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ABSTRACT

We present a new code for solving the molecular and atomic excitation and radiation transfer problem in a molecular gas and predicting
emergent spectra. This code works in arbitrary three dimensional geometry using unstructured Delaunay latices for the transport of
photons. Various physical models can be used as input, ranging from analytical descriptions over tabulated models to SPH simulations.
To generate the Delaunay grid we sample the input model randomly, but weigh the sample probability with the molecular density and
other parameters, and thereby we obtain an average grid point separation that scales with the local opacity. Our code does photon very
efficiently so that the slow convergence of opaque models becomes traceable. When convergence between the level populations, the
radiation field, and the point separation has been obtained, the grid is ray-traced to produced images that can readily be compared to
observations. Because of the high dynamic range in scales that can be resolved using this type of grid, our code is particularly well
suited for modeling of ALMA data. Our code can furthermore deal with overlapping lines of multiple molecular and atomic species.
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1. Introduction

The ability to predict the radiation signature associated with a
physical model is crucial when interpreting astronomical ob-
servations. In the general case, this can be achieved by solv-
ing the equation of radiation transport and, in the special case
of non-local thermodynamical equilibrium (non-LTE) radiation,
the equilibrium quantum state distribution. This is a strongly
coupled problem that can only be solved by numerical analy-
sis except for the limiting cases where either the material is in
LTE or in the optically thin regime where there is little interac-
tion between matter and radiation. The computational demand
increases rapidly with complexity of the model if such approxi-
mations cannot be applied. Due to the low density conditions of-
ten found in inter- and circumstellar material, LTE is oftentimes
not a valid approximation and therefore, if the medium turns op-
tically thick, numerical methods must be used to calculate the
molecular excitation in such environments.

Ever since the first molecules where discovered in
space (CH+ and OH: Douglas & Herzberg 1941; Weinreb 1963),
line emission has been an important astrophysical tracer of the
physics and chemistry. The chemistry can be traced from the
abundance of various molecular species and the physical en-
vironment, such as temperature and density, from the excita-
tion of the lines and kinematical information is embedded in
the line profiles. In star forming regions, molecules are also
tracers of shocks and can be used to investigate the external
radiation environments (van Dishoeck et al. 2009). As an ex-
ample, the inside-out collapse model of low-mass star forma-
tion (Shu 1977), which is often used by many authors, has been
confirmed for a number of objects by measurements of vari-
ous molecular lines (e.g., Walker et al. 1986; Zhou et al. 1993).
However, in order to derive reliable molecular abundances, it
is important to understand the spatial distribution of the gas,
and while the gas distribution in the plane of the sky is directly

measurable, given sufficient instrument resolution, the distribu-
tion along the line of sight is not easily measured. In fact, de-
riving the three dimensional distribution based on a two dimen-
sional image forms an inverse problem similar to the problems
encountered in medical tomography and seismology. In the as-
trophysical case, we deal with such problems by constructing
a source model based on our theoretical understanding of the
object in question, and then calculate the line signature of this
model which is then compared to the observations and, based on
the result, the model is improved to give a better fit.

A number of numerical codes and algorithms that focus on
predicting molecular emission in the far-infrared and millimeter
wavelength regimes have been made available to the community
in the last decades (e.g., Bernes 1979; Juvela 1997; Hogerheijde
& van der Tak 2000; Schöier 2000; Pavlyuchenkov & Shustov
2004). As computers have become faster, codes have evolved
from working predominantly in a spherical symmetry (1D) to
being able to solve problems in a cylindrical symmetry (2+1D).
This progress has mainly been driven by the development in tele-
scope facilities, providing observers with ever increasing spatial
resolution. This paper describes a new non-LTE radiation trans-
fer code for (sub-)millimeter and far-infrared continuum and
spectral line radiation that works in arbitrary geometries (3D).
The code has been designed to be fast, reliable, and easy to
use, with particular emphasis on being able to solve models in
very high resolution for the Atacama Large Millimeter Array
(ALMA) and models of molecules with a complex level config-
uration (e.g., H2O and CH3OH), relevant for observations with
the Herschel Space Observatory. The code is called LIME (Line
Modeling Engine).

LIME derives from the RATRAN code (Hogerheijde &
van der Tak 2000) and, although rewritten from scratch, it shares
much of the code base and the solution method. RATRAN is a
Cartesian grid based Monte Carlo code which includes elements
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of accelerated Lambda iteration (Rybicki & Hummer 1991) and
it exists in both a one and two dimensional version. The main dif-
ference between the two codes is the photon propagation method
(see Sect. 3.1) which dramatically improves the calculation time,
making 3D models feasible to solve, and allows for a very flex-
ible model input method. Our photon transport method is a line
extension of the approach of Ritzerveld & Icke (2006) for their
continuum radiation transfer algorithm simpleX. This algorithm
was originally developed in to provide a fast solution to the
radiation transfer problem in three dimensions for all opacity
regimes, in particular for hydrodynamical cosmology simula-
tions, where approximate radiation transfer is often used to speed
up temperature calculations. The simpleX algorithm has been
shown to work well for clumpy and inhomogenous media with
a large density contrast. LIME has been written mainly for the
purpose of solving models of disks and envelopes around young
stellar objects (YSOs), but due to the 3D nature of the code, it
can, however, also solve models of more complex structures such
as outflows, molecular clouds and even clusters of YSOs and
their environments. The main limitation to this is the availabil-
ity of input models. It is to be expected that models provided by
(magneto-) hydrodynamical simulations will become more im-
portant in the near-future, and it has therefore been important for
us to provide an easy way of interfacing the output of a dynam-
ical simulation with this code. SPH simulations are in particular
well suited as input for LIME, since the physical quantities is
already described by particles in very much the same manner as
LIME uses it.

