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Peter%Camps%

Academic%(Ghent%University)%
•  1980:&Master&Engineering&
•  2011:&Bachelor&Physics&&&Astronomy&
•  2012<current:&PhD&student&(Maarten&Baes)&

Commercial%(30%years%in%between)%
•  commercial&soBware&development&
•  internaFonal&management&
•  technical&soBware&(e.g.&PDF&ediFng)&
•  small&teams&(1&to&20)&
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Overview%

MCRT%in%galaxies%with%SKIRT%
•  Dust&in&galaxies&
•  SKIRT&features&and&code&design&
•  Energy&balance&in&galaxies&
•  Automated&galaxy&modeling&

MCRT%postMprocessing%of%hydrodynamic%snapshots%
•  StochasFc&heaFng&of&dust&grains&
•  Dust&grids:&regular,&hierarchical,&unstructured&
•  ImporFng&hydro&snapshots:&AMR,&SPH&
•  FIR&properFes&of&galaxies&in&a&cosmological&simulaFon&



Dust%in%galaxies%
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Interstellar%dust%

Minor%fracPon%of%the%interstellar%medium%
•  Dust<to<gas&raFo&is&usually&less&than&1%&

But%a%crucial%consPtuent%
•  ExFncFon:&up&to&50%&of&the&radiaFon&emiUed&by&stars&is&
absorbed&or&scaUered&by&interstellar&dust&

•  Infrared&emission:&absorbed&energy&is&released&as&thermal&
radiaFon&&

•  Regulates&the&physical&and&chemical&condiFons&of&the&
interstellar&gas&(e.g.&formaFon&of&molecules)&

•  Plays&a&key&role&in&the&formaFon&of&stars&and&planetary&
systems&



Interstellar%dust%

Origin%
•  Birth&in&evolved&stars&with&extended&shells;&possibly&also&in&
novae&and&supernovae&

•  AccreFon&of&gas&atoms&and&coagulaFon&of&grains&in&cold&
clouds&

DestrucPon%
•  Star&formaFon,&hot&gas,&shocks&
•  SpuUering&by&high&energy&radiaFon&
•  EvaporaFon&at&high&temperature&
•  ShaUering&in&grain<grain&collisions&



Interstellar%dust%

ComposiPon%
•  Graphite&(amorphous&carbon)&
•  Silicates:&amorphous&or&crystalline&

»  e.g.&EnstaFte&(MgSiO3),&Forsterite&(Mg2SiO4)&

•  PAH&molecules&(polycyclic&aromaFc&hydrocarbon)&

Grain%size%
•  1/3&nm&(a&few&atoms)&up&to&1/3&micron&
•  “Logarithmic”&size&distribuFon&
•  Irregular&shapes&



4 Draine

Figure 1: Extinction curves from prescription of Fitzpatrick (1999), with diffuse interstellar
bands (DIBs) added as described in §3.3. The DIBs are barely visible on this plot.

dense clouds grains acquire “ice” mantles (§3.5) which alter the extinction]. Fitz-
patrick (1999) pays careful attention to the effects of finite-width photometric
bandpasses, and gives modified formulae which appear to improve the overall fit
to observations of ice-free dust. The Cardelli et al. (1989) and Fitzpatrick (1999)
fits for RV = 3.1 are compared in §8 (Table 4).

Figure 1 shows extinction curves calculated using the F99 parametrization for
RV = 2.1, 2.5, 3.1, 4.0, and 5.5. The coefficients in the Cardelli et al. (1989) or
Fitzpatrick (1999) fitting formulae can be adjusted to improve the fit to specific
sightlines; such a fit is shown for the extreme case of HD 210121, showing that
the UV extinction can differ significantly from the average behavior for the same
value of RV .

“Pair method” determinations of the reddening law for many sightlines indicate
that RV ≈ 3.1 for the “average” extinction law for diffuse regions in the local
Milky Way (Savage & Mathis 1979, Cardelli et al. 1989). Sightlines intersecting
clouds with larger extinction per cloud tend to have larger values of RV ; the
larger RV values may indicate grain growth by accretion and coagulation.

Another approach to determining the wavelength-dependent extinction is to use
star counts or galaxy counts as a function of apparent brightness. Szomoru &
Guhathakurta (1999) use UBVRI photometry of Galactic field stars to determine
the extinction law; for the four high-latitude clouds they studied, they conclude
that RV

<
∼ 2, well below the value RV ≈ 3.1 which is widely considered to be

“average”, and comparable to the most extreme values of RV ever found in studies
of individual stars (RV = 2.1 for HD 210121). Further study is needed to reconcile
this apparent conflict.

Udalski (2002) uses V and I photometry of “red clump giants” to study the
reddening law. Toward the LMC he infers RV ≈ 3.1, but toward Galactic bulge

ExPncPon%curve%

•  ExFncFon&rapidly&
decreases&with&
wavelength&

•  Dependency&is&
highly&nonlinear&

Draine'2003'

0.1&μm&0.5&μm&
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AbsorpPon%and%scaTering%
Two&sink&terms&(exFncFon&processes)&to&be&
considered&in&dust&RT:&

•  absorpPon:&dust&grain&absorbs&the&radiaFve&
energy&(the&photon)&and&converts&it&to&
internal&energy&

•  scaTering:&dust&grain&changes&the&
propagaFon&direcFon&of&a&photon&

AbsorpFon&and&scaUering&can&be&
characterized&by&the&absorpFon&and&
scaUering&coefficients&(depend&on&the&
size,&shape&and&chemical&composiFon&
of&the&dust&grains)&&&&



ScaUering&redirects&photons&
into&another&direcFon,&so&it&is&
both&a&sink&and&a&source&term.&&

The&phase&funcFon&Φλ(k,k’)&
describes&the&probability&that&
a&photon&coming&from&
direcFon&k’&will&have&k&as&its&
new&propagaFon&direcFon.&

ScaTering%phase%funcPon%

ScaUering&off&dust&grains&is&anisotropic&and&generally&forward.&
The&scaUering&funcFon&typically&depends&only&on&the&angle&
between&incoming&and&outgoing&direcFon.&



HenyeyMGreenstein%phase%funcPon%
The&most&widely&used&phase&funcFon&=&
Henyey<Greenstein&phase&funcFon&

Contains&one&free&parameter:&the&
asymmetry&parameter&gλ,&&

The&asymmetry&parameter&gλ,&can&be&defined&for&any&phase&funcFon,&but&
the&HG&phase&funcFon&contains&it&as&an&explicit&parameter.&

•  gλ'=&0:&isotropic&scaUering&
•  gλ'=&1:&completely&forward&scaUering&
•  gλ'=&<1:&completely&backward&scaUering&&



How%to%trace%interstellar%dust%(1)%

Model%the%exPncPon%
•  Stellar&emission&
•  AbsorpFon&and&mulFple&anisotropic&scaUering&by&dust&

Issues%
•  6&dimensions&(3&posiFon,&2&direcFon,&1&wavelength)&
even&when&assuming&Fme<independence&

•  Non<local&&
•  Non<linear&
•  Complicated&geometry&(3D,&inhomogeneous…)&
•  OpFcal&properFes&of&the&dust&are&poorly&known&



How%to%trace%interstellar%dust%(2)%
Energy&balance:&dust&grains&emit&the&
energy&they&absorb&&
&
&
&
&
RealisFc&values&in&the&interstellar&
medium&yield&temperatures&of&15<30&K.&
The&corresponding&emission&peaks&in&
the&far<infrared&or&submm&range&
(on&the&order&of&100&μm).&
&
Interstellar%dust%effecPvely%converts%
opPcal/UV%starlight%to%FIR/submm%
emission.&



Fritz'et'al.'2012'



M51%with%IRAS%



M51%with%ISO%



M51%with%Spitzer%



M51%with%Herschel%
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Dust%heaPng%in%spiral%galaxies%
Bulge&lum

inosity&&

OpFcal&depth&&

OpFcal&depth&&



M31%SED%

stars% VSGs/PAHs% large%dust%grains%



M82%SED%

stars% VSGs/PAHs% large%dust%grains%
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SKIRT%features%and%code%design%

SecPon%AM2%



www.skirt.ugent.be%
github.com/skirt%



Key%features%

Monte%Carlo%conPnuum%radiaPve%transfer%
•  AbsorpFon,&scaUering,&and&re<emission&by&dust&
•  Self<consistent&calculaFon&of&dust&temperature&
•  StochasFc&heaFng&of&dust&grains&

AcceleraPon%techniques%
•  Biased&emission,&forced&scaUering,&conFnuous&absorpFon,&
peel<off&towards&instruments&

•  Hybrid&parallelizaFon&(shared&&&distributed&memory)&

Arbitrary%geometries%&%properPes%for%stars%and%dust%
•  Many&built<in&components,&configured&at&run<Fme&
•  Import&snapshot&from&hydrodynamic&simulaFon&

%



ApplicaPon%focus%

Compare'models'to'observa7ons'
•  Images&and&emission&spectrum&

Dust%in%spiral%galaxies%%
•  Geometry&and&structure&
•  Energy&balance&
•  Scaling&relaFons&

Other%applicaPons%
•  Dust&torus&in&acFve&galacFc&nuclei&
•  Molecular&clouds&
•  Dusty&ouklows&from&(binary)&stars&



Infrastructure%
•  Open&source&

•  Published&on&GitHub&
(github.com/skirt)&

•  Fully&documented&
(www.skirt.ugent.be)&

•  WriUen&in&C++11&
(75000&lines&in&300&classes)&

•  Uses&Qt&5.x&libraries&and&tools&

•  OpFonal&use&of&MPI&&
(mulF<node&parallelizaFon)&

•  No&other&dependencies&
•  Well&tested&

(200+&regression&test&cases)&



Configurable%builtMin%opPons%

eaglepan.ski 1
<?xml version="1.0" encoding="UTF-8"?>
<!--SKIRT radiative transfer simulations - © 2012 Astronomical
Observatory, Ghent University-->
<skirt-simulation-hierarchy type="MonteCarloSimulation"
format="6.1">
    <PanMonteCarloSimulation packages="1e5">
        <units type="Units">
            <ExtragalacticUnits/>
        </units>
        <instrumentSystem type="InstrumentSystem">
            <InstrumentSystem>
                <instruments type="Instrument">
                    <SimpleInstrument instrumentName="xy"
pixelsX="750" extentX="2e4 pc" pixelsY="750" extentY="2e4 pc"
distance="10 Mpc" inclination="0 deg" azimuth="0 deg"
positionAngle="90 deg"/>
                    <SimpleInstrument instrumentName="xz"
pixelsX="750" extentX="2e4 pc" pixelsY="750" extentY="2e4 pc"
distance="10 Mpc" inclination="90 deg" azimuth="-90 deg"
positionAngle="0 deg"/>
                    <SimpleInstrument instrumentName="yz"
pixelsX="750" extentX="2e4 pc" pixelsY="750" extentY="2e4 pc"
distance="10 Mpc" inclination="90 deg" azimuth="0 deg"
positionAngle="0 deg"/>
                </instruments>
            </InstrumentSystem>
        </instrumentSystem>
        <wavelengthGrid type="PanWavelengthGrid">
            <LogWavelengthGrid minWavelength="0.05 micron"
maxWavelength="1000 micron" points="15"/>
        </wavelengthGrid>
        <stellarSystem type="StellarSystem">
            <SPHStellarSystem filename="eagle_stars.dat"/>
        </stellarSystem>
        <dustSystem type="PanDustSystem">
        
