

MCRT in galaxies with SKIRT

Peter Camps Astronomical Observatory, Ghent University peter.camps@ugent.be

Saint Andrews Monte Carlo Summer School 2015

Peter Camps

Academic (Ghent University)

- 1980: Master Engineering
- 2011: Bachelor Physics & Astronomy
- 2012-current: PhD student (Maarten Baes)

Commercial (30 years in between)

- commercial software development
- international management
- technical software (e.g. PDF editing)
- small teams (1 to 20)

Overview

MCRT in galaxies with SKIRT

- Dust in galaxies
- SKIRT features and code design
- Energy balance in galaxies
- Automated galaxy modeling

MCRT post-processing of hydrodynamic snapshots

- Stochastic heating of dust grains
- Dust grids: regular, hierarchical, unstructured
- Importing hydro snapshots: AMR, SPH
- FIR properties of galaxies in a cosmological simulation

Dust in galaxies

Section A-1

Interstellar dust

Minor fraction of the interstellar medium

• Dust-to-gas ratio is usually less than 1%

But a crucial constituent

- Extinction: up to 50% of the radiation emitted by stars is absorbed or scattered by interstellar dust
- Infrared emission: absorbed energy is released as thermal radiation
- Regulates the physical and chemical conditions of the interstellar gas (e.g. formation of molecules)
- Plays a key role in the formation of stars and planetary systems

Interstellar dust

Origin

- Birth in evolved stars with extended shells; possibly also in novae and supernovae
- Accretion of gas atoms and coagulation of grains in cold clouds

Destruction

- Star formation, hot gas, shocks
- Sputtering by high energy radiation
- Evaporation at high temperature
- Shattering in grain-grain collisions

Interstellar dust

Composition

- Graphite (amorphous carbon)
- Silicates: amorphous or crystalline
 - » e.g. Enstatite (MgSiO₃), Forsterite (Mg₂SiO₄)
- PAH molecules (polycyclic aromatic hydrocarbon)

- 1/3 nm (a few atoms) up to 1/3 micron
- "Logarithmic" size distribution
- Irregular shapes

Extinction curve

Absorption and scattering

Two sink terms (extinction processes) to be considered in dust RT:

- absorption: dust grain absorbs the radiative energy (the photon) and converts it to internal energy
- **scattering:** dust grain changes the propagation direction of a photon

Absorption and scattering can be characterized by the absorption and scattering coefficients (depend on the size, shape and chemical composition of the dust grains)

$$\kappa_{\lambda} = \kappa_{\lambda}^{\mathrm{abs}} + \kappa_{\lambda}^{\mathrm{sca}}$$

Scattering phase function

Scattering redirects photons into another direction, so it is both a sink and a source term.

The phase function $\mathcal{O}_{\lambda}(\mathbf{k},\mathbf{k}')$ describes the probability that a photon coming from direction \mathbf{k}' will have \mathbf{k} as its new propagation direction.

Scattering off dust grains is anisotropic and generally forward. The scattering function typically depends only on the angle between incoming and outgoing direction.

Henyey-Greenstein phase function

The most widely used phase function = Henyey-Greenstein phase function

$$\Phi_{\lambda}(\cos \alpha) = \frac{1}{4\pi} \frac{1 - g_{\lambda}^2}{(1 + g_{\lambda}^2 - 2g_{\lambda}\cos \alpha)^{3/2}}$$

Contains one free parameter: the asymmetry parameter g_{λ} ,

$$g_{\lambda} = \int \Phi_{\lambda}(\cos \alpha) \cos \alpha \, \mathrm{d}\Omega$$

The asymmetry parameter g_{λ} , can be defined for any phase function, but the HG phase function contains it as an explicit parameter.

- $g_{\lambda} = 0$: isotropic scattering
- $g_{\lambda} = 1$: completely forward scattering
- $g_{\lambda} = -1$: completely backward scattering

How to trace interstellar dust (1)

Model the extinction

- Stellar emission
- Absorption and multiple anisotropic scattering by dust

Issues

- 6 dimensions (3 position, 2 direction, 1 wavelength) even when assuming time-independence
- Non-local
- Non-linear
- Complicated geometry (3D, inhomogeneous...)
- Optical properties of the dust are poorly known

How to trace interstellar dust (2)

Energy balance: dust grains emit the energy they absorb

$$\int_0^\infty \kappa_\lambda^{\rm abs} J_\lambda \, \mathrm{d}\lambda = \int_0^\infty \kappa_\lambda^{\rm abs} B_\lambda(T_{\rm d}) \, \mathrm{d}\lambda$$

Realistic values in the interstellar medium yield temperatures of 15-30 K. The corresponding emission peaks in the far-infrared or submm range (on the order of 100 μm).