A number of new features have been added to LIME. As it
is expected that ALMA will detect potentially hundreds of lines
per setting and many of these lines may be blended, we have
made it possible to solve the radiation transfer for an unlim-
ited set of molecular species simultaneously and dealing with
the cross-excitation correctly. This feature obviously comes at
a cost of increased calculation time, of which the severeness de-
pends on the number of coupled lines. Another new feature is the
extended output capabilities, where the user can ask for spatial
intensity and opacity distributions as well as the grid information
be written out for visualization purposes.

The outline of this paper is as follows: Section 2 describes
the physical problem of radiation transport in a molecular
medium, Sect. 3 provides an extensive description of the LIME
code, Sect. 4 brings a few examples and validation of the LIME
results, and finally, conclusions are given in Sect. 5.

2. The physical problem

The spectral intensity Iν of radiation propagating through a
medium with emission and absorption coefficients jν and αν is
described by the equation:

dIν
ds
= jν − ανIν, (1)

where we neglect the scattering term which is of little relevance
in the sub-millimeter regime. The coefficients jν and αν are re-
lated to the Einstein coefficients A12, B12, and B21, for transitions
between any two adjacent levels with an energy of hν = E1−E2,
by the equations:

jν;gas =
hν
4π

n2A12φ(ν) (2)

αν;gas =
hν
4π

(n1B12 − n2B21)φ(ν), (3)

for the line radiation and

jν;dust = −αν;dustBν(Tdust) (4)
αν;dust = κνρdust, (5)

for the thermal dust emission. φ is a function of frequency which
contain the contribution of several line broadening mechanisms
and h is Plancks constant. The dominating mechanism here is
the doppler broadening due to local turbulence. Bν is the Planck
function for a given dust temperature and κ and ρ are the dust
opacity and dust mass density respectively. The dust opacities
depend on the type of dust and various tabulated descriptions can
be found throughout the literature (e.g., Ossenkopf & Henning
1994) The contribution from the gas and the dust components
add up to form the total emission and absorption coefficients.

At any given position, the local mean radiation field can be
obtained by solving Eq. (1) and integrating the intensity over all
solid angles

Jν =
1

4π

∫
IνdΩ. (6)

The gas can be excited either through absorption of a photon
or through collisions with other gas molecules. Collision rates
between two energy levels i and l depend on the local kinetic gas
temperature

Cil =
gl

gi
cil exp

(
− hc

kBTgas
(El − Ei)

)
, (7)

where gi is the statistical weight of the i’th level and cil is
the molecule dependent rate coefficients, which, in general, are
functions of temperature as well. kB is Boltzmanns constant. The
molecular excitation thus depends on Jil (where il replaces ν to
denote the frequency associated with transition between level i
and l) and Cil and the fractional population of the i’th level ni is
given by

ni =
Σl>inkAli + Σl!inl(BliJli +Cli)
Σl<iAil + Σl!i(BilJil + Cil)

, (8)

assuming statistical equilibrium. Because Jil implicitly depend
on ni through jν and αν, Eqs. (6) and (8) forms a recursive prob-
lem and must be solved iteratively. The collisional rates cil in
Eq. (7) are not provided as part of the LIME package and must
be obtained separately. LIME, however, can read the collisional
data files provided by the LAMDA database1.

The whole problem is further complicated if a systematic
velocity field is present. In this case photons will be Doppler
shifted and thereby contribute to different transitions if the tran-
sition energies are spaced closely enough. While this is not a
problem for molecules with sufficiently widely spaced transi-
tions, such as CO, more complex molecules such as CH3OH
have a much richer level sub-structure where photons can eas-
ily contribute to several transitions given a systematic velocity
field or even by random velocities in the gas. Indeed, a photon
originating from a transition in one molecule may get Doppler
shifted and excite a transition in another molecule, and there-
fore we track photons by their frequency, not relative velocity,
for each transition in question, summing up the contribution to
Jν from all other sufficiently close transition.

1 http://www.strw.leidenuniv.nl/~moldata
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Fig. 1. The dashed line shows the local mean free path in the continuum
for a model with a density profile ρ ∝ r−1.5 and a constant absorption
coefficient. The full line is the average neighbor distance for a random
density weighted point distribution.

3. Solution method

3.1. Computational grid

In radiation transfer codes, the source model is typically laid out
onto either a grid of rectangular cells or an (r, θ)–grid. Model
properties such as density, temperature, molecular abundance,
as well as the radiation field Jν and the level populations ni are
taken to be constant over each cell. Photon packages are traced
in random directions from random points of absorption within a
cell and Eq. (1) is integrated along the paths. Summing over all
photons, the mean radiation field Jν is obtained for the cell.