            <PanDustSystem
               writeDensity="true"
               dustEmission="true"
               transient="false"
               selfAbsorption="false">
               
                <dustDistribution type="DustDistribution">
                    <SPHDustDistribution filename="eagle_gas.dat"
dustFraction="0.1">

•  Command<line&interface&

•  Q&A&session&to&create&
configuraFon&file&

•  XML<based&configuraFon&file&
•  Easy&to&adjust&in&editor&
•  Upgradable&by&automaFc&

process&

trash.txt 1
skirt

skirt <ski-filename>

skirt [-b] [-s <simulations>] [-t <threads>]
      [-k] [-i <dirpath>] [-o <dirpath>]
      [-r] {<filepath>}*



SimulaPon%structure%

SimulaPon%

Wavelength%grid%

Stellar%system%

Dust%system%

Instruments%

Stellar%geometry%

S.E.D.%

Dust%geometry%

Dust%properPes%

NormalizaPon%

Dust%grid%

NormalizaPon%



Instruments%

Instrument%name% SED% Frame% Sources%
Separated%

DistantInstrument'
&&&SEDInstrument& ✔& <<& <<&
&&&FrameInstrument& <<& ✔& <<&
&&&SimpleInstrument& ✔& ✔& <<&
&&&FullInstrument& ✔& ✔& ✔&
PerspecFveInstrument& <<& ✔& <<&



•  A&geometry&defines&a&
spaFal&density&distribuFon&

•  All&geometries&can&be&used&
for&both&stellar&and&dust&
distribuFons&

•  Decorators&serve&to&adjust&
and&combine&other&
geometries&

•  Decorators&can&be&nested&
to&arbitrary&levels&

%

Basic%(oden%symmetric)%

Point&

Plummer&

Gamma&

Sersic&

Einasto&

Shell&

Ring&

Torus&

ExponenFal&disk&

Cuboid&

MulF<Gaussian&expansion&

Geometries%

Hydro%snaphots%

AMR&(adapFve&mesh)&

SPH&(smoothed&parFcles)&

Anisotropic%sources%

Laser&

Netzer&accreFon&disk&

Spherical&surface&

Spherical&background&

Decorators%

Offset&

RotaFon&

Spheroidal&distorFon&

Triaxial&distorFon&

Spherical&cavity&

Cylindrical&cavity&

Crop&

Add&spiral&arms&

Make&clumpy&

Combine&



Geometries%



Spiral&arms&

Peanut&bulge&

Clumpy&

Geometries%

De'Geyter'2015'



Stellar%SEDs%

SED%

Black&Body&

Sun&

Pegase&

Quasar&

Maraston&

Kurucz&

Bruzual<Charlot&

Starburst&(Mappings)&

File&

SED%family%

Bruzual<Charlot&

Starburst&(Mappings)&

•  An&SED&is&assigned&to&each&stellar&
geometry&

•  An&SED&family&allows&each&parFcle/cell&
in&an&imported&hydro&snapshot&to&be&
assigned&its&own&spectrum&based&on&its&
properFes&(e.g.&metallicity,&age)&
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TurnMkey%dust%mixture%

Draine&&&Li&2007&

MRN&

Weingartner&&&Draine&

Zubko&et&al.&

Dust%properPes%

•  A&dust&system&can&have&mulFple&dust&components,&
each&with&its&own&geometry&and&dust&mixture&

•  Turn<key&dust&mixtures&include&pre<configured&
properFes&

•  The&configurable&dust&mix&allows&specifying&grain&
composiFon&and&size&distribuFon&in&detail&

Grain%composiPon%

Graphite&

Silicate&

Ionized&PAH&

Neutral&PAH&

EnstaFte&

Forsterite&

Grain%size%distribuPon%

LogNormal&

PowerLaw&

ModifiedPowerLaw&

SingleGrain&

Zubko&

Configurable%dust%mixture%



Sodware%architecture%
&&Complex&configuraFon&

»  Many&built<in&opFons&
»  Nontrivial&structure&
(iteraFon,&nesFng)&

Simulation 

Wavelength Grid 

Stellar System 

Dust System 

Instruments 

Geometry 

Emission Spectrum 

Geometry 

Dust Properties 

Dust Grid 

ScienPfic%codes%can%
benefit%from%careful%

objectMoriented%design%

A%nonMgraphical%user%
interface%can%be%friendly%

&&How&to&deal&with&this?&



Design%goals%

Single%point%of%definiPon%
•  Define&user&interface&properFes&with&the&program&logic&

DataMdriven%user%interface%
•  Have&the&user&interface&adjust&automaFcally&as&new&
features&are&added&

Structured%parameter%file%
•  Use&human<readable&self<documenFng&format&that&
supports&iteraFon&and&nesFng&

Modularity%
•  Minimize&dependencies&through&appropriate&interfaces&
and&data&encapsulaFon&



Single%point%of%definiPon%in%the%code%
P. Camps, M. Baes / Astronomy and Computing 9 (2015) 20–33 31

Fig. 15. A typical simulation item class declaration. The keywords starting with Q_ are provided by the Qt development environment, and serve to define the extra
information needed to automatically build a user interface for the features offered by this class, as explained in Section 3.5. The setup functions declared on lines 31–32 are
described in Section 3.2 and Fig. 13. The geometry-specific functions declared on lines 51–52 are described in Section 3.4.

By selecting the desired type of simulation item at each level in
the recursion, the user’s responses drive the nature of subsequent
questions in the session. While this is sufficient for most purposes,
the discovery process implements a few extra mechanisms to
support specific needs. For example, the list of available dust grids
depends on the (lack of) symmetries in the geometries selected
earlier; e.g. the user cannot select a 1Dor 2Dgrid for a 3Dgeometry.
Also, it is possible to skip questions that are deemed irrelevant
based on the response to a previous question in the same class. All
of thesemechanisms are fully data-driven from the Q_CLASSINFO
definitions in the simulation item class declarations.

Once a simulation item hierarchy is in place, the same under-
lying data can be used to reverse the process and write down the
configuration in a human-readable form. In Fig. 16 the Creator ob-
ject is now replaced by a Consumer object that recursively visits
the items in the hierarchy to produce the corresponding output,
using the information supplied by the item discovery module and
the property handlers it spawns. Most importantly, SKIRT uses the
XmlHierarchyWriter object to output a ski file (Fig. 6) after the
user configured a simulation item hierarchy through a query and
answer session (Fig. 5). A newly generated ski file is also stored
with each set of simulation results, as a standard reference, ex-
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By selecting the desired type of simulation item at each level in
the recursion, the user’s responses drive the nature of subsequent
questions in the session. While this is sufficient for most purposes,
the discovery process implements a few extra mechanisms to
support specific needs. For example, the list of available dust grids
depends on the (lack of) symmetries in the geometries selected
earlier; e.g. the user cannot select a 1Dor 2Dgrid for a 3Dgeometry.
Also, it is possible to skip questions that are deemed irrelevant
based on the response to a previous question in the same class. All
of thesemechanisms are fully data-driven from the Q_CLASSINFO
definitions in the simulation item class declarations.

Once a simulation item hierarchy is in place, the same under-
lying data can be used to reverse the process and write down the
configuration in a human-readable form. In Fig. 16 the Creator ob-
ject is now replaced by a Consumer object that recursively visits
the items in the hierarchy to produce the corresponding output,
using the information supplied by the item discovery module and
the property handlers it spawns. Most importantly, SKIRT uses the
XmlHierarchyWriter object to output a ski file (Fig. 6) after the
user configured a simulation item hierarchy through a query and
answer session (Fig. 5). A newly generated ski file is also stored
with each set of simulation results, as a standard reference, ex-

Data&type&

Property&
name&

Human&readable&
Ftle&

Value&
restricFons&



DataMdriven%
“Q&A”%user%
interface%

P. Camps, M. Baes / Astronomy and Computing 9 (2015) 20–33 25

Fig. 5. A partial transcript of the query and answer terminal session to configure a SKIRT simulation for a simple spiral galaxy model. The smart mechanism guides the user
through all possible options, narrowing down the possibilities based on earlier choices. For example, on line 15 there is only one choice for the wavelength grid because on
line 6 the user selected an oligochromatic simulation. Also the dust grid choices on lines 47–52 are limited to 2D and 3D grids (omitting 1D grids) since the geometry selected
on line 29 is axisymmetric. Furthermore the options for the geometry in lines 30–33 and for the dust grid in lines 54–59 are tailored to the selected type of geometry/dust
grid.

possible options, narrowing down the possibilities based on earlier
choices. This is similar to the concept of a wizard in graphical user
interfaces. Subsequently, the user can easily adjust the constructed
ski file in a text editor; a slightly more experienced user can copy
and paste building blocks between different ski files. For each

simulation performed, SKIRT produces a LATEX file describing the
contents of the input ski file in a human-readable format that can
be used for documentation purposes.

To further facilitate the configuration process, physical quan-
tities such as distances, sizes or masses can be specified in units

Allowed&range&
and&default&units&

Choices&derived&from&
source&code&data&

Default&value&



XMLMbased%parameter%file%26 P. Camps, M. Baes / Astronomy and Computing 9 (2015) 20–33

Fig. 6. The ski file (SKIRT parameter file) configured during the query and answer session shown in Fig. 5. While it would be hard for a human to create this file from scratch,
it is surprisingly readable because of the self-explanatory tag names. For example, it is easy even for a casual user to adjust the scale height of the dust lane on line 29 or to
add an extra instrument by copying lines 52–54 and modifying the inclination angle of the second instrument.

selected by the user. The default unit system for a simulation’s in-
put and output is specified early on in the ski file (e.g. extragalac-
tic units on line 5 of Fig. 6), and individual parameter values can
be specified with a units string that overrides the default. For ex-
ample, a scale length of 6600 pc could be specified as "6600 pc",
"6.6 kpc", or approximately "2e20 m".

3. Architecture

The latest version of SKIRT was re-architected with the
following major design goals in mind:
• Structured parameter file: use a self-documenting ski file format

that supports the complex configuration needs described above
in a user-friendly manner.

Values&include&
units&

Property&names&
are&documented&

Supports&iteraFon&and&
nesFng&to&any&depth&



OligoMonteCarloSimulation 

ExtragalacticUnits 

CompStellarSystem 

OligoDustSystem 

InstrumentSystem 

ExpDiskGeometry 

OligoStellarComp 

OligoWavelengthGrid 

FrameInstrument 

units= 

packages=1e7 

wavelengthGrid= 

stellarSystem= 

dustSystem= 

instrumentSystem= 

wavelengths=(0.55e-6,) 

luminosities=(1e15,) 
components= 

geometry= 

instruments= 

…"

radialScale=1.36e20 
axialScale=1.45e19 

… 

RunMPme%structure%of%simulaPon%

Run<Fme&hierarchy&and&parameter&file&have&idenFcal&structure&&

Camps'&'Baes'2015'



Geometry%
decorators%

Component 

Decorator ConcreteComponent 

original 

M. Baes, P. Camps / Astronomy and Computing 12 (2015) 33–44 35

where |@y/@x| is the Jacobian determinant. Probably the most
famous application of this formula is the Box–Muller method to
generate random normally distributed deviates (Box and Muller,
1958; Bell, 1968). Another interesting special application is the
case of a linear transformation. In this case, the transformation
y = y(x) can be written as a matrix multiplication y = H x, and
the distribution of x is

f (x) = |H|g(H x) (4)

with |H| the absolute value of the determinant of H. This kind of
transformation is particularly useful for the generation of random
vectors with a given dependence structure, as measured by the
covariance matrix (Scheuer and Stoller, 1962; Barr and Slezak,
1972).

