the
time-step %t, which must be short enough to ensure stability while
also being long enough that the computation remains tractable.
Time-scale considerations are discussed in Section 2.1.

It is worth noting that equation (12) is not the only method
for updating the internal energy of the gas. Since we follow the
radiation field in detail, we can, for each cell, calculate the energy
in photon packets entering and leaving the cell, and hence the change
in radiation energy density due to RT (%ur,trans). MC estimators exist
for ur for both the start and the end of the time-step, so using

un+1
r = un

r + (Ė − Ȧ)%t + %ur,trans (13)

we can find (Ė−Ȧ)%t and substitute it into equation (12), bypassing
the need to find an estimator for Ȧ. In practice, we found that this
method required a larger number of photon packets (in order to
improve the estimate of ur and %ur,trans) than that needed using an
estimator for Ȧ.

A single time-step encompasses of a loop over photon packets,
each with an individual energy εν and frequency ν. Information on
photon packets that are ‘in flight’ at the end of a time-step is stored
on a stack, to be processed as part of the RT during the subsequent
time-step. The total number of photon packets is the sum of the
number of packets on the stack (Ns) and the number of new photon
packets generated during the time-step Np. The path of each photon
packet is followed as it propagates through the gas, during which
time the packet may be scattered multiple times. The random walk
of the photon packet ceases when it is either absorbed or leaves the
computation domain (in which case the photon packet is destroyed),
or when its flight time ()/c) reaches %t (in which case the photon
packet is added to the stack). Once the random walks of all the
photons have been calculated, we may then use our MC estimate of
the absorption rate (equation 11) to update the gas energy density
of each cell via equation (12). One can immediately see that when
the photon flight time of a mean free path κρ/c % %t, then Ns

will dominate over Np as the calculation proceeds, but eventually if
radiative equilibrium is reached, then there will be an approximately
constant number of packets at each time-step.

It should be noted that, unlike the Lucy (1999) radiative equilib-
rium algorithm, energy is not implicitly conserved here, as photon
packets are created and destroyed during each time-step. The qual-
ity of the energy conservation is controlled by the accuracy of our
estimator of the absorption rate (which in turn is dependent on our
MC statistics) and by our choice of %t. Energy conservation is
addressed in Section 3.

The algorithm itself is described as a sequence of steps:

(i) The current energy density of the gas (ug) is used to compute
the temperature distribution (equation 8) and thus the gas energy
emission rate as given by equation (1). A probability distribution of
a photon packet being emitted is calculated over all cells:

pi =
∑i

1 ĖiVi∑Ncells
1 ĖiVi

, (14)

where Vi is the volume of the ith cell.
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1502 T. J. Harries

(ii) The probability of a photon being produced in the gas is
calculated by

pg = Lg

L∗ + Lg
. (15)

We take η to be the uniform random deviate. If η < pg, then the
photon packet is emitted within the gas, and its position is found
according to the probability distribution given by equation (14);
otherwise, the photon is produced by the star.

(iii) If a photon is produced by the gas, then the photon frequency
is assigned according to the equation

η =
∫ ν

0
jν dν/

∫ ∞

0
jν dν, (16)

where jν = kνBν . If the photon packet is stellar in origin, then its
frequency comes from

η =
∫ ν

0
Bν dν/

∫ ∞

0
Bν dν, (17)

where Bν is the Planckian at the stellar effective temperature [al-
though other stellar spectral energy distributions (SEDs) may be
easily incorporated].

(iv) A photon can propagate an optical depth

τ = (kν + ksca,ν)ρ) (18)

(where ksca,ν is the scattering coefficient at frequency ν) before it is
either absorbed or scattered. The optical depth is selected randomly:

τ = − ln(1 − η). (19)

If τ is greater than the optical depth from the cell boundary, then
the photon packet position is moved to the cell boundary and a new
optical depth is selected. If the time to travel the optical depth τ is
greater than%t, then the photon packet is moved by the distance c%t
and the photon information is placed on the stack. Otherwise, the
photon position is updated and the type of interaction is determined
by the albedo

η ≤ α = ksca,ν

kν + ksca,ν
. (20)

If the photon packet is scattered, then the new direction vector is
chosen randomly from the appropriate phase function. If the photon
is absorbed, then the appropriate path-length is stored and the next
photon packet is selected.