In our implementation, the source model is not mapped
onto a regular grid of cells. Instead we use a random set of
points which represents the local environment (density, tem-
perature, populations, etc.). The points are distributed in three-
dimensional space, and thus we are able to use three-dimensional
source models whereas in, for instance RATRAN, even though
photons propagate in three-dimensional space, the source model
needs to be rotational symmetric around the second axis and
mirror symmetric around the first axis. Our points are placed
randomly throughout the entire computational domain, however
with a probability that is weighted by a source model depen-
dent function. This approach is similar to the one described
by Ritzerveld & Icke (2006). We choose to use the molecular
density profile of the source model as a probability distribution
for the grid points, so that we end up with a point distribution
that has particularly interesting properties from a radiation trans-
fer point of view, namely, that the average distance from a point
to its neighbors becomes inversely proportional to the density
and proportional to the local mean free path, since the mean free
path l = (ανρ)−1.

If we at first consider continuum radiation transfer only,
where the absorption coefficient is independent of the radiation
field, αν is constant and the mean free path depends on density
alone. We can thus obtain a grid point distribution where the ex-
pectation value of the neighbor point separation equals the local
mean free path by adjusting the number of grid points in accor-
dance to the dust opacity κν.

Figure 1 shows that the average neighbor distance is pro-
portional to the density over two orders of magnitude. The ar-
bitrary offset between the mean free path graph and the point
separation graph scales with the total number of grid points. The

point separations are seen to deviate from proportionality at radii
smaller than 1012 m (≈7 AU). This is because we impose the
constraint that a certain number of points should be present a
the largest scales and thus it would take an unfeasible number of
points to follow proportionality with the mean free path down to
0.1 AU. The point distribution in Fig. 1 consists of 40 000 points.
LIME offers several different options for sampling the density,
depending on the geometry of the input model, such as uniform
sampling in a rectangular box or logarithmic radial sampling in
a sphere. It is also possible to use a fixed set of points, for in-
stance the cell centers of a tabulated input model or the particles
of an SPH simulation. In this case, the resulting point distribu-
tion may not, of course, scale with the mean free path. In other
cases it may not be desirable to grid according to the molecular
density. If, for instance, the user is interested only in the very
high J-lines of a molecule, it can be useful to grid according to
the temperature distribution, or if the model involves shocks or
outflows, the velocity gradients. In that case however, the grid
does not describe the opacity well, but rather ensures that cer-
tain spatial region are well sampled. It is possible to logically
OR point distributions, so that a grid may be based on both the
temperature and the density, in which case the opacity is also
sampled. In fact, point distributions for each individual opacity
source (e.g., gas and dust) should always be OR’ed to form a
single grid.

If we now consider line radiation transfer, the local ab-
sorption coefficient αν depends on the current level population
through Eq. (3). The local mean free path thus changes with the
radiation field and no longer scales simply with the density, but
rather with the population dependent opacity. Furthermore, the
opacity varies across the line, so photons at different frequen-
cies will have a different mean free path, and therefore the local
photon mean free path is not a well defined property. Despite of
this, gridding according to density turns out to be the best way
to form the grid for line radiation transfer too, simply because
it results in a grid that describes the spatial distribution of the
molecules very well.

When the point distribution has been obtained, the points are
connected by Delaunay triangulation, using the public available
QHull library (Barber et al. 1996). In 2D, the Delaunay triangu-
lation is constructed by connecting any three points that defines
an empty circumcircle, meaning that no other points can lie in-
side the circle defined by a Delaunay triangle. The definition is
valid for all higher dimensions and in 3D the Delaunay trian-
gulation forms tetrahedra out of four vertices. Figure 2 shows
a random point distribution (in 2D) in the left panel with its
Delaunay triangulation shown in the center panel. Also shown,
to the right, in Fig. 2 is the corresponding Voronoi diagram. The
Voronoi diagram is the topological dual of the Delaunay triangu-
lation and one can be constructed from the other. For a discrete
set of generating points P, a Voronoi cell is defined as the region
surrounding the site s ∈ P which contain points that lie closer
to s than to any other generating sites in P. The physical proper-
ties of the grid points (density, temperature, excitation, etc.) thus
represent the entire Voronoi cell associated with that point and
therefore the Voronoi cell can be considered similar to the cells
in traditional codes. As a matter of fact, if we chose a regularly
sampled and unweighted grid point distribution, the Voronoi di-
agram will describe an ordinary Cartesian mesh. One beneficial
property of the Voronoi grid is that it automatically conserves
the mass when mapping a density function. This is difficult to
do on a Cartesian grid because the mass centroids of the cells
are dependent on the cell orientation with respect to the underly-
ing model. Furthermore, because of the random orientation and
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Fig. 2. The leftmost panel shows a random point distribution. In the middle panel, the points have been Delaunay triangulated. The rightmost panel
shows the corresponding Voronoi tessellation.

shape of its cells, Voronoi grids do not suffer from the aliasing
effects which are inherent to regular Cartesian grids.