In general, however, it is not straightforward to use this identity
(3) to construct a method that can be used to generate random
positions from an arbitrary multidimensional distribution.

2.2. The rejection method

Apart from the inversion method, the rejection method, also
known as the acceptance–rejection method, is the most popular
method to sample nonuniform random numbers from univariate
distributions (von Neumann, 1951; Devroye, 1986). The basic idea
behind the method is that, if one wants to sample a random num-
ber from a function f (x), one can sample uniformly from the 2D
region under the graph f (x). More concretely, assume that f (x) 6
cfref(x), where fref(x) is another distribution from which random
numbers are easily generated, and c is the so-called rejection con-
stant (it obviously satisfies the condition c > 1). One then gener-
ates a uniformdeviate ⇠ and a randomnumber x from the reference
distribution fref(x), and calculates the quantity t = ⇠cfref(x)/f (x).
This procedure is repeated until t 6 1, inwhich case x is the desired
random number.

One of the advantages of the rejectionmethod is that it does not
require that the cumulative distribution function be analytically
known, let alone be invertible. However, its effectiveness depends
on how accurate f is approximated from above by cfref. Less
accurate approximation leads to a greater chance of rejection; on
average c iterations of the loop are required before one successful
randomnumber is generated. Moreover, the reference distribution
should be such that random numbers can be easily generated
from it and that the computation of cfref(x)/f (x) is simple. For a
range of standard distributions, such as the gamma distribution
and the Poisson distribution, efficient reference functions can be
constructed.

The rejection method is by no means limited to univariate dis-
tributions, and can immediately be applied to multivariate gen-
eration problems. However, the rejection rate typically increases
rapidlywhen going fromone tomore dimensions, which decreases
the efficiency of themethod.Moreover, the design of a suitable ref-
erence distribution becomes much more complicated.

2.3. The composition method

The composition method or probability mixing method is
another important technique in both univariate and multivariate
random number generation (Marsaglia and Bray, 1964; Hörmann
et al., 2004). Rather than a method on itself to generate non-
uniform randomnumbers, it is a principle to facilitate and speed up
other randomnumber generatingmethods. The simple idea behind
composition is to decompose the distribution f (x) as a weighted
sum,

f (x) =
KX

i=1

wifi(x) (5)

with all fi normalised densities, and the weights wi a probability
vector (i.e., all wi > 0 and

P
i wi = 1). To generate a random

x from the distribution f (x), we first generate a random integer
number k from the discrete probability vectorwi, and subsequently
generate a random x from the density fk(x). A prerequisite for this
method to work is that, obviously, the decomposition can be done
efficiently, and that the complexity of the problem is reduced by
the decomposition.

2.4. The conditional distribution method

Finally, a powerful technique that applies only to multivariate
random number generation is the so-called conditional distribu-
tion method (Devroye, 1986; Hörmann et al., 2004). It is based on
the Bayesian identity

f (x1, x2) = f1(x1) f2(x2 | x1) (6)

which expresses that a joint distribution of two variables can be
calculated as the product of themarginal distribution of the former
variable and the conditional distribution of the latter. Expanding it
to multiple dimensions,

f (x) = f1(x1) f2(x2 | x1) · · · fN(xN | x1, . . . , xN�1). (7)

The beauty of this technique is that it reduces the multidimen-
sional generation problem to a sequence of independent univariate
generation problems. Themain drawback is that it can only be used
when much detailed information is known about the distribution
f (x). In particular, it is by far not always the case that marginal
and conditional distributions are easily calculated in closed form.
The standard textbook example of this technique is the multivari-
ate Cauchy distribution.

3. General setup of the SKIRT Geometry suite

SKIRT is amulti-purpose 3DMonte Carlo dust radiative transfer
code that is mainly used to simulate dusty galaxies and active
galactic nuclei (e.g., Baes and Dejonghe, 2002; Baes et al., 2010;
Stalevski et al., 2012; De Looze et al., 2012, 2014). The code
was designed as a highly modular software, with a particular
consideration for the development of a flexible and easy user
interface and the use of proven software design principles as
described by Camps and Baes (2015).

The SKIRT code offers a wealth of configurable features that
are ready to use without any programming. In particular, the
SKIRT code is equipped with a suite of input model components,
the so-called Geometry classes, that can be used to represent
distributions of either sources or sinks. Essentially, the suite
consists of a number of classes that all inherit from an abstract
Geometry class, for which the C++ class interface looks like

class Geometry {
public:

Geometry();
virtual ~Geometry();
virtual double density(Position x) const = 0;
virtual Position generatePosition() const = 0;

}

Both the density and generatePosition functions are pure
virtual functions, which means that each model in the suite
should provide a routine that implements the (normalised)
density ⇢(x), and a routine that generates random positions
according to this density. For example, the interface of a concrete
ConcreteGeometry class that contains only a single parameter
p would look as follows:
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class ConcreteGeometry : public Geometry {
public:

ConcreteGeometry(double p) {_p=p}
double density(Position x) const;
Position generatePosition() const;

private:
double _p;

}

For the design of this suite of inputmodels, a naive optionwould be
to provide a set of parameterised models that contain free param-
eters to control every possible option. A typical standard compo-
nent of such a suite would be a very generalised Plummer model,
with free parameters setting the location of the centre, the orienta-
tion with respect to the coordinate system, the scales, the flatten-
ing describing potential triaxiality, possible degrees of clumpiness,
etc. This approach has a number of strong disadvantages. Clearly,
it would quickly lead to an explosion of different options that is
hard to overview. It would inevitably lead to substantial code du-
plication (nearly all the code would need to be copied if we would
consider a Hernquist profile instead of a Plummer profile) and code
that is virtually impossible to maintain (the code for all models
would need to be updated if a new feature is added or altered).
Also concerning efficiency, such a design would not be optimal. In-
deed, a random position generating routine for such a generalised
Plummer model is hard to construct and is certainly much less ef-
ficient than the simple routine that is possible for a plain spherical
Plummer model (using the inversion method).

To overcome these problems, we adopted a completely differ-
ent approach that is much simpler but still provides the flexibil-
ity and functionality needed to set up complex models. This is
achieved using a combination of simple base models on the one
hand, and so-called decorator geometries on the other hand. Dec-
orator geometries are not real models on their own, but they apply
modifications uponothermodels in interestingways, following the
Decorator design pattern. In object-oriented programming, a deco-
rator attaches additional responsibilities to an object dynamically
and provides a flexible and powerful alternative to subclassing for
extending functionality (Gamma et al., 1994).

In our present context, a decorator geometry is a special
kind of geometrical model (i.e., it is also a C++ class in the
generalGeometry suite) that takes one ormore other components
and adds a layer of complexity upon them. Simple examples of
decorators that can easily be implemented are the relocation of the
centre of a given component, or the rotation of a given model with
respect to the coordinate system.More complex decorators deform
a sphericalmodel to a triaxial one, or add a spiral perturbation to an
axially symmetricmodel. The advantage of the decorator approach
is clear: each decorator needs to be implemented only once, and
can then be applied to any possible model.

In the following two sections we describe the building blocks in
the SKIRT Geometry suite, and a number of decorator geometries
that can alter these building blocks to more complex structures.

4. The SKIRT Geometry building blocks

The SKIRT Geometry suite contains a limited number of
elementary input models, which can be used either as elementary
toymodels, or as building blocks formore complex geometries. For
each of them, the density can be expressed as a simple analytical
function, and the generation of random positions reduces to three
independent univariate generation problems.

Apart from these analytical components, SKIRT also offers the
possibility to set up components in which the geometry of sources
and/or sinks is defined bymeans of particles or on a grid. In particu-
lar, SKIRT can import a snapshot from a (magneto)hydrodynamical

simulation. One obvious goal would be to post-process a hydro-
dynamical simulation in order to calculate the observable multi-
wavelength properties of the simulated objects (e.g., Jonsson et al.,
2010; Schartmann et al., 2014). In this case, it would be sufficient
to just read in the geometry of the snapshot as it is, and start the ra-
diative transfer simulation. More generally, however, it would be
useful if these numerical components would be at a similar level
as the analytical components. This would open up the possibility
to decorate them and combine them with other analytical and/or
numerical components to more complex models.

4.1. Analytical components

A first group consists of spherically symmetricmodels. In spher-
ical symmetry, the generation of a random position from the 3D
density ⇢(x) = ⇢(r) simplifies to the generation of a random az-
imuth from a uniform distribution, a random polar angle from a
sine distribution, and a random radius from the univariate density
f (r) = 4⇡r2⇢(r). The SKIRT suite includes the most popular mod-
els used to represent shells, star clusters, early-type galaxies, or
galaxy bulges, such as a power-law shell model (Ivezi¢ et al., 1997),
the Plummer model (Plummer, 1911), the � -model (Dehnen,
1993; Tremaine et al., 1994), the Sérsic model (Sérsic, 1963;
Ciotti and Bertin, 1999; Baes and Gentile, 2011), and the Einasto
model (Einasto, 1965; Retana-Montenegro et al., 2012). Within
this family of models, many other famous profiles are con-
tained, including the Hernquist model (Hernquist, 1990), the Jaffe
model (Jaffe, 1983) and the R1/4-model (de Vaucouleurs, 1948).

A second group of elementary input models consists of axisym-
metric models in which the density is a separable function. The
standard example with a density distribution separable in cylin-
drical coordinates is the double-exponential disc that is the de
facto standard to represent disc galaxies in radiative transfer stud-
ies (Xilouris et al., 1997; Baes et al., 2003; Bianchi, 2007). How ran-
dom positions can be drawn from this distribution is discussed
in Appendix A of Baes et al. (2003). An example of an axisym-
metric model where the density is separable in spherical coordi-
nates is the torus model that is often used to represent the dusty
tori around stars or active galactic nuclei (Collison and Fix, 1991;
Granato and Danese, 1994; Stalevski et al., 2012).

4.2. Components based on smoothed particles

The first group of numerical components in SKIRT are defined as
a set of smoothed particles. This is mainly useful when we want to
use the output of a smoothed particle hydrodynamics (Lucy, 1977;
Monaghan, 1992; Springel, 2010b) simulation. In spite of claims
that the technique suffers from fundamental problems (Agertz
et al., 2007; Bauer and Springel, 2012), it is still the most popular
hydrodynamics technique, especially for cosmological simulations
of galaxy formation (e.g., Guedes et al., 2011; Feldmann andMayer,
2015; Schaye et al., 2015). The output of an SPH snapshot consists
of a set of ‘‘particles’’ (or rather anchor points in a co-moving grid),
each characterised by a large suite of physical quantities.