(v) Once all photon packets have been processed, the new ab-
sorption rates are computed and the energy density of the gas is
updated using equation (4). Subsequently, the duration of the next
time-step is determined (see below).

2.1 Time-scales

Cells in which the emission rate exceeds the absorption rate are
cooling, and the time-scale for cooling is calculated as

tcool = ug

Ė − Ȧ
. (21)

Conversely, if the energy absorption rate exceeds the emission rate
for a given cell, then its temperature is increasing. We may then
calculate an approximate radiative equilibrium time-scale by first
computing the equilibrium energy density ue (using equation 3) and
then finding

teq = ue − ug

Ȧ − Ė
. (22)

Cells for which teq ≤ %t have their temperatures set to the radiative
equilibrium temperature. Note that this formalism assumes that Ȧ

and Ė are constant over %T , and care must be taken to ensure that
one does not erroneously set cells to their equilibrium temperature
due to a poorly chosen %T .

3 TESTS

I have implemented a number of test cases in order to examine the
efficacy of the new algorithm.

3.1 Radiative equilibrium

If we immerse an absorbing gas in a radiation field of much higher
energy density, then the gas will eventually come into equilibrium
with the radiation. Since ug ' ur, we can assume ur to be a con-
stant and the evolution of ug can then be found from the ordinary
differential equation

dug

dt
= cκur − 4πκB(ug). (23)

For this test, we adopted the parameters given by Turner & Stone
(2001): ρ = 10−7 g cm−3, κ = 4 × 10−8 cm−1, µ = 0.6, γ = 5/3 and
ur = 1012 erg cm−3. We ran two separate cases, one with ug initially
well below the equilibrium value (ug = 102 erg cm−3) and the other
with it well above (ug = 1010 erg cm−3). The results are plotted in
Fig. 1 and the agreement with the analytical solution is excellent.

The second test involved the same physical parameters for the
box detailed above, but instead of filling the box with a high-density
radiation field, we set ur = 0 and ug = 108 everywhere. As the RT is
followed, the material in the box will cool and emit radiation. Since
we have reflective boundary conditions for the photon packets, the
gas and radiation field will eventually settle into radiative equilib-
rium. We set Np to 1, which means that the gas emits one photon per
time-step. In Fig. 2, we plot the evolution of the radiation and gas
energy densities with time, and these show good agreement with a
simple numerical integration of equations (5) and (4). We find that
the total energy is conserved to better than 0.5 per cent throughout
the duration of the MC calculation.

Figure 1. The results of the first radiative equilibrium test case described
in Section 3.1. In the upper panel, the MC results are shown as dots, while
the analytical solution found from equation (23) is displayed as a solid line.
The bottom panel shows the fractional difference between the analytical and
numerical solutions for the energy density.
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Time-dependent radiative transfer 1503

Figure 2. The results of the second radiative equilibrium test case described
in Section 3.1. In the upper panel, the MC results are shown as solid lines,
while the solutions found from numerical integration of equations (5) and
(4) are displayed as dots. The middle and lower panels show the fractional
difference between the energy densities from the analytical and MC solutions
for equations (5) and (4), respectively.

The above tests suggest that the physics of matter–radiation in-
teraction are adequately captured by the new algorithm, and we now
progress to tests of the transport of radiation.

3.2 Diffusion limit

In the optically-thick limit, the RT occurs according to the diffusion
equation

dur

dt
= −D

d2ur

dx2
, (24)

where D is the diffusion coefficient, given by

D = c

κ
. (25)

Here we test the MC algorithm on a heat kernel problem, in which
energy is deposited at a point at t = 0 s and is allowed to diffuse
through the medium. The analytical solution to the diffusion equa-
tion for this scenario is a Gaussian

u(x, t) = 1√
4πDt

exp
(

− x2

4Dt

)
. (26)

We assume a 1-cm 1D box, divided into 101 evenly spaced bins,
with reflective boundary conditions for the photons (i.e. adiabatic).
We adopt κ = 1013 cm−1 and deposit 1010 erg of energy in photons
into the central bin at t = 0 s. (The radiation field immediately
comes into radiative equilibrium with the material in the box, but
ur % ue). We follow the RT using the MC algorithm and also by
solving equation (24) using the Crank–Nicolson method.