When the grid points have been distributed throughout the
model domain, it is inevitable, due to the stochastic nature of the
sampling method, that some points end up much closer than the
local separation expectation value and some will be much fur-
ther apart. This results in a Delaunay triangulation that is very
irregular with some triangles being very long and narrow. This
irregularity can be remedied by applied what is known as Lloyds
algorithm (Lloyd 1982; Springel 2010), which iteratively moves
a grid point slightly toward its Voronoi cells center of mass. In
our implementation, each grid point is moved slightly away from
its nearest neighbor for a preset number of iterations. The effect
is illustrated in Fig. 3 for a random 2D sampling of a Gaussian
density profile. The top panels shows the initial unsmoothed dis-
tribution while the lower panels showed the triangulated point
distribution after the smoothing algorithm has been applied. The
plots in the right column show the neighbor distances as a func-
tion of radius. In the smoothed grid, the distances are much less
scattered and follows the Gaussian profile (shown as the light
colored full curve) much more accurately than in the top panel.
The smoothing strategy should not be exaggerated, i.e., moving
the points too slowly and iterating trough too many steps, be-
cause the algorithm will then act as an annealing process and it
will result in a perfectly regular grid where all variations in the
point distribution due to the underlying density field is smeared
out. By doing it right, however, a smooth grid can be obtained
while the underlying density structure is still preserved in the
grid. We have found empirically that by using 25 iterations and
moving the closest neighbors about 10% of the distance away
from each other results in a sufficiently smooth grid that pre-
serves the underlying physical structure well.

During gridding of our source model, we also distribute
a number of points randomly on the surface of a sphere sur-
rounding our model. These points are also Delaunay triangu-
lated and connected to the model grid points, but they do not
represent anything except the surface of our computational do-
main. Whenever a photon reaches one of these sink points, it is
considered to have escaped the model.

3.2. Photon propagation

The photon transport itself goes along Delaunay lines only,
from one point to another, which makes integration of Eq. (1)
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Fig. 3. An unsmoothed (top) and smoothed (bottom) Delaunay grid
based on a Gaussian density distribution. The right hand column shows
the neighbor point separations as function of radius. The yellow lines
are aids to the eye. They show a Gaussian distribution that describes the
density distribution.

particularly simple and very fast. In the three-dimensional
Delaunay triangulation, the expectation value for the number of
lines attached to a grid point is approximately 16 (Ritzerveld &
Icke 2006) and the spatial sampling of Jν is thus limited to this
number of directions. However, we still need to trace a num-
ber of photons along each Delaunay line, not only in order to
sample the frequency band properly, but also because we can-
not conserve momentum stringently with a single photon on this
grid. In principle, a photon passing a grid point from a certain
direction should continue to travel in the exact same direction.
This is in general not possible due to the random orientation of
the Delaunay lines, so instead we choose one of the two outgo-
ing Delaunay lines ((1 and (2) that make the smallest angle with
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Fig. 4. The propagation of photons from one point in one particular ini-
tial direction. As the photons step through the grid they choose the fol-
lowing step by weighing the probability with the inverse angle the direc-
tion makes with the initial direction, i.e., a large angle produces a small
probability of going in that direction. The inset shows the distribution
of photon arriving at the surface. A Gaussian distribution is overplotted
for comparison.

the original direction of the photon. The outgoing line is picked
at random, but weighted by the ratio of the two angles,

p((2) = (∠1/∠2)p((1), (9)

where ∠1 < ∠2. The same procedure is used at all subsequent
grid points (using the original momentum vector to determine
the outgoing direction) until the photons escape the model. By
sending a number of photons along each initial Delaunay line,
we thus probe, not a single line of sight, but rather a cone, while
still conserving momentum on average. An example of the pho-
ton propagation is shown in Fig. 4 for a single point and a sin-
gle direction. Because of the relative low number of photons
needed to probe the spatial directions, we can allow ourself to
increase the number of photons used to sample different frequen-
cies, while we still maintain a low (initial) number of photons per
grid point. The inset in Fig. 4 shows the distribution of the lo-
cation where the photons reach the surface of the grid. This dis-
tribution is reasonably well described by a Gaussian distribution
around the intersection of the original momentum vector and the
surface. The number of initial photons is a user-defined setting,
but as a default value, we use five times the number of neighbor
points, so that each neighbor is initially probed by five photons.
These photons are distributed evenly across a frequency range
of ±3σ with respect to the line center so that the median pho-
ton coincides with the local rest frequency. σ is determined by
the local turbulent velocity dispersion through the user-defined
Doppler b-parameter.

Any given grid point will see more Delaunay connections
coming from high density regions than from low density regions,
simply because the grid point density is higher in high density re-
gions. Because of this inhomogeneity in the angular distribution

Fig. 5. A comparison of Jν between LIME and RATRAN. The small
black dots are the values from the LIME code and the yellow dots are
the cell values from RATRAN. The blue dots in panel d) are also from
a LIME model, but where all the grid points have been distributed ran-
domly over the model domain (with no density weighting).

of Delaunay connection, care must be taken when averaging the
radiation field using Eq. (6). In our implementation, this equa-
tion reduces to a discrete sum

Jν =
1

4π

∑

ν

N∑

i=0

Ii,νωiφ(ν), (10)

where N is the number of Delaunay neighbors. ωi is a weight
that is proportional to the solid angle represented by the i’th
Delaunay line. This angle corresponds strictly to a surface area
on a unit sphere, but we use the area of the Voronoi facet
that corresponds to the Delaunay line as a good approximation
(within 10%).