As far as SKIRT is concerned, most of these physical quantities
are irrelevant. AnSPHGeometry component in SKIRT is essentially
defined by a list of N smoothed particles and the assumed smooth-
ing kernel W (r, h), with each smoothed particle characterised by
a position xj, a fractional mass mj and a smoothing length hj. The
total density at an arbitrary position x is then given by

⇢(x) =
NX

j=1

mjW (|x � xj|, hj). (8)

In practice, the kernels used in SPH simulations almost always have
a finite support (e.g., Monaghan and Lattanzio, 1985; Desbrun and
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Table 1
An overview of the geometry decorators currently implemented in SKIRT, referencing the section in which they are presented. Geometry decorators can be applied to basic
geometry building blocks, and can be chained and combined to create complex structures.

5.1 Offset applies an arbitrary offset to any geometry
5.2 Rotate applies an arbitrary rotation to any geometry
5.3 SpheCavity carves out a spherical cavity from any geometry

Crop crops any geometry to a given box; a variation on the Cavity decorator
5.4 Combine combines two geometries into a single geometry
5.5 Triaxial transforms any spherical geometry to a triaxial form

Spheroidal transforms any spherical geometry to a spheroidal form; a special case of the Triaxial decorator
5.6 Spiral applies spiral arm structure to any axisymmetric geometry
5.7 Clumpy replaces a portion of the mass in any geometry by randomly placed clumps
6.2 Foam replaces the model-specific random position generator by a generic routine based on the Foam library

5. The SKIRT Geometry decorators

In this section we describe a number of decorator geometries
that can be applied on the building blocks described in the previous
section in order to convert them to more complex structures; see
Table 1 for an overview. The implementation of the density of
a decorator geometry is usually not a major problem; the main
challenge is to implement the routine that generates random
positions from a decorator geometry, so this is what we focus on.

5.1. Offsets

The OffsetGeometryDecorator decorator in SKIRT applies
an arbitrary offset a to any density distribution. If the original
density is ⇢s(y), the new density is simply ⇢(x) = ⇢s(x � a).
Generating random positions is equally simple: we generate a
random y from the original density distribution and return x =
y + a. The C++ implementation of the class in SKIRT looks like:

class OffsetGeometryDecorator : public Geometry {
public:

OffsetGeometryDecorator(Geometry* g, Position a)
{_g = g; _a = a;}

double density(Position x) const
{return _g->density(x-a);}

Position generatePosition() const
{return _g->generatePosition()+a;}

private:
Geometry* _g;
Position _a;

}

5.2. Rotation

Similarly, the RotateGeometryDecorator decorator rotates
any density distribution. If the rotation is characterised by the
orthonormal matrix H, the new density is ⇢(x) = ⇢s(H x). To
generate a random position from this new density, we generate a
random y from the original density and rotate it over the inverse
rotation matrix, i.e. x = HT

y.

5.3. Cavities

A third simple decorator, the CavityGeometryDecorator,
carves out a cavity from another density ⇢s(y). In formula form,
we have

⇢(x) =

8
<

:

0 x in cavity
⇢s(x)

1 � �
else (9)

with� the fraction of themass of the original density located in the
cavity. This decorator is useful to represent density distributions
of dust close to a star or active galactic nucleus, where the dust
has been cleared due to sublimation. To generate randompositions

from this new density distribution, we just generate a random
position from the original density distribution and reject it when it
is located in the cavity. This is, in fact, an almost trivial application
of the rejection technique, where the original density assumes the
role of the reference function, and the rejection constant is c =
1/(1 � �).

5.4. Composition

The CombineGeometryDecorator combines two density
distributions into a single distribution according to

⇢(x) = w1 ⇢1(x) + w2 ⇢2(x)

w1 + w2
(10)

with ⇢1, ⇢2 the original distributions and w1, w2 their respective
weights in the composite distribution. Generating random posi-
tions for this new density distribution is a trivial application of the
composition method.

5.5. Triaxial geometries

As a first more complex decorator, we consider the case of a tri-
axial decorator geometry, which converts a spherically symmet-
ric density distribution into one that is stratified on concentric and
confocal ellipsoids. More concretely, assume that we have a spher-
ically symmetric density distribution ⇢s(y) = ⇢s(y), we then con-
sider its triaxial counterpart

⇢(x) = 1
pq

⇢s

0

@
s

x21 + x22
p2

+ x23
q2

1

A . (11)

Such triaxialmodels are discussed and used extensively to describe
the stellar distribution of elliptical galaxies and galactic nuclei and
the shape of galactic haloes (e.g., Stark, 1977; Merritt and Fridman,
1996; Trujillo et al., 2002; van den Bosch et al., 2008). Oblate and
prolate spheroidal distributions are just a special case of these tri-
axial models in which p = 1.

It is clear that the density (11) cannot be written as a product
of independent univariate density distributions. We can use the
conditional distribution method. In order to develop a general
recipe for generating random positions, we start by rewriting the
probability distribution according to (11) in spherical coordinates,

f (r, ✓ ,�)

= r2 sin ✓

pq
⇢s

0

@r

s
sin2✓ (sin2� + p2 cos2�)

p2
+ cos2✓

q2

1

A . (12)

According to formula (7), we now rewrite this expression as

f (r, ✓ ,�) = f (�) f (✓ | �) f (r | ✓ , �). (13)
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Fig. 2. Cut through the dust density distribution along the equatorial plane of the R13 galaxy (left panel) and of the Eris galaxy
(right panel). The dust density is given in M� pc�3.

ric, but non-axisymmetric structures such as a prominent bar and
spiral structure are developed quickly because of the instabilities
in the velocity distribution.

We used the snapshot corresponding to the final state of the
galaxy after a run time of 800 Myr. We considered a box with
dimensions 20 ⇥ 20 ⇥ 4 kpc3, which contains a total stellar mass
of 4.4⇥1010 M� and a total gas mass of 3.0⇥109 M�. The galaxy
hosts a prominent bulge and spiral arms, and is characterised by
a high star formation rate (SFR); the total SFR for stars younger
than 57 Myr is about 7.3 M� yr�1. The bar has a central area
of 1 kpc2 that contains almost no ongoing star formation (see
Emsellem et al. 2015), whereas dense star-forming clouds are
abundant at the outer regions of the bar. Along the spiral arms,
dense clumps of gas and star-forming regions have formed with a
relatively uniform separation (the so-called “beads on a string”).
This high level of concentration is related to the relatively short
simulation run time, but continuing the simulation would cause
stellar feedback to more evenly spread matter along the disc.

The second input model in our study is taken from the Eris
simulation (Guedes et al. 2011), one of the most advanced and
realistic simulations of the formation of a Milky Way class
galaxy. Eris was set up as a zoom-in cosmological simulation,
powered by the N-body/SPH GASOLINE code (Wadsley et al.
2004). The simulation follows the formation of a galaxy halo
with mass Mvir = 7.9⇥1011 M� from z = 90 to the present epoch
in a full cosmological setting. The target halo is sampled with 26
million particles divided equally between the dark matter parti-
cles and gas particles. Apart from the obvious gravity and hy-
drodynamical forces, the simulation includes Compton cooling,
atomic cooling, metallicity-dependent radiative cooling at low
temperatures, the ionising e↵ect of a uniform UV background,
star formation and supernova feedback.

We use the final snapshot corresponding to the present
epoch. At z = 0, Eris is a Milky Way-like galaxy characterised

by a beautiful spiral structure and a small bulge in the centre.
The structural properties, the mass budget in the various com-
ponents, and the scaling relations between mass and luminosity
are consistent with a host of observational constraints. For our
analysis, we consider all particles in a box of 28 ⇥ 28 ⇥ 6 kpc3.
This box has 7.8 million star particles and 0.25 million gas par-
ticles, with a total stellar mass of 3.5 ⇥ 1010 M� and a total gas
mass of 4.3 ⇥ 109 M� (about 5 ⇥ 103 M� per star particle and
2 ⇥ 104 M� per gas particle). The smoothing length for the gas
particles ranges between 56 and 2455 pc.

3.2. Creation of mock images

The second step in the analysis is again the creation of mock
images. To do this, SKIRT was extended with modules that read
the output of hydrodynamical simulations as input for the radia-
tive transfer calculations (see also Schaye et al. 2015). We used
the GALAXEV library of simple stellar populations (Bruzual &
Charlot 2003) to determine the intrinsic emission of the stars in
the simulation. For the optical properties of the dust we use the
BARE-GR-S dust model from Zubko et al. (2004), which is fine-
tuned to be consistent with the extinction, di↵use emission and
depletion in the Milky Way.

One particular aspect that needs special care is the deter-
mination of the dust density. Since the hydrodynamical simu-
lations do not track the dust directly, a recipe needs to be cho-
sen to set the dust density from the properties of the gaseous
medium. We use the assumption that a constant fraction of the
metals in the ISM is locked up into dust grains. While observa-
tions show metallicity gradients across galaxies (Dobashi et al.
2008; Paradis et al. 2012) and local variations in the fraction of
metals locked into dust grains (Hirashita 2012), this simplifica-
tion does not a↵ect our analysis, because we only need to create
mock images reflecting a certain dust mass. In particular, we set
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Fig. 2. Cut through the dust density distribution along the equatorial plane of the R13 galaxy (left panel) and of the Eris galaxy
(right panel). The dust density is given in M� pc�3.

ric, but non-axisymmetric structures such as a prominent bar and
spiral structure are developed quickly because of the instabilities
in the velocity distribution.

We used the snapshot corresponding to the final state of the
galaxy after a run time of 800 Myr. We considered a box with
dimensions 20 ⇥ 20 ⇥ 4 kpc3, which contains a total stellar mass
of 4.4⇥1010 M� and a total gas mass of 3.0⇥109 M�. The galaxy
hosts a prominent bulge and spiral arms, and is characterised by
a high star formation rate (SFR); the total SFR for stars younger
than 57 Myr is about 7.3 M� yr�1. The bar has a central area
of 1 kpc2 that contains almost no ongoing star formation (see
Emsellem et al. 2015), whereas dense star-forming clouds are
abundant at the outer regions of the bar. Along the spiral arms,
dense clumps of gas and star-forming regions have formed with a
relatively uniform separation (the so-called “beads on a string”).
This high level of concentration is related to the relatively short
simulation run time, but continuing the simulation would cause
stellar feedback to more evenly spread matter along the disc.

The second input model in our study is taken from the Eris
simulation (Guedes et al. 2011), one of the most advanced and
realistic simulations of the formation of a Milky Way class
galaxy. Eris was set up as a zoom-in cosmological simulation,
powered by the N-body/SPH GASOLINE code (Wadsley et al.
2004). The simulation follows the formation of a galaxy halo
with mass Mvir = 7.9⇥1011 M� from z = 90 to the present epoch
in a full cosmological setting. The target halo is sampled with 26
million particles divided equally between the dark matter parti-
cles and gas particles. Apart from the obvious gravity and hy-
drodynamical forces, the simulation includes Compton cooling,
atomic cooling, metallicity-dependent radiative cooling at low
temperatures, the ionising e↵ect of a uniform UV background,
star formation and supernova feedback.

We use the final snapshot corresponding to the present
epoch. At z = 0, Eris is a Milky Way-like galaxy characterised

by a beautiful spiral structure and a small bulge in the centre.
The structural properties, the mass budget in the various com-
ponents, and the scaling relations between mass and luminosity
are consistent with a host of observational constraints. For our
analysis, we consider all particles in a box of 28 ⇥ 28 ⇥ 6 kpc3.
This box has 7.8 million star particles and 0.25 million gas par-
ticles, with a total stellar mass of 3.5 ⇥ 1010 M� and a total gas
mass of 4.3 ⇥ 109 M� (about 5 ⇥ 103 M� per star particle and
2 ⇥ 104 M� per gas particle). The smoothing length for the gas
particles ranges between 56 and 2455 pc.