We initially assume pure scattering (α = 1), in which case the MC
algorithm will always perfectly preserve energy since no photons
are created or destroyed and matter/radiation energy transfer terms

Figure 3. Heat kernel test for the pure scattering case. In the upper panel, the
solution to the diffusion equation is plotted (solid lines) for times t = 10−11,
2 × 10−11, 10−10 and 2 × 10−10 s, while the radiation energy densities for
the same times found using the MC algorithm are plotted as the crosses.
The lower panel shows the absolute differences between the analytical and
MC-based energy densities at the same time-steps (solid, dotted, dashed and
dot–dashed lines, respectively).

are by definition zero. This scenario tests the random walk and
photon flight time limit section of the MC algorithm, and we find
good agreement between the diffusion approximation and the MC
algorithm for this test case (Fig. 3).

The purely absorptive case (α = 0) is a much more challenging
proposition. Both the emissivity and absorption rates are very high,
and MC sampling errors can potentially lead to deviations from
energy conservation. However, we find good agreement (Fig. 4)
with the diffusion approximation, and energy is conserved to within
2 per cent even after more than 4000 time-steps.

3.3 Time-varying source

It appears that the diffusion limit is well modelled using the MC
algorithm, but such conditions are naturally more efficiently treated
using the diffusion approximation. However, many astrophysical
problems involve transport through substantial regions of optically-
thin material, and here we conduct a test of the MC algorithm
that incorporates both optically-thin and opaque materials. We also
include a time-varying source of photons which allows us to test
both how well the algorithm retains the coherence of the radiation
field and how well it captures the heating and cooling of material.

We adopt a 1-cm box with a density of 2 × 10−5 g cm−3 and

κ(x) =
{

0 if x < 0.5
106 if x ≥ 0.5 .

(27)

Photons are injected into the left-hand boundary of the box from
a source of luminosity that varies sinusoidally between zero and
1020 erg s−1 on a period of 10−11 s. Photons propagate through the
optically-thin part of the box until they encounter the optically-thick
material and are absorbed, thus heating the right-hand half of the
box. This heated material emits radiation in an attempt to come
into thermal balance; since the optical depth is smaller in the −x
direction, these photons are preferentially emitted in that direction
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1504 T. J. Harries

Figure 4. Heat kernel test for the pure absorption case. In the upper panel,
the solution to the diffusion equation is plotted (solid lines) for times t =
10−11, 2 × 10−11, 10−10 and 2 × 10−10 s, while the radiation energy
densities for the same times found using the MC algorithm are plotted as
the crosses. The lower panel shows the absolute differences between the
analytical and MC-based energy densities at the same time-steps (solid,
dotted, dashed and dot–dashed lines, respectively).

(accompanied by a transport by diffusion in the +x direction). Out-
flow boundary conditions are imposed at either end of the box.

Several time-steps from this test calculation are presented in
Fig. 5. Initially, the sinusoidally varying radiation field can be seen
to propagate at speed c through the left-hand half of the box. The
optically-thick material is heated and re-emits radiation which can
then be seen propagating to the left-hand side with a sinusoidally
varying flux (the amplitude of the variability is lower than that of the
impinging radiation field, never reaching zero, due to the thermal
capacity of the optically-thick material). The diffusion of radiation
through the optically-thick material is also apparent.

We have checked the energy conservation of the algorithm as
the source radiation is transported, absorbed and re-emitted. Fig. 6
shows the integrated thermal and radiation energy presented in the
box at each time-step (prior to any radiation escaping the box at the
boundaries). The total energy is conserved to better than 1 per cent
at all time-steps.

3.4 Implementation

The above 1D, grey tests indicate that the algorithm is fundamen-
tally sound and can reproduce analytical results. We therefore im-
plemented a version of the algorithm as a module within the TORUS

radiative transfer code (Harries 2000; Kurosawa et al. 2004; Pinte
et al. 2009). The code is written in FORTRAN 90 and follows the
radiative transfer on an adaptive mesh stored as a quadtree (2D) or
octree (3D).