Figure 5 shows a comparison of Jν between LIME and
RATRAN. The input model is a thin flat disk with a density pro-
file ∝r−1. The radius is 500 AU and the height is 50 AU. The
disk is placed in an ambient low density field, n = 104 cm−3. For
LIME the model is sampled by 8000 points, whereas RATRAN
uses 400 grid cells. The radiation field of first three levels are
shown in panels a)–c) in Fig. 5. The LIME points are shown as
black points and the RATRAN points in yellow. The points for
each transition makes up two distinct populations, an almost hor-
izontal branch and a scattered population below. The tight hori-
zontal distribution of points are the ones that lie inside the disk.
These points are extremely well matched between the two codes.
The scattered population of points are the ones that fall outside
of the disk radius and these are also well matched. The LIME
points in the ambient low density region scatters a bit more than
the corresponding RATRAN points do. This is not a dilution of
the radiation field due to poor spatial sampling or erroneous pho-
ton propagation on the Delaunay grid, but simply because the
LIME grid has a much higher resolution than the RATRAN grid.
The proof of this can be seen in panel d) in Fig. 5 where a sim-
ilar comparison of the J = 3–2 transition between LIME and
RATRAN has been made, but with a LIME grid which is not
density weighted at all, which means that all spatial regions are
equally well sampled. This distribution is indistinguishable from
the one in panel c).
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In LIME we integrate Eq. (1) all the way to the edge of the
model at which point we add the external contribution, in most
cases the cosmic microwave background. This is know as the
method of long characteristics. Another approach exists, known
as the method of short characteristics (Kunasz & Auer 1988;
Auer & Paletou 1994), where photons are only traced to the
neighbor grid cell at which point an interpolated radiation field is
added. Short characteristics could be implemented in LIME with
a possible gain in calculation time. In fact, when we average the
radiation field by splitting the photon packages along two outgo-
ing Delaunay lines, it is reminiscent of the short characteristics
method.

The level populations nl in a grid point, as defined by Eq. (8),
represent the molecular excitation in the entire Voronoi cell as-
sociated with the point. Jν is then the radiation field seen by the
grid point. Following the method of Rybicki & Hummer (1991),
when working with Cartesian grids, the radiation transfer can be
formulated iterative as

Jk+1
ν = Λ[S ν(Jk

ν)], (11)

where S ν ≡ jν/αν is called the source function and k refers to
current iteration. Λ is a matrix in which each element represents
the radiation coupling between each pair of grid points. Thus the
diagonal represents the radiative contribution from the cell itself
while the off-diagonals are the coupling between the cell and
its neighbors. If the entries in the matrix are organized so that
cells that are immediate neighbors lie close to the diagonal, it is
possible to split Λ in the following way

Jk+1
ν = Λext[S ν(Jk

ν)] + Λlocal[S ν(Jk+1
ν )], (12)

whereΛlocal is a di- or triagonal matrix (depending on the imple-
mentation) representing the radiative interaction from the local
neighborhood. This will entirely dominate over the external con-
tribution in high opacity problems . Because the Λlocal matrix is
much easier to invert, this approach is much faster than solving
Eq. (11) directly and this is in essence what is known as acceler-
ated Λ-iteration (ALI) (Rybicki & Hummer 1991).

Because we cannot order the matrix elements ofΛ in a mean-
ingful way, we do not actually construct the Λ operator, but
rather split Jν,total = Jν,local + Jν,ext, separating the radiation field
in the parts that comes from the inside and the outside of the
Voronoi cell for which we are solving the populations (Fig. 6).
This split results in a solution to Eq. (1) that looks like the fol-
lowing,

Jν = Iνe−τ + S ν(1 − e−τ). (13)

Because S ν is a function of jν and αν, which are evaluated using
the populations in the previous iteration, this method is similar
to ALI. τ is the opacity of the cell itself, so that if ds denotes the
distance from the grid point to the Voronoi face τν = ανds. In
the case where the face of the Voronoi cell is located exactly one
mean free path away from the grid point,

τν = αν(ανρ)−1 ∝ 1/ρ. (14)

This is exactly the condition we are striving to obtain by gridding
according to the density as described in Sect. 3.1. Of course, the
mean free path is frequency dependent, as discussed above, and
therefore we can only achieve a condition where τ scales with
inverse of the density. The populations ni can now be obtained
from the current Jν by solving the linear set of equations given
by Eq. (8),

Fig. 6. The radiation field seen by a grid point i is split into a local part
Jlocal that originates from within the i’th Voronoi cell and an external
part Jext that originates from outside the i’th Voronoi cell. The size of
the Voronoi cells, i.e., the region in which the radiation is considered
“local”, scales with the inverse of the density.

3.3. Convergence

One of the key problems when obtaining an equilibrium solu-
tion iteratively is to decide when the solution has converged.
There are many ways in which we can check for convergence,
but it is necessary to find a method that applies to all models
and molecules. It is important that the code does not quit pre-
maturely before the model has actually converged, but on the
other hand, it should not continue indefinitely because of minor
random fluctuations in a single grid point somewhere. Given a
sufficiently large number of grid points, the random nature of
the code implies that some points will always deviate from the
equilibrium populations. In LIME we therefore use a statistical
criterion, and let the user decide how many iterations he or she
will let the code run. We have found empirically that 15–20 it-
erations a good value for most models and the default is thus set
to 20. This can however easily be adjusted by the user according
to preference and the problem at hand.