3.2. Creation of mock images

The second step in the analysis is again the creation of mock
images. To do this, SKIRT was extended with modules that read
the output of hydrodynamical simulations as input for the radia-
tive transfer calculations (see also Schaye et al. 2015). We used
the GALAXEV library of simple stellar populations (Bruzual &
Charlot 2003) to determine the intrinsic emission of the stars in
the simulation. For the optical properties of the dust we use the
BARE-GR-S dust model from Zubko et al. (2004), which is fine-
tuned to be consistent with the extinction, di↵use emission and
depletion in the Milky Way.

One particular aspect that needs special care is the deter-
mination of the dust density. Since the hydrodynamical simu-
lations do not track the dust directly, a recipe needs to be cho-
sen to set the dust density from the properties of the gaseous
medium. We use the assumption that a constant fraction of the
metals in the ISM is locked up into dust grains. While observa-
tions show metallicity gradients across galaxies (Dobashi et al.
2008; Paradis et al. 2012) and local variations in the fraction of
metals locked into dust grains (Hirashita 2012), this simplifica-
tion does not a↵ect our analysis, because we only need to create
mock images reflecting a certain dust mass. In particular, we set
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Fig. 3. Mock face-on views for the R13 galaxy (left panel) and for the Eris galaxy (right panel).

The three-colour images are based on the r, g and u band images produced by the SKIRT radiative

transfer code.

Fig. 4. Mock edge-on views for the R13 galaxy, looking at the head of the bar (left panel), and

for the Eris galaxy (right panel). The three-colour images are based on the r, g and u band images

produced by the SKIRT radiative transfer code.

3.2. Creation of mock images

The second step in the analysis is again the creation of mock images. To do this, SKIRT was ex-
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(2004), which is fine-tuned to be consistent with the extinction, di↵use emission and depletion in

the Milky Way.

One particular aspect that needs special care is the determination of the dust density. Since the

hydrodynamical simulations do not track the dust directly, a recipe needs to be chosen to set the

dust density from the properties of the gaseous medium. We use the assumption that a constant

fraction of the metals in the ISM is locked up into dust grains. While observations show metallicity

gradients across galaxies (Dobashi et al. 2008; Paradis et al. 2012) and local variations in the

fraction of metals locked into dust grains (Hirashita 2012), this simplification does not a↵ect our

analysis, because we only need to create mock images reflecting a certain dust mass. In particular,

we set the 3D dust density using

⇢dust = fdust Z ⇢gas (1)
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Fig. 3. Mock face-on views for the R13 galaxy (left panel) and for the Eris galaxy (right panel).

The three-colour images are based on the r, g and u band images produced by the SKIRT radiative

transfer code.

Fig. 4. Mock edge-on views for the R13 galaxy, looking at the head of the bar (left panel), and

for the Eris galaxy (right panel). The three-colour images are based on the r, g and u band images

produced by the SKIRT radiative transfer code.
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populations (Bruzual & Charlot 2003) to determine the intrinsic emission of the stars in the simu-

lation. For the optical properties of the dust we use the BARE-GR-S dust model from Zubko et al.

(2004), which is fine-tuned to be consistent with the extinction, di↵use emission and depletion in

the Milky Way.

One particular aspect that needs special care is the determination of the dust density. Since the

hydrodynamical simulations do not track the dust directly, a recipe needs to be chosen to set the

dust density from the properties of the gaseous medium. We use the assumption that a constant

fraction of the metals in the ISM is locked up into dust grains. While observations show metallicity

gradients across galaxies (Dobashi et al. 2008; Paradis et al. 2012) and local variations in the

fraction of metals locked into dust grains (Hirashita 2012), this simplification does not a↵ect our

analysis, because we only need to create mock images reflecting a certain dust mass. In particular,

we set the 3D dust density using
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Table 2. Model parameter values recovered by the FitSKIRT ra-
diative transfer fits for the R13 and Eris galaxies. For the R13
galaxy, we list two sets of parameters (head and side). They cor-
respond to two independent radiative transfer fits, based on per-
pendicular edge-on viewpoints, looking at the head and the side
of the bar, respectively. For a definition of each parameter, see
De Geyter et al. (2014).

Par. Units R13 (head) R13 (side) Eris

hR,⇤ kpc 4.17± 0.38 3.57± 0.39 4.14± 0.13
hz,⇤ kpc 0.43± 0.01 0.40± 0.01 0.37± 0.01
Re↵ kpc 0.93± 0.04 1.12± 0.08 0.49± 0.07
n — 0.64± 0.03 0.80± 0.04 6.71± 0.48
q — 0.47± 0.01 0.40± 0.03 0.56± 0.03

hR,d kpc 9.47± 0.69 4.23± 0.80 0.35± 0.05
hz,d kpc 0.064± 0.005 0.091± 0.006 0.095± 0.008
Md 106 M� 6.26± 0.24 7.68± 0.33 1.48± 0.18
i deg 89.96± 0.02 89.96± 0.02 90.04± 0.16

it follows that the radiative transfer model underestimates the
“true” dust mass by a factor of 2.9±0.2 and 2.4±0.2 for the R13
galaxy, and by a factor of 4.0 ± 0.4 for the Eris galaxy.

4. Discussion

The previous work by M00 and M02 cited in Sect. 1, and our
results presented in Sect. 2, indicate that fitting a smooth galaxy
model to a certain class of basic, quasi-analytical input models
recovers the intrinsic dust mass of the input model to within 40%
or better. In fact, as shown by the close correspondence between
recovered and input values listed in Table 1, a logarithmic spi-
ral arm perturbation or a clumpy dust distribution seem to have
only a modest e↵ect on the structural parameters observed in an
optical edge-on view of a disc galaxy, including the derived dust
mass.

In contrast, our results presented in Sect. 3 indicate that fit-
ting a smooth galaxy model to more realistic galaxy models, ob-
tained from high-resolution hydrodynamical simulations, under-
estimates the intrinsic dust mass of the input model by a factor of
about three. This is a tantalising result, especially since a factor
of roughly the same magnitude has been found in energy bal-
ance studies of real edge-on spiral galaxies (Popescu et al. 2000;
Misiriotis et al. 2001; Alton et al. 2004; Dasyra et al. 2005; Baes
et al. 2010; De Looze et al. 2012a,b).

It is tempting to conclude that the level of dust underesti-
mation is driven by the fundamental di↵erences between the in-
put models. The models in M00 and M02 and in our Sect. 2
are derived from well-behaved, smooth-disc models by apply-
ing a relatively modest perturbation. For example, the spiral arm
perturbation is fully analytical and cancels out exactly when av-
eraged over azimuth. The galaxy models constructed from hy-
drodynamical simulation snapshots, presented in Sect. 3, feature
much more realistic inhomogeneities at a wide range of scales,
from large-scale bars and spiral arms to parsec-sized clumps and
filaments. These structural complexities may very well be re-
sponsible for a higher level of dust underestimation in the radia-
tive transfer fits.

In other words, our modelling suggests that the complex and
inhomogeneous structure of galaxies can hide up to three times
more dust than is “observed” when the optical images are fitted

with smooth axisymmetric models. FIR/submm observations of
several spiral galaxies also imply a factor of three times more
dust than visible in the optical, and this correspondence sug-
gests that the inhomogeneous structure of the ISM possibly is the
source of the dust energy balance problem. The recent work by
De Looze et al. (2014) supports this hypothesis. They performed
a detailed panchromatic radiative transfer modelling of the face-
on galaxy M51 with a model that includes the complex geom-
etry as derived from the FUV attenuation map. The model self-
consistently reproduces the surface brightness images from UV
to submm wavelengths. The face-on analysis is of course less af-
fected by optical depth e↵ects along the line of sight, which may
have contributed to this result as well.

We must be careful not to jump to conclusions. First, while a
typical factor of about three is found by several teams for di↵er-
ent edge-on spiral galaxies (Popescu et al. 2000; Misiriotis et al.
2001; Alton et al. 2004; Dasyra et al. 2005; Baes et al. 2010;
De Looze et al. 2012a,b), this is by no means an ubiquitous fea-
ture. This was shown most recently by De Geyter et al. (2015),
who performed the same fitting procedure as presented in this
paper on two edge-on spiral galaxies from the sample analysed
in De Geyter et al. (2014). For one of the two galaxies, a typical
factor-of-three discrepancy is observed between the best-fitting
FitSKIRT model and the observed FIR/submm SED, whereas
for the other galaxy the FitSKIRT model accurately describes
the observed spectrum both in absolute values and shape.

Second, even for those galaxies in which a dust energy bal-
ance problem is encountered, it is a matter of debate whether
this can be ascribed to the same physical scenario. For exam-
ple, the dust emission excess in the Sombrero galaxy is shown
to be compatible with an additional unresolved cold dust reser-
voir (De Looze et al. 2012b), whereas the excess emission in the
edge-on spiral UGC 4754 is fairly compatible with an additional
warmer component, such as expected when linked to recent star
formation (Baes et al. 2010, 2011).

Finally, our present study is based on just two simulated spi-
ral galaxies, and each of them has its strengths and weaknesses.
In both galaxies we recognise the structures and morphologies
of real galaxies, including spiral arms, bars, bulges, star-forming
regions, and compact clumps. However, the R13 galaxy contains
star-forming regions that look somewhat artificial, the galaxy’s
dust lane is very thin and extended, and the Eris galaxy has a
faint and rather fuzzy dust lane that is not visible in the r, i and z
bands, which is atypical for real galaxies.

5. Conclusion

We set out to shed light on the dust energy balance problem in
edge-on spiral galaxies by performing the radiative transfer fit-
ting procedure that has been used previously for studying real
galaxies on snapshots obtained from hydrodynamical simula-
tions. These simulated galaxies feature a more realistic inhomo-
geneous structure than typical quasi-analytical models, and their
“true” dust mass is known.

We used two simulated Milky Way-like galaxies as input
models. The R13 simulation is a self-consistent hydrodynami-
cal simulation performed with the AMR code RAMSES. The
Eris simulation is a zoom-in cosmological simulation performed
by the N-body/SPH GASOLINE code. We used our radiative
transfer code SKIRT to create mock observational images in the
SDSS ugriz bands for an edge-on view of both galaxies, and we
fitted the parameters of a basic, smooth-disc galaxy model to
these images with our radiative-ransfer fitting code FitSKIRT.
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Table 2. Model parameter values recovered by the FitSKIRT ra-
diative transfer fits for the R13 and Eris galaxies. For the R13
galaxy, we list two sets of parameters (head and side). They cor-
respond to two independent radiative transfer fits, based on per-
pendicular edge-on viewpoints, looking at the head and the side
of the bar, respectively. For a definition of each parameter, see
De Geyter et al. (2014).