Since each MC photon packet is essentially an independent event,
the code is straightforwardly parallelized under the Message Passing
Interface (MPI). Each thread holds a copy of the grid in memory, and
the work of the photon loop is distributed over all the MPI threads.
At the end of the photon packet loop, the summations in equations
(10) and (11) are made over all threads, and thus estimates for the
photon energy density and absorption rate are found for each cell

Figure 5. An optically-thin/thick radiation propagation test with a varying
source. The panels (top to bottom) are snapshots at t = 10−11, 2 × 10−11,
4 × 10−11 and 6 × 10−11 s. Plotted are the radiation energy density of
the source photons (solid line), the thermal energy density of the material
(dashed line) and the radiation energy density of photons emitted by the
material (dotted line). The expected maximum extent of the radiation field
from the source at t = 10−11 s is plotted as a dot–dashed line in the upper
panel.

in the grid, and finally the results are distributed back to all threads.
The communication overhead for the last step is minimal compared
to the calculations for the photon loop, and the calculation is thus
CPU rather than thread-communication limited.

Example CPU times are susceptible to rapid erosion in useful-
ness due to Moore’s law, but for the benefit of contemporary readers
the science grade calculation described in Section 4 was run on 16
theads on the University of Exeter’s SGI Altix ICE 8200 super-
computer and each of the later time-steps (when the photon stack
size had maximized) took approximately 4 min, of which 20 s was
inter-thread communication. It was found that the calculation scaled
almost perfectly up to 64 threads (the maximum that we tested).

3.5 Benchmark protostellar disc

As an initial test, we used the 2D RT benchmark disc described by
Pascucci et al. (2004). By following the radiation transport over a
sufficiently long duration, the disc (initially at T = 0 K) will come
into radiative equilibrium with the central star. This represents a
rigourous test of the new algorithm since the circumstellar ma-
terial contains both optically-thin and optically-thick regions and
thus simultaneously incorporates both free-streaming radiation and
diffusing photons. Furthermore, the polychromatic nature of the
algorithm is tested with excess luminosity from the photosphere
at short wavelengths, heating the disc and being re-emitted in the
mid-infrared (mid-IR) and submillimetre regimes.

We adopted an initial time-step of 100 s and used 106 photons
per time-step. In Fig. 7, the gradual heating of the disc is shown.
The rarified regions above and below the disc quickly reach thermal
equilibrium, while the disc mid-plane, which has a characteristic
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Time-dependent radiative transfer 1505

Figure 6. Total energies for the optically-thin/thick radiation propagation
test with a varying source. In the upper panel, the expected total energy in
the box is plotted as a solid line, along with the total energy calculated from
the MC algorithm (dotted line, very close to the solid line), the energy in the
radiation field (dot–dot–dashed line), the thermal energy (dashed line) and
the radiation density emitted from the heated material (dot–dashed line). The
vertical dashed line indicates the expected time in which the source radiation
field enters the optically-thick material (1.67 × 10−11 s). The lower panel
shows the fraction difference between the expected total energy in the box
and that derived from the MC method.

radial optical depth of ∼100 at 5500 Å, approaches equilibrium
much more slowly. After ∼3 × 1010 s, the entire disc has reached a
steady state.

A quantitative comparison with the benchmark solution is shown
in Fig. 8. Good agreement with the published benchmark mid-plane
temperature distribution is found after ∼1010 s.

4 APPLICATION: PROTOSTELLAR DI SC
VARIABILITY

The accretion rate on to protostars is inherently variable on a wide
variety of time-scales from hours to years (e.g. Bouvier et al. 2007;
Nguyen et al. 2009). This variable accretion flux (emitted primarily
at wavelengths less than 4000 Å) is scattered and reprocessed in the
disc to be emitted in the near- and mid-IR. There will be an intrinsic
delay between the optical variability and the disc’s IR response, in
part due to the light traveltime from the star to the disc and due
to thermal lag within the disc itself. Since the temperature in the
disc decreases radially, one expects the time-lag (with respect to the
optical flux variability) to increase with wavelength. Hence, by ob-
taining simultaneous time-series photometry in the optical and IR,
one may attempt to map the disc emission using the wavelength-
dependent lag, in much the same way as reverberation mapping
is used to map the broad-line region around active galactic nuclei
from the emission-line/ultraviolet continuum variability (e.g. Den-
ney et al. 2009). Of course, there are a host of other factors that might
complicate this rather naive interpretation of the variability, such as
changes to the disc structure, and rotational modulation of either an

azimuthally structured inner edge (warps) or an anisotropic radia-
tion field (hotspots), but it is none the less interesting to examine
the expected time-scales from a simple thermal response model.