Figure 7 shows, as an example, the convergence history of
a single grid point in a test run. Panel a) shows the signal-to-
noise ratio of the current iteration, where the signal is the current
population and the noise is the standard deviation of the previous
five iterations (shown in panel b),

S/N =
n

√
1
5

∑5
j=0(n j − n̄)2

, (15)

for each level. The signal-to-noise ratio is seen to increase and
then level out after about 10 iterations. It does however level out
at different values for the different levels which makes it diffi-
cult to fix a certain value to reach. Also, the signal-to-noise ratio
fluctuates a lot (notice the log scale) which again makes it hard
to decide whether or not the solution is stable. In panel c) we
can see the populations averaged over the previous 5 iterations,
and from this plot it is quite obvious that a stable solution (for
this grid point) has been reached after the 12’th iteration. The
derivative of this curve is shown in panel d).

Because the signal-to-noise fluctuates randomly from one
iteration to the next and the range in signal-to-noise values is
large, we have chosen to consider the distribution throughout
the entire model. The median value of this distribution tells us
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Fig. 7. This figure shows the convergence history of a single grid point in a LIME run. Different colors refers to the quantum states 0–7. Panel a)
shows the signal-to-noise ratio of the current iteration. Panel b) shows the standard deviation, calculated from the previous five iterations. Panel c)
shows the average population over the previous five iterations and panel d) shows the derivative of the populations.

about how well converged the model is in general. We also con-
sider the minimum value for the signal-to-noise for all levels
and grid points. Figure 8 shows the signal-to-noise distributions
for the energy levels 0–6 individually and for all levels with a
fractional population higher than 10−12. We use this cut-off, be-
cause levels which are less populated only add unwanted noise.
The differently colored histograms show the distributions with
increasing iteration number. On top of the distributions, the cor-
responding median values are marked. All medians are seen to
increase with increasing iterations with the median of the least
converged level 2 ending up at a signal-to-noise of 200 already
at iteration 16. Still, the lowest signal-to-noise value of the entire
model is as low as 20, which means that for that particular level
we make an error of at most 5%. We find this acceptable and
therefore stop the calculation at this point. However, for better
confidence, more photons and iterations can be used at the cost
of calculation time.

Another test which the user can perform in order to evaluate
the convergence, is to plot the spatial distribution of the 10%
least converged points (or, for instance, all points with a signal-
to-noise less than 100) and make a statistical comparison with
the global point distribution to see if the least converged points
in any way are associated with particular regions of the model or
if the least converged points simply are a random subset to the
entire grid.

One particular situation that the user should be aware of
is the very highly opaque regime. In this regime the radiation
transfer problem becomes similar to the diffusion problem and
this can cause a very slow drift of the populations toward the

correct solution. This drift may be so slow that the populations
seem converged and this problem is inherent to radiation transfer
codes.

3.4. Ray-tracing

After convergence has been reached, the code ray-traces lines
of sight through the model in order to obtain an image cube of
the radiation that escapes from the surface. The user provides
the information on the source distance, source velocity, source
orientation, and image resolution and units. The orientation pa-
rameters are slightly more complicated than for 2D codes, where
an inclination and position angle are enough to set the source ori-
entation. In LIME we also have a source rotation which allows
us to view a 3D model from any direction, using the matrix

Rθ,φ =




cos(φ) 0 − sin(φ)
sin(θ) sin(φ) cos(θ) sin(θ)cos(φ)
cos(θ) sin(φ) − sin(θ) cos(θ)cos(φ)


 , (16)

where θ is the traditional inclination (0: face-on, π/2: edge-on)
and φ is the azimuthal rotation. Rotation in the image plane is
done afterwards, simply by rotating the image cube.

For the raytracing we let the photons move in straight lines,
rather than jumping from grid point to grid point. In this part of
the code we therefore do not make use of the Delaunay triangu-
lation but rather the Voronoi diagram. The entire volume of the
Voronoi cell is represented by the populations of the correspond-
ing grid point and so integration of Eq. (1) becomes a matter
of stepping through the source model and figuring out in which
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Fig. 8. Distributions of signal-to-noise ratios in a test run for energy levels 0–6 as well as for all significantly populated levels. The color coding
refers to different iteration number. The thin vertical lines mark the median of the distributions.

Voronoi cell the photon is. From an algorithmic point of view,
this comes down to a simple sorting, not of thousands of cells,
but only of, on average, the 16 neighboring cells. The step size
is chosen as a fraction of the cell size in order to avoid acciden-
tally missing a cell by stepping over it. Also, we need to sample

variations in the velocity field across the cell in order to get a
smooth spectrum. This is a very fast process compared to mov-
ing through a regular grid, but not as fast as moving along the
Delaunay lines, which is why this transport method is not used
when determining the level populations.
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Fig. 9. The model setup for the 1D collapse benchmark test.

Apart from the images, which are output in standard FITS
format, LIME can output a number of model diagnostics that are
also obtained during the ray-tracing. This includes the opacity
and intensity per Voronoi cell as seen along the line of sight. This
information can be used to plot the τ = 3 surface and identify
the origin of the radiation for various transitions and tracers. It
is also possible to dump the grid to a text file together with the
populations and physical quantities so that the grid structure and
excitation temperature as well as the input model itself can be
explored visually.