Interstellar dust effectively converts optical/UV starlight to FIR/submm emission.

M51 with IRAS

M51 with ISO

M51 with Spitzer

M51 observé dans l'infrarouge lointain avec Spitzer - 2003 Ø du miroir: 0,8m

70 µm

100 µm Longueurs d'onde 160 µm

M51 with Herschel

Dust heating in spiral galaxies

Bulge luminosity

Optical depth

M31 SED

Questions ?

SKIRT features and code design

Section A-2

www.skirt.ugent.be github.com/skirt

Key features

Monte Carlo continuum radiative transfer

- Absorption, scattering, and re-emission by dust
- Self-consistent calculation of dust temperature
- Stochastic heating of dust grains

Acceleration techniques

- Biased emission, forced scattering, continuous absorption, peel-off towards instruments
- Hybrid parallelization (shared & distributed memory)

Arbitrary geometries & properties for stars and dust

- Many built-in components, configured at run-time
- Import snapshot from hydrodynamic simulation

Application focus

Compare models to observations

Images and emission spectrum

Dust in spiral galaxies

- Geometry and structure
- Energy balance
- Scaling relations

Other applications

- Dust torus in active galactic nuclei
- Molecular clouds
- Dusty outflows from (binary) stars

Infrastructure

- Open source
- Published on GitHub (github.com/skirt)
- Fully documented (www.skirt.ugent.be)
- Written in C++11 (75000 lines in 300 classes)
- Uses Qt 5.x libraries and tools
- Optional use of MPI (multi-node parallelization)
- No other dependencies
- Well tested
 (200+ regression test cases)

Configurable built-in options

skirt

skirt <ski-filename>

Command-line interface

Welcome to SKIRT v7 (git 525-a714d03 built on Aug 5 2015 Running on obiwan.ugent.be for pcamps Interactively constructing a simulation... ? Enter the name of the ski file to be created: test Possible choices for the simulation: 1. An oligochromatic Monte Carlo simulation 2. A panchromatic Monte Carlo simulation ? Enter one of these numbers [1,2] (1): 2

 Q&A session to create configuration file

<PanDustSystem writeDensity="true" dustEmission="true" transient="false" selfAbsorption="false">

- XML-based configuration file
 - Easy to adjust in editor
 - Upgradable by automatic process

Simulation structure

Instruments

Instrument name	SED	Frame	Sources Separated
DistantInstrument			
SEDInstrument	 Image: A set of the set of the		
FrameInstrument		 Image: A set of the set of the	
SimpleInstrument	 Image: A set of the set of the	 Image: A second s	
FullInstrument	 Image: A second s	 Image: A second s	 Image: A set of the set of the
PerspectiveInstrument		v	
Geometries

Basic (often symmetric)
Point
Plummer
Gamma
Sersic
Einasto
Shell
Ring
Torus
Exponential disk
Cuboid
Multi-Gaussian expansion

Hydro snaphots
AMR (adaptive mesh)
SPH (smoothed particles)

Decorators
Offset
Rotation
Spheroidal distortion
Triaxial distortion
Spherical cavity
Cylindrical cavity
Сгор
Add spiral arms
Make clumpy
Combine

Anisotropic sources Laser Netzer accretion disk Spherical surface Spherical background

- A geometry defines a spatial density distribution
- All geometries can be used for both stellar and dust distributions
- Decorators serve to adjust and combine other geometries

 Decorators can be nested to arbitrary levels

Geometries

Stellar SEDs

SED
Black Body
Sun
Pegase
Quasar
Maraston
Kurucz
Bruzual-Charlot
Starburst (Mappings)
File

SED family

- Bruzual-Charlot
- Starburst (Mappings)

 An SED is assigned to each stellar geometry

Bruzual & Charlot 2003

 An SED family allows each particle/cell in an imported hydro snapshot to be assigned its own spectrum based on its properties (e.g. metallicity, age)

Dust properties

Turn-key dust mixture

Draine & Li 2007

MRN

Weingartner & Draine

Zubko et al.