4.1 Model parameters

We adopt a central protostar of radius R∗ = 2 R, and a blackbody
photospheric flux distribution at Teff = 4000 K. The recent study
by Nguyen et al. (2009) showed that the accretion rate on to a
typical protostar varies by a factor of ∼2 on a time-scale of days
to weeks. We assume the star is accreting at a rate that varies
sinusoidally between 5 × 10−8 and 1 × 10−7 M, yr−1 with a period
of 1 h. This period is comparable with the flushing time-scale of
the magnetosphere and line profile variability on such time-scales
has been observed (see e.g. Smith et al. 1999; Kurosawa et al.
2005). Such rapid variability corresponds to a change on a much
shorter time-scale than the canonical rotation period, making it
easier observationally to distinguish disc reprocessing effects from
rotationally modulated disc-structure effects.

In order to mimic the additional flux associated with the accretion,
we add the accretion luminosity as a blackblody with a characteristic
temperature found by assuming that the accretion power is emitted
from an area equivalent to 5 per cent of the stellar photosphere.

A simple flared structure is adopted for the disc, namely

ρ(r, z) = ρ0r
−α exp

[
−1

2
z2

h(r)2

]
, (28)

where

h = h0

(
r

r0

)β

(29)

with α = 2.25 and β = 1.25. The disc scaleheight is set to h0 =
125 au at r0 = 100 au. In order to simulate the truncation of the inner
disc by the magnetosphere, we assume an inner hole of 10R∗, while
the outer radius is 300 au. We fix ρ0 by assuming a disc mass of
0.01 M,. The disc is assumed to contain the dust size distribution
and chemistry described by Kurosawa et al. (2004), and for the
purposes of this test, we assume isotropic scattering.

4.2 Method

The disc is initially brought into radiative equilibrium with the cen-
tral object (assuming a constant accretion rate of 5 × 10−8 M, yr−1)
by using a time-independent algorithm. The time-dependent method
is then turned on (which defines t = 0 s) and the RT is followed for
10 periods at a time-step of 18 s. This short time-step allows us
to adequately resolve the shortest time-scales that are of interest,
which is basically the light-crossing time from the central object to
the inner disc (47 s).

Since the photon packet estimate of the radiation field is only
defined within a sphere of radius ct around the central object, it is
only cells within this radius whose thermal properties are changed at
each time-step, with the rest of the disc held in thermal equilibrium.
Free-streaming photon packets that have a negligible probability
of interacting with the disc (found by integrating the optical depth
along the packet’s path) are deleted from the stack at the end of
each time-step. This has the advantage of significantly reducing the
memory requirement of the photon stack.

The shape of the cross-correlation function (CCF) should be a
function of the system’s viewing angle (inclination) as different
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1506 T. J. Harries

Figure 7. The Pascucci benchmark disc heated from T = 0 K to thermal equilibrium using the MC algorithm. The temperature of the disc is plotted as a
logarithmic colour-scale scaled between 1 and 100 K. Distances are in au. Four snapshots are shown: t = 3.1 × 104 s (top left-hand panel), t = 1.02 × 106 s
(top right-hand panel), t = 3.3 × 107 s (bottom left-hand panel) and t = 1.05 × 109 s (bottom right-hand panel).

parts of the disc have different star–disc–observer path lengths. In
the following, we adopt an inclination of 60◦ when calculating the
SEDs.

Initially, a set of photon packets were generated from the vol-
ume of grid outside the ct sphere defined by the length of the
time-series. Since this volume is at constant temperature, it was
possible to calculate this contribution to the SED in a time-
independent manner. Subsequently, at each time-step, 106 new pho-
ton packets (photospheric or thermal disc) were generated, and these
photons were tagged by their generation time. A ‘peel-off’ technique
was then employed: the light traveltime and optical depths to the
observer were calculated, along with the probability that the pho-
ton packet was emitted towards the observer direction. The photon
packets were then binned in the observer’s frame, both spectrally
and temporally. The new photon packets, plus the photon packet
stack, were then followed for a single time-step, with packet peel-
off and binning occurring at each scattering event.

4.3 Results

We have computed the CCF of monochromatic time-series from
3000 Å to 10 µm against a fiducial time-series at 3000 Å (see Fig. 9).
It is immediately apparent that the lag increases with wavelength due
to a combination of the light traveltime to the disc and the thermal
lag as the increased radiation field heats the local disc material.
The maximum value of the CCF decreases at longer wavelengths
as the thermal time-scale of the disc begins to dominate over the
variability time-scale.