Par. Units R13 (head) R13 (side) Eris

hR,⇤ kpc 4.17± 0.38 3.57± 0.39 4.14± 0.13
hz,⇤ kpc 0.43± 0.01 0.40± 0.01 0.37± 0.01
Re↵ kpc 0.93± 0.04 1.12± 0.08 0.49± 0.07
n — 0.64± 0.03 0.80± 0.04 6.71± 0.48
q — 0.47± 0.01 0.40± 0.03 0.56± 0.03

hR,d kpc 9.47± 0.69 4.23± 0.80 0.35± 0.05
hz,d kpc 0.064± 0.005 0.091± 0.006 0.095± 0.008
Md 106 M� 6.26± 0.24 7.68± 0.33 1.48± 0.18
i deg 89.96± 0.02 89.96± 0.02 90.04± 0.16

it follows that the radiative transfer model underestimates the
“true” dust mass by a factor of 2.9±0.2 and 2.4±0.2 for the R13
galaxy, and by a factor of 4.0 ± 0.4 for the Eris galaxy.

4. Discussion

The previous work by M00 and M02 cited in Sect. 1, and our
results presented in Sect. 2, indicate that fitting a smooth galaxy
model to a certain class of basic, quasi-analytical input models
recovers the intrinsic dust mass of the input model to within 40%
or better. In fact, as shown by the close correspondence between
recovered and input values listed in Table 1, a logarithmic spi-
ral arm perturbation or a clumpy dust distribution seem to have
only a modest e↵ect on the structural parameters observed in an
optical edge-on view of a disc galaxy, including the derived dust
mass.

In contrast, our results presented in Sect. 3 indicate that fit-
ting a smooth galaxy model to more realistic galaxy models, ob-
tained from high-resolution hydrodynamical simulations, under-
estimates the intrinsic dust mass of the input model by a factor of
about three. This is a tantalising result, especially since a factor
of roughly the same magnitude has been found in energy bal-
ance studies of real edge-on spiral galaxies (Popescu et al. 2000;
Misiriotis et al. 2001; Alton et al. 2004; Dasyra et al. 2005; Baes
et al. 2010; De Looze et al. 2012a,b).

It is tempting to conclude that the level of dust underesti-
mation is driven by the fundamental di↵erences between the in-
put models. The models in M00 and M02 and in our Sect. 2
are derived from well-behaved, smooth-disc models by apply-
ing a relatively modest perturbation. For example, the spiral arm
perturbation is fully analytical and cancels out exactly when av-
eraged over azimuth. The galaxy models constructed from hy-
drodynamical simulation snapshots, presented in Sect. 3, feature
much more realistic inhomogeneities at a wide range of scales,
from large-scale bars and spiral arms to parsec-sized clumps and
filaments. These structural complexities may very well be re-
sponsible for a higher level of dust underestimation in the radia-
tive transfer fits.

In other words, our modelling suggests that the complex and
inhomogeneous structure of galaxies can hide up to three times
more dust than is “observed” when the optical images are fitted

with smooth axisymmetric models. FIR/submm observations of
several spiral galaxies also imply a factor of three times more
dust than visible in the optical, and this correspondence sug-
gests that the inhomogeneous structure of the ISM possibly is the
source of the dust energy balance problem. The recent work by
De Looze et al. (2014) supports this hypothesis. They performed
a detailed panchromatic radiative transfer modelling of the face-
on galaxy M51 with a model that includes the complex geom-
etry as derived from the FUV attenuation map. The model self-
consistently reproduces the surface brightness images from UV
to submm wavelengths. The face-on analysis is of course less af-
fected by optical depth e↵ects along the line of sight, which may
have contributed to this result as well.

We must be careful not to jump to conclusions. First, while a
typical factor of about three is found by several teams for di↵er-
ent edge-on spiral galaxies (Popescu et al. 2000; Misiriotis et al.
2001; Alton et al. 2004; Dasyra et al. 2005; Baes et al. 2010;
De Looze et al. 2012a,b), this is by no means an ubiquitous fea-
ture. This was shown most recently by De Geyter et al. (2015),
who performed the same fitting procedure as presented in this
paper on two edge-on spiral galaxies from the sample analysed
in De Geyter et al. (2014). For one of the two galaxies, a typical
factor-of-three discrepancy is observed between the best-fitting
FitSKIRT model and the observed FIR/submm SED, whereas
for the other galaxy the FitSKIRT model accurately describes
the observed spectrum both in absolute values and shape.

Second, even for those galaxies in which a dust energy bal-
ance problem is encountered, it is a matter of debate whether
this can be ascribed to the same physical scenario. For exam-
ple, the dust emission excess in the Sombrero galaxy is shown
to be compatible with an additional unresolved cold dust reser-
voir (De Looze et al. 2012b), whereas the excess emission in the
edge-on spiral UGC 4754 is fairly compatible with an additional
warmer component, such as expected when linked to recent star
formation (Baes et al. 2010, 2011).

Finally, our present study is based on just two simulated spi-
ral galaxies, and each of them has its strengths and weaknesses.
In both galaxies we recognise the structures and morphologies
of real galaxies, including spiral arms, bars, bulges, star-forming
regions, and compact clumps. However, the R13 galaxy contains
star-forming regions that look somewhat artificial, the galaxy’s
dust lane is very thin and extended, and the Eris galaxy has a
faint and rather fuzzy dust lane that is not visible in the r, i and z
bands, which is atypical for real galaxies.

5. Conclusion

We set out to shed light on the dust energy balance problem in
edge-on spiral galaxies by performing the radiative transfer fit-
ting procedure that has been used previously for studying real
galaxies on snapshots obtained from hydrodynamical simula-
tions. These simulated galaxies feature a more realistic inhomo-
geneous structure than typical quasi-analytical models, and their
“true” dust mass is known.

We used two simulated Milky Way-like galaxies as input
models. The R13 simulation is a self-consistent hydrodynami-
cal simulation performed with the AMR code RAMSES. The
Eris simulation is a zoom-in cosmological simulation performed
by the N-body/SPH GASOLINE code. We used our radiative
transfer code SKIRT to create mock observational images in the
SDSS ugriz bands for an edge-on view of both galaxies, and we
fitted the parameters of a basic, smooth-disc galaxy model to
these images with our radiative-ransfer fitting code FitSKIRT.
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Fig. 3. Mock face-on views for the R13 galaxy (left panel) and for the Eris galaxy (right panel).

The three-colour images are based on the r, g and u band images produced by the SKIRT radiative

transfer code.

Fig. 4. Mock edge-on views for the R13 galaxy, looking at the head of the bar (left panel), and

for the Eris galaxy (right panel). The three-colour images are based on the r, g and u band images

produced by the SKIRT radiative transfer code.

3.2. Creation of mock images

The second step in the analysis is again the creation of mock images. To do this, SKIRT was ex-

tended with modules that read the output of hydrodynamical simulations as input for the radiative

transfer calculations (see also Schaye et al. 2015). We used the GALAXEV library of simple stellar

populations (Bruzual & Charlot 2003) to determine the intrinsic emission of the stars in the simu-

lation. For the optical properties of the dust we use the BARE-GR-S dust model from Zubko et al.

(2004), which is fine-tuned to be consistent with the extinction, di↵use emission and depletion in

the Milky Way.

One particular aspect that needs special care is the determination of the dust density. Since the

hydrodynamical simulations do not track the dust directly, a recipe needs to be chosen to set the

dust density from the properties of the gaseous medium. We use the assumption that a constant

fraction of the metals in the ISM is locked up into dust grains. While observations show metallicity

gradients across galaxies (Dobashi et al. 2008; Paradis et al. 2012) and local variations in the

fraction of metals locked into dust grains (Hirashita 2012), this simplification does not a↵ect our

analysis, because we only need to create mock images reflecting a certain dust mass. In particular,

we set the 3D dust density using

⇢dust = fdust Z ⇢gas (1)
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where hk(T ) is the specific enthalpy of the grain material of dust
component k at temperature T .

The emissivity per hydrogen atom from a dust mixture with
grain type components k and grain size bins b exposed to a ra-
diation field J(�), called the input field, can be expressed as a
function of the representative grain properties as

"(�) =
X

k,b

&abs
k,b (�)

Z 1

0
Pk,b,J(T ) B(�,T ) dT (18)

where B(�,T ) is the Planck function defined in Eq. (10), and
Pk,b,J(T ) is the probability of finding the representative grain of
bin k, b at temperature T .

The emission originating in a dust mixture with specified to-
tal mass M can then be written as

j(�) =
M
µ
"(�) (19)

with µ given by Eq. (7). When combining the emission from var-
ious dust mixes, it is useful to recall that it is physically mean-
ingful to add cross sections and masses, while mass coe�cients,
in general, cannot be added meaningfully:

1 + 2 =
&1

µ1
+
&2

µ2
,
&1 + &2

µ1 + µ2
· (20)

The challenge is thus to compute the probability distribution of
grain temperatures, Pk,b,J(T ), which depends on the input radi-
ation field in addition to the grain properties. See, for example,
Fig. 4 of Draine & Li (2007) for an illustration of various tem-
perature distribution curves.

In this discussion, we characterize P as a function of grain
temperature. The temperature of a grain and its internal energy
are related through Eq. (8), so we could equivalently characterize
P as a function of internal grain energy.

4.2. Equilibrium heating dust emission

When the representative grain in bin k, b is in LTE with the sur-
rounding radiation field J(�), the temperature probability distri-
bution Pk,b,J(T ) becomes a delta function at the grain equilibrium
temperature

Pk,b,J(T ) = �(T � T eq
k,b,J), (21)

and the equilibrium temperature can be determined via the en-
ergy balance equation
Z 1

0
&abs

k,b (�) J(�) d� =
Z 1

0
&abs

k,b (�) B(�,T eq
k,b,J) d�. (22)

4.3. Stochastic heating dust emission

When a single photon absorption can significantly change the
internal energy of a representative grain, the grain is not in LTE
with the surrounding radiation field J(�). The grain is stochas-
tically heated, and its state can no longer be characterized by a
single temperature. In that case, we need to solve for the tem-
perature probability distribution Pk,b,J(T ) to calculate the grain
emission. The six RT codes benchmarked in this paper em-
ploy the method described in Guhathakurta & Draine (1989),
Siebenmorgen et al. (1992), Manske & Henning (1998), and
Draine & Li (2001). For ease of reference, this section summa-
rizes the method using the quantities and notation introduced in
the previous sections of this paper. We focus on a single grain

size bin and a specific radiation field, dropping the indices k, b,
and J from the notation.

We select an appropriate temperature grid with N bins Ti,
i = 0, . . . ,N � 1 (see Sect. 4.1). Our goal is to determine the
probabilities Pi = P(Ti) that a grain resides in temperature bin i.
We define a transition matrix Af ,i that describes the probability
per unit time for a grain to transfer from initial temperature bin i
to final temperature bin f . The transition matrix elements in the
case of heating ( f > i) are given by

Af ,i = 4⇡ &abs(� f i) J(� f i)
hc�Hf

h
H(T f ) � H(Ti)

i3 , (23)

where H(T f ) and H(Ti) are the enthalpies of a dust grain in the
final and initial temperature bins, �Hf = H(T max

f ) � H(T min
f ) is

the enthalpy width of the final temperature bin, and � f i is the
transition wavelength that can be obtained from

� f i =
hc

H(T f ) � H(Ti)
· (24)

We assume that a dust grain cools by radiating photons with an
energy that is very small compared to the internal energy of the
grain. With this continuous cooling approximation, cooling tran-
sitions occur only to the next lower level, so that Af ,i = 0 for
f < i � 1 and

Ai�1,i =
4⇡

H(Ti) � H(Ti�1)

Z 1

0
&abs(�) B(�,Ti) d�. (25)

The diagonal matrix elements are defined as Ai,i = �P f,i A f ,i.
However, there is no need to explicitly calculate these values
because they are not used in the final procedure.