Grain composition	Grain size distribution	
Graphite	LogNormal	
Silicate	PowerLaw	
Ionized PAH	ModifiedPowerLaw	
Neutral PAH	SingleGrain	
Enstatite	Zubko	
Forsterite		

Configurable dust mixture

- A dust system can have multiple dust components, each with its own geometry and dust mixture
- Turn-key dust mixtures include pre-configured properties
- The configurable dust mix allows specifying grain composition and size distribution in detail

Software architecture

Complex configuration

- » Many built-in options
- » Nontrivial structure (iteration, nesting)

How to deal with this?

Scientific codes can benefit from careful object-oriented design

A non-graphical user interface can be friendly

Design goals

Single point of definition

• Define user interface properties with the program logic

Data-driven user interface

Have the user interface adjust automatically as new features are added

Structured parameter file

 Use human-readable self-documenting format that supports iteration and nesting

Modularity

 Minimize dependencies through appropriate interfaces and data encapsulation

Single point of definition in the code

```
class ClumpyGeometry : public Geometry
{
   Q_OBJECT
   Q_CLASSINFO("Title", "a geometry that adds clumpiness to any geometry")
   Q_CLASSINFO("Property", "geometry")
                                                                          Property
   Q_CLASSINFO("Title", "the geometry to which clumpiness is added")
                                                                            name
   Q_CLASSINFO("Property", "clumpFraction") =
   Q_CLASSINFO("Title", "the fraction of the mass locked up in clumps")
   Q_CLASSINFO("MinValue", "0")
   Q_CLASSINFO("MaxValue", "1")
                                                                  Human readable
                                                                        title
public:
   Q_INVOKABLE void setGeometry(Geometry* value);
   Q_INVOKABLE Geometry* geometry() const;
                                                                     Value
   Q_INVOKABLE void setClumpFraction(double value);
                                                                  restrictions
   Q_INVOKABLE double clumpFraction() const;
};
                         Data type
```

\$ skirt **Data-driven** ? Enter the name of the ski file to be created: spiralgalaxy Possible choices for the simulation: 1. An oligochromatic Monte Carlo simulation "Q&A" user 2. A panchromatic Monte Carlo simulation ? Enter one of these numbers [1,2] (1): 1 interface Possible choices for the units system: 1. SI units 2. Stellar units (length in AU, distance in pc) 3. Extragalactic units (length in pc, distance in Mpc) ? Enter one of these numbers [1,3] (3): ? Enter the number of photon packages per wavelength [0,2e13] (1e6): 1e7 Possible choices for the wavelength grid: 1. A list of one or more distinct wavelengths Automatically selected the only choice: i Allowed range ? Enter the wavelengths [0.0001 micron, 1e6 micron]: 0.55 Possible choices for the stellar system: and default units 1. A stellar system composed of various stellar components 2. A stellar system derived from an SPH output file . . . ? Enter one of these numbers [1,4] (1): 1 . . . Possible choices for the geometry of the dust component: 1. A point source geometry Choices derived from 2. A Plummer geometry source code data 9. An exponential disk geometry **Default value** ? Enter one of these numbers [1,26] (9) 9

XML-based parameter file

Run-time structure of simulation

Run-time hierarchy and parameter file have identical structure

Camps & Baes 2015 Baes & Camps 2015

Conclusion

SKIRT

- Is a state-of-the art dust continuum RT code
- Offers a large suite of built-in components
- Includes a flexible configuration mechanism
- Allows easily adding new components

All (scientific) codes

- Can benefit from careful object-oriented design
- Can offer a friendly user interface (even if not graphical)

Questions ?

Energy balance in galaxies

Section A-3

Panchromatic modeling

Inverse radiative transfer

Construct a 3D model for the stars and dust that can self-consistently reproduce observations from UV to submm wavelengths.

Case study: Sombrero galaxy (NGC 4594)

NGC 4594

Construct a model reproducing the optical image; in particular the minor axis intensity profile V-band image

V-band model

De Looze et al. 2012

Energy balance study for NGC 4594

- Generate full SED from model
- Add young stars to match UV data
- We need an extra component of 17 K dust to explain the submm emission
- The dust seems to emit 3 times more energy than it absorbs

Case study: NGC 4565

Energy balance study for NGC 4565

Construct a model fitting images in multiple bands from UV to infrared

De Looze et al. 2012

NGC 4565

- Generate full SED from model
- Discrepancy at UV/ FIR
- Add star formation constrained by NUV and MIR
- Still deficit of factor 3-4