I have quantified the lag by fitting a Gaussian to each CCF peak
as a function of wavelength. The central positions of these Gaus-
sians are plotted in Fig. 10. The lags at blue wavelengths ('2 µm)
are short, in fact less than the light traveltime between the star and
the disc; this is principally because there is significant direct pho-
tospheric emission at these wavelengths (with zero lag) in addition
to the scattered and reprocessed components. Redwards of ∼2 µm,
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Time-dependent radiative transfer 1507

Figure 8. The disc mid-plane temperature for the Pascucci benchmark disc.
The heavy line shows the benchmark temperature distribution, while the
other lines show (from the left-hand side) snapshots at t = 3.1 × 104, 1.02
× 106, 3.3 × 107, 1.05 × 109 and 3.3 × 1010 s.

Figure 9. A cross-correlation image of the monochromatic disc light curve
at 3000 Å against wavelengths from 3000 Å to 10 µm. The image is a linear
grey-scale of the CCF scaled between 0.8 (white) and 1 (black). The bottom
row of the image is the autocorrelation function of the 3000-Å light curve.

the flux is dominated by the thermal emission from the disc, and we
see that the lag increases monotonically (within the errors on the
CCF Gaussian fits) with wavelength (although the strength of the
correlation is decreasing).

Observing this correlated phenomenon would be a challenging
proposition, necessitating high-cadence temporal sampling in the
optical and near-IR simultaneously. Optimally, one would select
ground-based UBV photometry combined with Spitzer IRAC pho-
tometry. Although it may be possible to conduct the IR observations
into the mid-IR, it is clear that the correlation is dropping rapidly
at these wavelengths, and it is not at all clear whether the necessary
temporal sampling could be achieved using ground-based facilities.
It may be that systems with a larger inner hole, such as Herbig AeBe
stars (Monnier et al. 2005), would be superior targets to Classical

Figure 10. The time-lag with respect to the 3000-Å light curve plotted as
a function of wavelength (filled circles). The light traveltime between the
stellar centre and the inner disc edge is plotted as a dashed line.

T Tauri stars, allowing light-traveltime effects to remain dominant
at longer time-scales.

Of course, in reality, the underlying accretion luminosity is un-
likely to vary periodically, but more stochastic variations could still
be investigated. It may be possible to distinguish between disc ther-
mal responses and scattering by observing polarized light, which
will be dominated by the scattered light contribution.

5 CONCLUSIONS

I have presented a new method for computing time-dependent radia-
tion transport for an arbitrary distribution of sources embedded in an
arbitrary distribution of absorbing, emitting and scattering material.
The new algorithm, based on the MC radiative equilibrium method
of Lucy (1999), can be used in 3D and scales almost perfectly un-
der parallelization. It has advantages over the FLD approximation
in that it is polychromatic and correctly treats the directionality
and flux of the radiation field in the optically-thin limit. Note that
although the algorithm as presented here is only applicable under
conditions of LTE, the method may be straightforwardly extended
to the non-LTE regime (see e.g. Carciofi & Bjorkman 2006).

I have applied the new method to the problem of a circumstellar
disc illuminated by a protostar with a periodic time-variable accre-
tion rate. I have shown that the lag between the blue continuum
resulting from the accretion hotspots and the reprocessed IR radia-
tion from the disc is a strong function of wavelength. It appears that
photometric time-series data in the blue part of the optical spectrum,
combined with equally-intensive near-IR time-series, could be used
to probe the geometrical and thermal structure of the disc, although
it is likely that complications arising from stochastic variations in
the disc structure close to the inner edge could mask the correlation
calculated here.

In future, the time-dependent method will be incorporated in
RHD calculations of protostellar disc fragmentation, extending the
time-independent transfer simulations of Acreman et al. (2010). It is
well established that the thermal properties of the disc strongly affect
the fragmentation (Boss 2008; Stamatellos & Whitworth 2008), and
it is also clear that the FLD approximation does not capture the full
physics of the transport in the disc itself.
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Freytag B., Höfner S., 2008, A&A, 483, 571
Harries T. J., 2000, MNRAS, 315, 722
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