Assuming a steady state situation, the probabilities Pi can be
obtained from the transition matrix by solving the set of N linear
equations
N�1X

i= 0

Af ,i Pi = 0 f = 0, ...,N � 1, (26)

along with the normalization condition
N�1X

i= 0

Pi = 1 (27)

where N is the number of temperature bins. Because the matrix
values for f < i � 1 are zero, these equations can be solved by a
recursive procedure of computational order O(N2). To avoid the
numerical instabilities caused by the negative diagonal elements,
the procedure employs a well-chosen linear combination of the
original equations. This leads to the following recursion relations
for the adjusted matrix elements Bf ,i

BN�1,i = AN�1,i i = 0, . . . ,N � 2 (28)
Bf ,i = Bf+1,i + Af ,i, f = N � 2, . . . , 1; i = 0, . . . , f � 1, (29)

for the unnormalized probability distribution Xi

X0 = 1 (30)

Xi =

Pi�1
j= 0 Bi, jX j

Ai�1,i
i = 1, . . . ,N � 1, (31)

and finally for the normalized probabilities Pi

Pi =
XiPN�1

j= 0 Xj
i = 0, . . . ,N � 1. (32)
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where hk(T ) is the specific enthalpy of the grain material of dust
component k at temperature T .

The emissivity per hydrogen atom from a dust mixture with
grain type components k and grain size bins b exposed to a ra-
diation field J(�), called the input field, can be expressed as a
function of the representative grain properties as

"(�) =
X

k,b

&abs
k,b (�)

Z 1

0
Pk,b,J(T ) B(�,T ) dT (18)

where B(�,T ) is the Planck function defined in Eq. (10), and
Pk,b,J(T ) is the probability of finding the representative grain of
bin k, b at temperature T .

The emission originating in a dust mixture with specified to-
tal mass M can then be written as

j(�) =
M
µ
"(�) (19)

with µ given by Eq. (7). When combining the emission from var-
ious dust mixes, it is useful to recall that it is physically mean-
ingful to add cross sections and masses, while mass coe�cients,
in general, cannot be added meaningfully:

1 + 2 =
&1

µ1
+
&2

µ2
,
&1 + &2

µ1 + µ2
· (20)

The challenge is thus to compute the probability distribution of
grain temperatures, Pk,b,J(T ), which depends on the input radi-
ation field in addition to the grain properties. See, for example,
Fig. 4 of Draine & Li (2007) for an illustration of various tem-
perature distribution curves.

In this discussion, we characterize P as a function of grain
temperature. The temperature of a grain and its internal energy
are related through Eq. (8), so we could equivalently characterize
P as a function of internal grain energy.

4.2. Equilibrium heating dust emission

When the representative grain in bin k, b is in LTE with the sur-
rounding radiation field J(�), the temperature probability distri-
bution Pk,b,J(T ) becomes a delta function at the grain equilibrium
temperature

Pk,b,J(T ) = �(T � T eq
k,b,J), (21)

and the equilibrium temperature can be determined via the en-
ergy balance equation
Z 1

0
&abs

k,b (�) J(�) d� =
Z 1

0
&abs

k,b (�) B(�,T eq
k,b,J) d�. (22)

4.3. Stochastic heating dust emission

When a single photon absorption can significantly change the
internal energy of a representative grain, the grain is not in LTE
with the surrounding radiation field J(�). The grain is stochas-
tically heated, and its state can no longer be characterized by a
single temperature. In that case, we need to solve for the tem-
perature probability distribution Pk,b,J(T ) to calculate the grain
emission. The six RT codes benchmarked in this paper em-
ploy the method described in Guhathakurta & Draine (1989),
Siebenmorgen et al. (1992), Manske & Henning (1998), and
Draine & Li (2001). For ease of reference, this section summa-
rizes the method using the quantities and notation introduced in
the previous sections of this paper. We focus on a single grain

size bin and a specific radiation field, dropping the indices k, b,
and J from the notation.

We select an appropriate temperature grid with N bins Ti,
i = 0, . . . ,N � 1 (see Sect. 4.1). Our goal is to determine the
probabilities Pi = P(Ti) that a grain resides in temperature bin i.
We define a transition matrix Af ,i that describes the probability
per unit time for a grain to transfer from initial temperature bin i
to final temperature bin f . The transition matrix elements in the
case of heating ( f > i) are given by

Af ,i = 4⇡ &abs(� f i) J(� f i)
hc�Hf

h
H(T f ) � H(Ti)

i3 , (23)

where H(T f ) and H(Ti) are the enthalpies of a dust grain in the
final and initial temperature bins, �Hf = H(T max

f ) � H(T min
f ) is

the enthalpy width of the final temperature bin, and � f i is the
transition wavelength that can be obtained from

� f i =
hc

H(T f ) � H(Ti)
· (24)

We assume that a dust grain cools by radiating photons with an
energy that is very small compared to the internal energy of the
grain. With this continuous cooling approximation, cooling tran-
sitions occur only to the next lower level, so that Af ,i = 0 for
f < i � 1 and

Ai�1,i =
4⇡

H(Ti) � H(Ti�1)

Z 1

0
&abs(�) B(�,Ti) d�. (25)

The diagonal matrix elements are defined as Ai,i = �P f,i A f ,i.
However, there is no need to explicitly calculate these values
because they are not used in the final procedure.

Assuming a steady state situation, the probabilities Pi can be
obtained from the transition matrix by solving the set of N linear
equations
N�1X

i= 0

Af ,i Pi = 0 f = 0, ...,N � 1, (26)

along with the normalization condition
N�1X

i= 0

Pi = 1 (27)

where N is the number of temperature bins. Because the matrix
values for f < i � 1 are zero, these equations can be solved by a
recursive procedure of computational order O(N2). To avoid the
numerical instabilities caused by the negative diagonal elements,
the procedure employs a well-chosen linear combination of the
original equations. This leads to the following recursion relations
for the adjusted matrix elements Bf ,i

BN�1,i = AN�1,i i = 0, . . . ,N � 2 (28)
Bf ,i = Bf+1,i + Af ,i, f = N � 2, . . . , 1; i = 0, . . . , f � 1, (29)

for the unnormalized probability distribution Xi

X0 = 1 (30)

Xi =

Pi�1
j= 0 Bi, jX j

Ai�1,i
i = 1, . . . ,N � 1, (31)

and finally for the normalized probabilities Pi

Pi =
XiPN�1

j= 0 Xj
i = 0, . . . ,N � 1. (32)
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where hk(T ) is the specific enthalpy of the grain material of dust
component k at temperature T .

The emissivity per hydrogen atom from a dust mixture with
grain type components k and grain size bins b exposed to a ra-
diation field J(�), called the input field, can be expressed as a
function of the representative grain properties as

"(�) =
X

k,b

&abs
k,b (�)

Z 1

0
Pk,b,J(T ) B(�,T ) dT (18)

where B(�,T ) is the Planck function defined in Eq. (10), and
Pk,b,J(T ) is the probability of finding the representative grain of
bin k, b at temperature T .

The emission originating in a dust mixture with specified to-
tal mass M can then be written as

j(�) =
M
µ
"(�) (19)

with µ given by Eq. (7). When combining the emission from var-
ious dust mixes, it is useful to recall that it is physically mean-
ingful to add cross sections and masses, while mass coe�cients,
in general, cannot be added meaningfully:

1 + 2 =
&1

µ1
+
&2

µ2
,
&1 + &2

µ1 + µ2
· (20)

The challenge is thus to compute the probability distribution of
grain temperatures, Pk,b,J(T ), which depends on the input radi-
ation field in addition to the grain properties. See, for example,
Fig. 4 of Draine & Li (2007) for an illustration of various tem-
perature distribution curves.

In this discussion, we characterize P as a function of grain
temperature. The temperature of a grain and its internal energy
are related through Eq. (8), so we could equivalently characterize
P as a function of internal grain energy.

4.2. Equilibrium heating dust emission

When the representative grain in bin k, b is in LTE with the sur-
rounding radiation field J(�), the temperature probability distri-
bution Pk,b,J(T ) becomes a delta function at the grain equilibrium
temperature

Pk,b,J(T ) = �(T � T eq
k,b,J), (21)

and the equilibrium temperature can be determined via the en-
ergy balance equation
Z 1

0
&abs

k,b (�) J(�) d� =
Z 1

0
&abs

k,b (�) B(�,T eq
k,b,J) d�. (22)

4.3. Stochastic heating dust emission

When a single photon absorption can significantly change the
internal energy of a representative grain, the grain is not in LTE
with the surrounding radiation field J(�). The grain is stochas-
tically heated, and its state can no longer be characterized by a
single temperature. In that case, we need to solve for the tem-
perature probability distribution Pk,b,J(T ) to calculate the grain
emission. The six RT codes benchmarked in this paper em-
ploy the method described in Guhathakurta & Draine (1989),
Siebenmorgen et al. (1992), Manske & Henning (1998), and
Draine & Li (2001). For ease of reference, this section summa-
rizes the method using the quantities and notation introduced in
the previous sections of this paper. We focus on a single grain

size bin and a specific radiation field, dropping the indices k, b,
and J from the notation.

We select an appropriate temperature grid with N bins Ti,
i = 0, . . . ,N � 1 (see Sect. 4.1). Our goal is to determine the
probabilities Pi = P(Ti) that a grain resides in temperature bin i.
We define a transition matrix Af ,i that describes the probability
per unit time for a grain to transfer from initial temperature bin i
to final temperature bin f . The transition matrix elements in the
case of heating ( f > i) are given by

Af ,i = 4⇡ &abs(� f i) J(� f i)
hc�Hf

h
H(T f ) � H(Ti)

i3 , (23)

where H(T f ) and H(Ti) are the enthalpies of a dust grain in the
final and initial temperature bins, �Hf = H(T max

f ) � H(T min
f ) is

the enthalpy width of the final temperature bin, and � f i is the
transition wavelength that can be obtained from

� f i =
hc

H(T f ) � H(Ti)
· (24)

We assume that a dust grain cools by radiating photons with an
energy that is very small compared to the internal energy of the
grain. With this continuous cooling approximation, cooling tran-
sitions occur only to the next lower level, so that Af ,i = 0 for
f < i � 1 and

Ai�1,i =
4⇡

H(Ti) � H(Ti�1)

Z 1

0
&abs(�) B(�,Ti) d�. (25)

The diagonal matrix elements are defined as Ai,i = �P f,i A f ,i.
However, there is no need to explicitly calculate these values
because they are not used in the final procedure.

Assuming a steady state situation, the probabilities Pi can be
obtained from the transition matrix by solving the set of N linear
equations
N�1X

i= 0

Af ,i Pi = 0 f = 0, ...,N � 1, (26)

along with the normalization condition
N�1X

i= 0

Pi = 1 (27)

where N is the number of temperature bins. Because the matrix
values for f < i � 1 are zero, these equations can be solved by a
recursive procedure of computational order O(N2). To avoid the
numerical instabilities caused by the negative diagonal elements,
the procedure employs a well-chosen linear combination of the
original equations. This leads to the following recursion relations
for the adjusted matrix elements Bf ,i

BN�1,i = AN�1,i i = 0, . . . ,N � 2 (28)
Bf ,i = Bf+1,i + Af ,i, f = N � 2, . . . , 1; i = 0, . . . , f � 1, (29)

for the unnormalized probability distribution Xi

X0 = 1 (30)

Xi =

Pi�1
j= 0 Bi, jX j

Ai�1,i
i = 1, . . . ,N � 1, (31)

and finally for the normalized probabilities Pi

Pi =
XiPN�1

j= 0 Xj
i = 0, . . . ,N � 1. (32)
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where hk(T ) is the specific enthalpy of the grain material of dust
component k at temperature T .