De Looze et al. 2012

The dust energy balance problem

- For some (not all) edge-on spiral galaxies
 - » the dust mass estimated from extinction is 3 or 4 times smaller
 - » than the dust mass estimated from emission in FIR/submm
- However, our models are smooth, unlike real galaxies
 - » Large-scale structure: bars, spiral arms
 - » Small-scale structure: granularity, filaments, star forming regions, compact dust clumps
- Better models?
 - » Models with large-scale structure (spiral arms, large clumps) fail to resolve the discrepancy (e.g. *Misioriotis et al. 2000, 2002*)
 - » What about small-scale structure? Test this hypothesis using galaxies created in hydrodynamical simulations...

Input models from hydrodynamical simulations

R13 (Renaud et al. 2013)

Eris (Guedes et al. 2011)

Cut through the dust density distribution in the equatorial plane of each galaxy

Fitting results **R13** Eris Reference images Reference images Fitted images Fitted images R13 (head) The RT model

Conclusion

Fitting a smooth galaxy model to realistic input models from hydrodynamic simulations underestimates the total dust mass by a factor of about 3.

This suggests that the inhomogeneous small-scale structure of galaxies may be the source of the dust energy balance problem.

In other words, it suggests that the clumpy structure keeps a large amount of dust from being observed through extinction in the optical wavelength range.

Questions ?

Automated galaxy modeling

Section A-4

Automated inverse radiative transfer

Objective

 Automatically find optimal model parameters by coupling a radiative transfer code to an optimization process

Complications

- Large number of model parameters to be fitted
 - » Intrinsic star & dust geometry
 - » Orientation
 - » Dust properties
- Run-time for a single RT simulation (i.e. a single point in the multi-dimensional parameter space) is considerable
- Monte Carlo noise makes fitting more complicated

Automated parameter fitting

Poisson noise on Monte Carlo simulations prevents standard fitting and complicates simulated annealing

Genetic algorithm:

- Poisson noise averages out over population
- Uniformly samples parameter space
- More easily tests distant global maximum

De Geyter et al. 2012

FitSKIRT

- Automatically fits parametric 3D models to a set of UV/ optical/NIR images
- Searches the parameter space using a genetic algorithm
- Uses SKIRT to evaluate each individual against the data

De Geyter et al. 2012

Automated oligochromatic fit of NGC 4013

- Monochromatic fitting (single-wavelength) shows degeneracy in dust properties
- Improved by oligochromatic fitting (multiple wavelengths)
 - » Simultaneous fit in multiple bands (5 in this case)
 - » 11 parameters: stellar disk & bulge, dust disk

De Geyter et al. 2013

.

COLUMN TWO IS NOT

u

Z

Case study: CALIFA edge-on spiral galaxies

- 12 edge-on spiral galaxies selected from the CALIFA sample
- Oligochromatic g, r, i and z-band fitting
- Star and dust geometry?
- Face-on optical depth?

De Geyter et al. 2014

CALIFA - fitting accuracy

CALIFA case study conclusions

- Sample of 12 edge-on spiral galaxies from CALIFA survey
- Reasonable accuracy on frame reproduction and parameter determination
- Values for stellar parameters and dust properties similar to those found by others
- Dust disks about 70% more extended than stellar disks, and about half as thick
- Large spread within sample for face-on optical depth, up to τ=3 i.e. fairly opaque!

Questions ?

MCRT post-processing of hydrodynamic snapshots

Peter Camps Astronomical Observatory, Ghent University peter.camps@ugent.be

Saint Andrews Monte Carlo Summer School 2015

Overview

MCRT in galaxies with SKIRT

- Dust in galaxies
- SKIRT features and code design
- Energy balance in galaxies
- Automated galaxy modeling

MCRT post-processing of hydrodynamic snapshots

- Stochastic heating of dust grains
- Dust grids: regular, hierarchical, unstructured
- Importing hydro snapshots: AMR, SPH
- FIR properties of galaxies in a cosmological simulation

Stochastic heating of dust grains

Section B-1

Emission from a dust mixture

- Thermal emission depends nonlinearly on grain size *a*
 - » For each dust type k, split the grain size range into b bins
- Emissivity when exposed to radiation field J(λ): (according to Kirchhoff's law of thermal radiation)