3.5. Benchmark: 1D collapse model

A standard problem in radiation transfer benchmarking is the
spherical Shu-collapse model (Shu 1977). This model describes
a gaseous envelope that undergoes a gravitational inside-out col-
lapse to form a protostar. In this example we use the particular
formulation of the problem found in the code comparison project
by van Zadelhoff et al. (2002) so that we may compare our re-
sult to those of the codes that participated in that project2. The
molecule in consideration is HCO+. Eight different codes were
tested against each other, both in terms of performance and their
solutions to the problem. In the present test we will only com-
pare the solutions because hardware and compilers have changed
too much in the last ten years for a performance comparison to
make sense.

The model is already provided as a logarithmically spaced
table describing 50 grid cells, shown in Fig. 9. Since LIME does
not use regular grids, we interpolate this table and sample it ran-
domly. For the comparison of solutions we have made a plot
of the fractional level populations after convergence has been
reached. There are two problems, denoted 2A and 2B in the pa-
per by van Zadelhoff et al. (2002), corresponding to an optically
thin and thick case. The fractional abundance of HCO+ is 10−9

and 10−8 respectively. We show the result of both tests in Fig. 10.
In this figure the fractional population of the ground state and
the first four excited levels are shown. All eight codes partici-
pating in the RADTRANS comparison project agree very well.
We have included only three of the eight solutions here (Doty,
Dullemond, and Juvela) as well as the solution of RATRAN in its
present version. The black fluctuating line is the LIME solution
and is seen to agree very well with the established codes. In our
3D code, two points may be at the same distance from the center,
but separated by a large angle and they may not be radiatively

2 http://www.strw.leidenuniv.nl/astrochem/radtrans
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Fig. 10. Comparison of solutions to a 1D collapse model between dif-
ferent codes. The blue, red, and green curves are different solutions
from the RADTRANS code comparison project. The yellow curve is
the RATRAN solution and the black line is the solution from LIME.

connected, especially not in high opacity models. These grid
points may not see exactly the same radiation field because of
the random nature of the grid and photon transport and therefore
the level populations may not necessarily be exactly the same.
There are no fluctuations in the results of the 1D codes because
only a single cell with a single solution exist at a given radius.
If we take the RATRAN solution to be the expected solution we
can calculate reduced χ2 values,

χ2 =
1

N − 1

∑ (n(r)LIME − n(r)RATRAN)2

σ2 (17)

for each of the 6 levels of the LIME solution which gives us
χ2

l=0...5 ≈ {1.08, 1.11, 1.02, 1.17, 1.00, 1.00} for the optically thin
case and χ2

l=0...5 ≈ {1.06, 3.12, 1.03, 2.08, 1.28, 1.15} for the opti-
cally thick case. The comparison is slightly worse for the opti-
cally thick case, but here we also see greater variation between
the established codes.

4. Example

The example we present is a typical 2D hydrostatic protoplane-
tary disk model with a cold and dense mid-plane. Such models
are numerously found in the literature (e.g., Chiang & Goldreich
1997; Dullemond & Dominik 2004; Robitaille et al. 2006) but
here we use a simple analytic toy model for illustrative purposes.
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Fig. 11. Visualization of the upper right quadrant of the disk model described in Sect. 4. Panel a) shows the H2 density with the insert showing the
gap (shell) carved out around 5 AU. Panel b) shows the temperature and c) shows the molecular density which has a discontinuity around 90 K
where water freezes out. The last panel, d), shows a cut through the grid, color coded according to the density.

The density structure is given by

n(r, z) = n0(r/r0)−1.5e−(z/h)2
, (18)

where

h =

√
2T kB r3

GM∗
· (19)

We consider HCO+, H2O, and CH3OH gas at a fractional abun-
dance of 2×10−9 with respect to the H2 density. With these three
species we illustrate the possibility of utilizing a large dynamic
range in scales (HCO+), very opaque models (H2O), and multi-
ple overlapping lines (CH3OH).

The temperature is given by a power-law

T (r) = T0(r/r0)−0.5. (20)

In a more realistic model the temperature would be calculated
self-consistently based on the radiation properties of the cen-
tral source and the temperature would drop toward the mid-
plane because this region would be shielded from stellar ra-
diation by the upper layers of the disk. In our example we
mimic this effect by lowering the temperature in a wedge
shaped region around the mid-plane to 20 K. By letting wa-
ter freeze out at temperatures below 90 K, we can simulate a
complex abundance structure often used in protoplanetary disks

(Jonkheid et al. 2007; Woitke et al. 2009). The disk extends to
500 AU and the values for n0 and T0 are 108 cm−3 and 90 K at the
radius of 100 AU. In addition we have added a 2 AU wide gap
around a radius of 5 AU from the center. The disk is in Keplerian
rotation. Figure 11 shows the density, temperature, and H2O den-
sity of our disk. Of other parameters that describes the disk are
the turbulent velocity dispersion set to 150 ms−1, stellar mass
of 1 M), and a gas-to-dust ratio of 100. We use thin mantled
grains with 107 years of coagulation and the resulting disk mass
is 0.02 M).

To break the azimuthal symmetry and make the model fully
3D, we have placed a protoplanetary condensation in the gap.
The protoplanet has the same qualitative properties as the one
described in Narayanan et al. (2006). The protoplanet has been
modeled by placing a spherical distribution of grid points at the
desired spot and giving the grid points an H2 number density of
2×1015 cm−3, which, given a radius of 1000 Jupiter radii, results
in a mass of about 1.4 MJ . The temperature of the condensation
is kept at 150 K.