Emission in LTE conditions

$$\varepsilon(\lambda) = \sum_{k,b} \varsigma_{k,b}^{\text{abs}}(\lambda) \int_0^\infty P_{k,b,J}(T) B(\lambda,T) \, \mathrm{d}T$$

• If representative grain is in local thermal equilibrium (LTE) with the surrounding radiation, we have:

$$P_{k,b,J}(T) = \delta(T - T_{k,b,J}^{eq})$$

 where the equilibrium temperature is determined from the energy balance equation

$$\int_{0}^{\infty} \varsigma_{k,b}^{abs}(\lambda) J(\lambda) \, d\lambda = \int_{0}^{\infty} \varsigma_{k,b}^{abs}(\lambda) B(\lambda, T_{k,b,J}^{eq}) \, d\lambda$$
Absorbed energy
Emitted energy

Non-LTE conditions

- If a single photon can significantly change the internal energy of a representative grain, the grain is not in local thermal equilibrium (LTE) with the surrounding radiation
 - » The grain is stochastically heated

- This is more likely for:
 - » Small grains or molecules
 - » Hard radiation (high-energy photons)
 - » Weak fields (fewer photons)

Emission in non-LTE conditions

$$\varepsilon(\lambda) = \sum_{k,b} \varsigma_{k,b}^{\text{abs}}(\lambda) \int_0^\infty P_{k,b,J}(T) B(\lambda,T) \, \mathrm{d}T$$

- We need to solve for the temperature probability distribution $P_{k,b,J}(T)$, which depends on the radiation field $J(\lambda)$ in addition to the properties of the representative grain of bin k,b
- This is computationally very demanding
 - » RT codes routinely need to calculate many millions of dust emission spectra so performing a full statistical treatment would be prohibitive
 - » We assume that a dust grain cools by radiating photons with an energy that is very small compared to the internal energy of the grain
 - » Using this continuous cooling assumption, the complexity can be reduced to $O(N^2)$ where N is the number of temperature grid points
 - » Still challenging in near-equilibrium regimes where the probability distribution approaches a delta function (requiring a very fine grid)

Temperature probability functions

- For large grains, P(T) $\rightarrow \delta(T_{eq})$, so calculation becomes unstable
- Cutoff point for switching to equilibrium calculation is subject to debate

Dust emission in typical ISRF

- Assumptions
 - Interstellar radiation field (ISRF) as observed in solar neighborhood (Mathis et al. 1983)
 - Simple dust model approximating Milky Way observations
- We see that
 - » SHGs shift emission to shorter wavelengths (up to factor 10 or more)
 - PAH emission features sharp peaks in wavelength range 3-20 µm

Dust emission for a range of embedding fields

- weak to strong
 - continuum peak shifts
- soft to hard
 - SHG emission increases

Camps et al. 2015

Stochastically heated grains benchmark

- Compare SHG emission calculations in the context of RT
 - » Reference solution by non-RT code + 6 RT codes
 - » Precisely defined dust model
 - » 17 input fields ranging from weak to strong, soft to hard
- Explain differences and provide guidelines for implementation
 - » For all but the most extreme input fields, we find agreement within 10% across the important wavelength range 3 μ m $\leq \lambda \leq$ 1000 μ m
 - » A lot of algorithmic and discretization details must be handled with care to achieve this level of accuracy with acceptable performance
 - » Transition from stochastic to equilibrium
 - » Grids for temperature, wavelength, grain size
 - » Can calculate several hundred spectra per second per core
 → a few hours for 5 million cells on a regular desktop computer

Questions ?

Dust grids

Section B-2

Dust grids in (SKI)RT

- Dust grid = spatial discretization of dust medium
- Physical quantities are assumed constant in each cell
 - » Radiation field
 - » Dust density, optical properties, temperature
- Need small cells to properly resolve the physics
- Number of cells N determines resource requirements
 - Memory needs and execution time roughly scale with N (need more photons to properly sample all cells)

 Quest for schemes that place many small cells where needed and fewer large cells elsewhere

Fixed dust grids

1D, 2D, 3D regular, log, power law

Hierarchical dust grids

Cut through octree with recursive barycentric subdivision based on dust density distribution of a spiral galaxy

Saftly et al. 2013

Grid traversal

Octree versus *k***-d tree**

Octree subdivides a node into eight subnodes

Quality measure standard deviation of randomly sampled density error

k-d tree subdivides a node into two subnodes

Saftly et al. 2013

Subdivision point

Geo-centric grids are more accurate and more efficient

Saftly et al. 2013

simulation SPH

Grid resolution criteria

How to determine subdivision depth?

- The objective is to properly resolve the radiation field
- But... we don't know this until we run a RT simulation
- For now: criteria based on the dust density distribution
- Future: adjust grid during the simulation based on the radiation field calculated so far

Criteria implemented in SKIRT

- Nesting level: L < L_{max} (overrides other criteria)
- Dust mass fraction: $M_{cell} / M_{tot} = \delta < \delta_{max}$
- Optical depth: $\tau_{cell} < \tau_{max}$
- Density dispersion: $(\rho_{max}-\rho_{min})/\rho_{max} = q < q_{max}$

Dust mass fraction and optical depth criteria

Optimal scheme combining δ_{max} and τ_{max}

Strong gradients and sharp edges

- Using just the mass fraction criterion, sharp edges can still have large cells with a tiny and compact dusty corner
- The density dispersion criterion further subdivides these cells

Unstructured grids

Voronoi cells in 3D

— Delaunay edges — Voronoi

cell edges

(400 sites)

Planar cut

Sites placed according to density distribution of dust in a spiral galaxy

Planar cut

Sites placed according to density distribution of dust in a spiral galaxy

Why consider Voronoi grids?

Minimize the number of cells

Place cell **boundaries** according to gradients

Natural grid for hydro input models (SPH, moving mesh)

Paths along Delaunay edges

SimpleX Paardekooper et al 2010

LIME Brinch & Hogerheijde 2010

Straight path through a Voronoi grid

Straight path through a Voronoi grid

$$\mathbf{n} = \mathbf{p}_i - \mathbf{p}_r$$

 $\mathbf{p}_i \perp \mathbf{p}_i$

$$\mathbf{p} = \frac{\mathbf{p}_i + \mathbf{p}_r}{2}$$

Equation of the plane

 $\mathbf{n} \cdot (\mathbf{x} - \mathbf{p}) = 0$

Equation of the path

 $\mathbf{x} = \mathbf{r} + s \, \mathbf{k}$

Intersection, solved for s

$$s = \frac{\mathbf{n} \cdot (\mathbf{p} - \mathbf{r})}{\mathbf{n} \cdot \mathbf{k}}$$
Thin interfaces

Cuts through grid with increasing number of cells

Torus model

Octree & Voronoi grids have 950 000 cells

Voronoi sites are distributed uniformly

Spiral model

Both grids have 1 350 000 cells

Voronoi sites are distributed according to dust density

Gric	l qua	lity	(std.dev. of $\rho_t - \rho_t$) _g)
------	-------	------	--------------------------------	------------------

Model	Cylindrical	Octree	Voronoi
Torus	0.82	1	1.75
Spiral	—	1	1.68

Run time (including overhead)

		Time per cell crossing (ns)		
Model	Simulation type	Octree	Voronoi	Vor./Oct.
Torus	monochromatic	219	693	3.2
Torus	panchromatic	400	1006	2.5
Spiral	monochromatic	309	903	2.9
Spiral	panchromatic	442	1095	2.5

Conclusions – 3D dust grids

Hierarchical grids with cuboidal cells

- Use neighbor lists to traverse the grid
- k-d tree grids are about 20% "better" than octree grids
- Combination of mass and optical depth criteria is optimal

Unstructured Voronoi grids

- Rather straightforward to implement in radiative transfer
- Only 3 times slower per cell crossing
- Promise to have fewer and more optimally placed cells (to be confirmed)

Questions ?

Importing hydro snapshots

Section B-3

Observables for simulated galaxies

Properties deduced directly from simulation results:

- Size, mass, age, chemical composition
- Kinematics (central dispersion, rotation curve)
- Intrinsic 3D morphology (concentration, flattening, bulge to disk)
- Total bolometric luminosity

Properties calculated through dust radiative transfer:

- 2D morphologies from various viewing angles
- SEDs from UV to FIR wavelengths
- Luminosity in specific band, color

Importing SPH and AMR data

SPH = Smoothed Particle Hydrodynamics AMR = Adaptive Mesh Refinement

 Read native snapshot data (in various formats), or define intermediate format containing just the required data

Stars

Data format

- Assign SED based on particle/cell properties
- Launch random photons with appropriate distribution

Dust

- Derive dust distribution from gas distribution (most hydro simulations do not trace the dust)
- Sample the dust density distribution defined by a large number of smoothed particles (can be very slow)
- Build adaptive grid that adjusts to dust density distribution