Using this setup we have first made an edge-on view of
the grid, which can be seen in panel d) of Fig. 11. The grid
points (and their connections) are color coded according to den-
sity, where blue is lower density and red is higher density. The
number of grid points in this simulation is 104 for the disk
and 5000 for the planet. The disk is clearly seen to stand out
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Fig. 12. The LIME output (left column) and corresponding ALMA simulations (right column) of the disk model example presented in Sect. 4.
Panels a) and b) show the disk face-on in HCO+ J = 7–6, panels c) and d) show the disk edge-on in H2O J = 313–220, and panel e) shows the
average A- and E-CH3OH spectrum as well as a couple of SO2 lines which falls in this window. Panel f) is an ALMA simulation similar to the
one in panel d), but for only 6 antennas. The ALMA simulations shown in panel b) and d) corresponds to 2 h tracks with the full array. The noise
level in both simulations is about 2.5 × 10−7 Jy beam−1. The simulation in panel f) is for a much more compact ALMA configuration with a noise
level of 0.2 × 10−7 Jy beam−1.

in red, whereas the gap or the planet at 5 AU cannot be seen.
The grid is written out in the beginning of the simulation and
can be explored in 3D using readily available open-source tools
(e.g., paraview3).

3 http://www.paraview.org

Panel a) of Fig. 12 shows the integrated HCO+ J = 7–6
emission as predicted by LIME. This line has the frequency
624.2 GHz and falls in the ALMA band 9. The model is, in
this case, viewed face-on and placed in the distance of 100 pc
corresponding to the typical distance to the closest disks. The
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resolution of the image is 0.005′′, which is about an order of
magnitude higher than the best ALMA resolution. In the insert,
we have zoomed in on the inner most 10 percent of the disk,
where the protoplanet can be seen as a small dot inside the ring-
shaped gap. The intensity variations across the innermost parts
of the disk are due to the grid structure and not a property of the
model. Such fluctuations are unavoidable when using random
grids, but can be remedied by smoothing the image or adding
more grid points in the affected regions. Panel b) shows the same
image, but using the ALMA simulator (i.e., the simData task in
the ALMA off-line data reduction package CASA) to generate
simulated (u, v)-spacings and realistic noise. The present sim-
ulation is for a two hour exposure in a very extended ALMA
configuration. Given that the mean distance between grid points
on the surface is less than 0.01 AU, this simulation spans almost
5 orders of magnitude in scales.

In the panels c), d), and f) of Fig. 12 we have flipped the disk
so that we view it edge-on. In panel c) we show a model image
for 183.3 GHz para-H2O J = 313–220 emission. This line falls
in the ALMA band 5 and it is the only water transition avail-
able to ALMA. Only 6 band 5 receivers are planned so far, but
here we show simulations of both a full array of band 5 receivers
(panel d) and for the 6 planned receivers (panel f). In this edge-
on view we see the lack of molecules in the mid-plane due to the
simulated freeze-out. Both the LIME model and the ALMA sim-
ulations has been continuum subtracted so that the water emis-
sion stands out. In the case of a full array of band 5 receivers
(panel d), the water emission is resolved spatially. This is not the
case when using only 6 antennas for the simulation (panel f) be-
cause the antennas needs to be placed in a much more compact
configuration.

This is a very highly opaque model, with the optical depths
going up to several thousands. This is handled quite well by
LIME although convergence takes 2–3 times more iterations
than for HCO+. Because of the relative low abundance in this
disk model, the water line does not maser in this particular ex-
ample. Care should be taken when modeling potential maser
lines with LIME because it does not handle masering accurately.
LIME will produce a warning if the populations get inverted.

The final example shows the multi-line ray-tracing capabil-
ity of LIME. Here we calculate the spectrum of both flavors of
methanol (type A and E) and SO2 around 338 GHz. We use the
same disk model setup as above, but the lines are optically thin
and we show the average spectrum over the disk so that result
is relatively geometry independent. Figure 12 panel e) shows
the resulting spectrum in a 2 GHz windows centered around
338 GHz. In reality, methanol has many more lines in this win-
dow than what are shown here, but we are limited to the transi-
tions for which the collision rates are know.

5. Conclusions

In this paper we have presented a new algorithm for solving
the molecular excitation and radiation transfer problem in an

arbitrary three dimensional geometry. The code uses a weighted
stochastic point process to generate a random grid point distribu-
tion and its corresponding Delaunay triangulation on which the
photon transport takes place. The code is well suited for calcu-
lating models with a large density contrast, which is particularly
important for models of ALMA observations with a very high
spatial resolution. Furthermore our code handles overlapping
lines which is also going to be needed for proper modeling of
ALMA data. Although emphasis has been put on making LIME
capable of modeling ALMA data, the code is also well suited
for modeling data from other (sub-) millimeter interferometers
(e.g., SMA and CARMA) as well as data from single-dish ob-
servatories (e.g., JCMT, APEX, Herschel Space Observatory).

In this paper we show a comparison between the LIME code
and a number of other molecular excitation and radiation transfer
codes and we have applied LIME to a model of a protoplanetary
disk with a protoplanetary condensation.
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