The gas-to-dust relation

We use a (too) simple heuristic to determine the amount of dust contained in each gas particle/cell:

$$M_{\text{dust}} = \begin{cases} f_{\text{dust}} Z M & \text{if } T < T_{\text{max}} \\ 0 & \text{otherwise,} \end{cases}$$

Gas properties: Z: metallicity *T*: temperature

Parameters:

 f_{dust} : fraction of metals locked in dust $T_{\rm max}$: gas temperature above which all dust is destroyed

Density sampling on SPH particles

Organize particles in a smart search grid

• List of particles that overlap each cell in a regular grid

Optimize density interpolation on each particle

$$\begin{split} \rho(\mathbf{r}) &= f_{\text{dust}} \sum_{i} Z_{i} M_{i} W(h_{i}, |\mathbf{r} - \mathbf{r}_{i}|) \\ \text{standard spline kernel:} \quad W(h, r) &= \frac{8}{\pi h^{3}} \times \begin{cases} 1 - 6 u^{2} (1 - u) & \text{for } 0 < u < \frac{1}{2}, \\ 2 (1 - u)^{3} & \text{for } \frac{1}{2} < u < 1, \\ 0 & \text{else.} \end{cases} \end{split}$$

$$M_{\text{box}} = f_{\text{dust}} \sum_{i} Z_{i} M_{i} \int_{x_{\text{min}}}^{x_{\text{max}}} \int_{y_{\text{min}}}^{y_{\text{max}}} \int_{z_{\text{min}}}^{z_{\text{max}}} W(h_{i}, |\mathbf{r} - \mathbf{r}_{i}|) \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z$$

scaled Gaussian kernel: $W(h, r) = \frac{a^{3}}{\pi^{3/2} h^{3}} \exp(-\frac{a^{2} r^{2}}{h^{2}}) \qquad a = 2.42$

6 error function evaluations per integral -> tabulate error function

Specialty dust grids for hydro snapshots

Octree or *k*-d tree

- Subdivide until there is at most one particle in each cell
- Then subdivide further with usual stopping criteria

Voronoi grid

 Use particle positions as seeds (one cell per particle)

AMR grid

Identical to imported grid

Code structure in SKIRT

- Bypass interfaces operate only when both parties support it
- Input-format-aware dust grids can be smarter
 - Use particle positions or mesh cells to setup grid structure
 - Analytically calculate density in cuboid
- → Faster import, and conceivably also higher-quality grid

SPH Data: *Rahimi & Kawata 2012*

Questions ?

FIR properties of galaxies in a cosmological simulation

Section B-4

EAGLE

Schaye et al. 2015

Cosmological simulation(s) 100 Mpc box 7 billion particles Dark matter Baryons Star formation & feedback

Calibrated to reproduce present-day galaxy stellar mass function

The Eagle Simulations

EVOLUTION AND ASSEMBLY OF GALAXIES AND THEIR ENVIRONMENTS The Hubble Sequence realised in cosmological simulations

Schaye et al. 2015

Artificial color SKIRT images of an EAGLE galaxy

Full SED from UV to sub-mm produced by SKIRT

SKIRT assigns SEDs to input particles

Star

→ Bruzual-Charlot stellar population SED depending on age and metallicity

Bruzual & Charlot 2003

Star forming region

 → MAPPINGS III starburst SED (HII region around cluster of young stars) depending on metallicity, compactness, pressure, PDR covering factor

SKIRT assigns dust content to input gas particles

No dust in hot gas (T > 8000 K)

Fixed fraction (40%) of metal content in cold gas and in star-forming gas

star forming gas cold gas

hot gas

•

Dust model used for EAGLE galaxies

- Realistic mixture
 - » 33% graphite grains
 - » 62% silicate grains
 - » 5% neutral and ionized PAHs
- Fine-tuned to accurately reproduce the extinction, emission and abundance constraints on the Milky Way

Size distribution for BARE_GR_S model from *Zubko, Dwek & Arendt 2004*

Objective: compare far-infrared and dust properties of EAGLE galaxies to observations

Cortese et al. 2012

TO DO

- ightarrow mimic observational selection effect
- \rightarrow use mock observational quantities for M_{dust} en M_{star}
- \rightarrow fine-tune parameters such as dust fraction, PDR coverage factor, ...

Questions ?