The emissivity per hydrogen atom from a dust mixture with
grain type components k and grain size bins b exposed to a ra-
diation field J(�), called the input field, can be expressed as a
function of the representative grain properties as

"(�) =
X

k,b

&abs
k,b (�)

Z 1

0
Pk,b,J(T ) B(�,T ) dT (18)

where B(�,T ) is the Planck function defined in Eq. (10), and
Pk,b,J(T ) is the probability of finding the representative grain of
bin k, b at temperature T .

The emission originating in a dust mixture with specified to-
tal mass M can then be written as

j(�) =
M
µ
"(�) (19)

with µ given by Eq. (7). When combining the emission from var-
ious dust mixes, it is useful to recall that it is physically mean-
ingful to add cross sections and masses, while mass coe�cients,
in general, cannot be added meaningfully:

1 + 2 =
&1

µ1
+
&2

µ2
,
&1 + &2

µ1 + µ2
· (20)

The challenge is thus to compute the probability distribution of
grain temperatures, Pk,b,J(T ), which depends on the input radi-
ation field in addition to the grain properties. See, for example,
Fig. 4 of Draine & Li (2007) for an illustration of various tem-
perature distribution curves.

In this discussion, we characterize P as a function of grain
temperature. The temperature of a grain and its internal energy
are related through Eq. (8), so we could equivalently characterize
P as a function of internal grain energy.

4.2. Equilibrium heating dust emission

When the representative grain in bin k, b is in LTE with the sur-
rounding radiation field J(�), the temperature probability distri-
bution Pk,b,J(T ) becomes a delta function at the grain equilibrium
temperature

Pk,b,J(T ) = �(T � T eq
k,b,J), (21)

and the equilibrium temperature can be determined via the en-
ergy balance equation
Z 1

0
&abs

k,b (�) J(�) d� =
Z 1

0
&abs

k,b (�) B(�,T eq
k,b,J) d�. (22)

4.3. Stochastic heating dust emission

When a single photon absorption can significantly change the
internal energy of a representative grain, the grain is not in LTE
with the surrounding radiation field J(�). The grain is stochas-
tically heated, and its state can no longer be characterized by a
single temperature. In that case, we need to solve for the tem-
perature probability distribution Pk,b,J(T ) to calculate the grain
emission. The six RT codes benchmarked in this paper em-
ploy the method described in Guhathakurta & Draine (1989),
Siebenmorgen et al. (1992), Manske & Henning (1998), and
Draine & Li (2001). For ease of reference, this section summa-
rizes the method using the quantities and notation introduced in
the previous sections of this paper. We focus on a single grain

size bin and a specific radiation field, dropping the indices k, b,
and J from the notation.

We select an appropriate temperature grid with N bins Ti,
i = 0, . . . ,N � 1 (see Sect. 4.1). Our goal is to determine the
probabilities Pi = P(Ti) that a grain resides in temperature bin i.
We define a transition matrix Af ,i that describes the probability
per unit time for a grain to transfer from initial temperature bin i
to final temperature bin f . The transition matrix elements in the
case of heating ( f > i) are given by

Af ,i = 4⇡ &abs(� f i) J(� f i)
hc�Hf

h
H(T f ) � H(Ti)

i3 , (23)

where H(T f ) and H(Ti) are the enthalpies of a dust grain in the
final and initial temperature bins, �Hf = H(T max

f ) � H(T min
f ) is

the enthalpy width of the final temperature bin, and � f i is the
transition wavelength that can be obtained from

� f i =
hc

H(T f ) � H(Ti)
· (24)

We assume that a dust grain cools by radiating photons with an
energy that is very small compared to the internal energy of the
grain. With this continuous cooling approximation, cooling tran-
sitions occur only to the next lower level, so that Af ,i = 0 for
f < i � 1 and

Ai�1,i =
4⇡

H(Ti) � H(Ti�1)

Z 1

0
&abs(�) B(�,Ti) d�. (25)

The diagonal matrix elements are defined as Ai,i = �P f,i A f ,i.
However, there is no need to explicitly calculate these values
because they are not used in the final procedure.

Assuming a steady state situation, the probabilities Pi can be
obtained from the transition matrix by solving the set of N linear
equations
N�1X

i= 0

Af ,i Pi = 0 f = 0, ...,N � 1, (26)

along with the normalization condition
N�1X

i= 0

Pi = 1 (27)

where N is the number of temperature bins. Because the matrix
values for f < i � 1 are zero, these equations can be solved by a
recursive procedure of computational order O(N2). To avoid the
numerical instabilities caused by the negative diagonal elements,
the procedure employs a well-chosen linear combination of the
original equations. This leads to the following recursion relations
for the adjusted matrix elements Bf ,i

BN�1,i = AN�1,i i = 0, . . . ,N � 2 (28)
Bf ,i = Bf+1,i + Af ,i, f = N � 2, . . . , 1; i = 0, . . . , f � 1, (29)

for the unnormalized probability distribution Xi

X0 = 1 (30)

Xi =

Pi�1
j= 0 Bi, jX j

Ai�1,i
i = 1, . . . ,N � 1, (31)

and finally for the normalized probabilities Pi

Pi =
XiPN�1

j= 0 Xj
i = 0, . . . ,N � 1. (32)
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where hk(T ) is the specific enthalpy of the grain material of dust
component k at temperature T .

The emissivity per hydrogen atom from a dust mixture with
grain type components k and grain size bins b exposed to a ra-
diation field J(�), called the input field, can be expressed as a
function of the representative grain properties as

"(�) =
X

k,b

&abs
k,b (�)

Z 1

0
Pk,b,J(T ) B(�,T ) dT (18)

where B(�,T ) is the Planck function defined in Eq. (10), and
Pk,b,J(T ) is the probability of finding the representative grain of
bin k, b at temperature T .

The emission originating in a dust mixture with specified to-
tal mass M can then be written as

j(�) =
M
µ
"(�) (19)

with µ given by Eq. (7). When combining the emission from var-
ious dust mixes, it is useful to recall that it is physically mean-
ingful to add cross sections and masses, while mass coe�cients,
in general, cannot be added meaningfully:

1 + 2 =
&1

µ1
+
&2

µ2
,
&1 + &2

µ1 + µ2
· (20)

The challenge is thus to compute the probability distribution of
grain temperatures, Pk,b,J(T ), which depends on the input radi-
ation field in addition to the grain properties. See, for example,
Fig. 4 of Draine & Li (2007) for an illustration of various tem-
perature distribution curves.

In this discussion, we characterize P as a function of grain
temperature. The temperature of a grain and its internal energy
are related through Eq. (8), so we could equivalently characterize
P as a function of internal grain energy.

4.2. Equilibrium heating dust emission

When the representative grain in bin k, b is in LTE with the sur-
rounding radiation field J(�), the temperature probability distri-
bution Pk,b,J(T ) becomes a delta function at the grain equilibrium
temperature

Pk,b,J(T ) = �(T � T eq
k,b,J), (21)

and the equilibrium temperature can be determined via the en-
ergy balance equation
Z 1

0
&abs

k,b (�) J(�) d� =
Z 1

0
&abs

k,b (�) B(�,T eq
k,b,J) d�. (22)

4.3. Stochastic heating dust emission

When a single photon absorption can significantly change the
internal energy of a representative grain, the grain is not in LTE
with the surrounding radiation field J(�). The grain is stochas-
tically heated, and its state can no longer be characterized by a
single temperature. In that case, we need to solve for the tem-
perature probability distribution Pk,b,J(T ) to calculate the grain
emission. The six RT codes benchmarked in this paper em-
ploy the method described in Guhathakurta & Draine (1989),
Siebenmorgen et al. (1992), Manske & Henning (1998), and
Draine & Li (2001). For ease of reference, this section summa-
rizes the method using the quantities and notation introduced in
the previous sections of this paper. We focus on a single grain

size bin and a specific radiation field, dropping the indices k, b,
and J from the notation.

We select an appropriate temperature grid with N bins Ti,
i = 0, . . . ,N � 1 (see Sect. 4.1). Our goal is to determine the
probabilities Pi = P(Ti) that a grain resides in temperature bin i.
We define a transition matrix Af ,i that describes the probability
per unit time for a grain to transfer from initial temperature bin i
to final temperature bin f . The transition matrix elements in the
case of heating ( f > i) are given by

Af ,i = 4⇡ &abs(� f i) J(� f i)
hc�Hf

h
H(T f ) � H(Ti)

i3 , (23)

where H(T f ) and H(Ti) are the enthalpies of a dust grain in the
final and initial temperature bins, �Hf = H(T max

f ) � H(T min
f ) is

the enthalpy width of the final temperature bin, and � f i is the
transition wavelength that can be obtained from

� f i =
hc

H(T f ) � H(Ti)
· (24)

We assume that a dust grain cools by radiating photons with an
energy that is very small compared to the internal energy of the
grain. With this continuous cooling approximation, cooling tran-
sitions occur only to the next lower level, so that Af ,i = 0 for
f < i � 1 and

Ai�1,i =
4⇡

H(Ti) � H(Ti�1)

Z 1

0
&abs(�) B(�,Ti) d�. (25)

The diagonal matrix elements are defined as Ai,i = �P f,i A f ,i.
However, there is no need to explicitly calculate these values
because they are not used in the final procedure.

Assuming a steady state situation, the probabilities Pi can be
obtained from the transition matrix by solving the set of N linear
equations
N�1X

i= 0

Af ,i Pi = 0 f = 0, ...,N � 1, (26)

along with the normalization condition
N�1X

i= 0

Pi = 1 (27)

where N is the number of temperature bins. Because the matrix
values for f < i � 1 are zero, these equations can be solved by a
recursive procedure of computational order O(N2). To avoid the
numerical instabilities caused by the negative diagonal elements,
the procedure employs a well-chosen linear combination of the
original equations. This leads to the following recursion relations
for the adjusted matrix elements Bf ,i

BN�1,i = AN�1,i i = 0, . . . ,N � 2 (28)
Bf ,i = Bf+1,i + Af ,i, f = N � 2, . . . , 1; i = 0, . . . , f � 1, (29)

for the unnormalized probability distribution Xi

X0 = 1 (30)

Xi =

Pi�1
j= 0 Bi, jX j

Ai�1,i
i = 1, . . . ,N � 1, (31)

and finally for the normalized probabilities Pi

Pi =
XiPN�1

j= 0 Xj
i = 0, . . . ,N � 1. (32)
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where hk(T ) is the specific enthalpy of the grain material of dust
component k at temperature T .

The emissivity per hydrogen atom from a dust mixture with
grain type components k and grain size bins b exposed to a ra-
diation field J(�), called the input field, can be expressed as a
function of the representative grain properties as

"(�) =
X

k,b

&abs
k,b (�)

Z 1

0
Pk,b,J(T ) B(�,T ) dT (18)

where B(�,T ) is the Planck function defined in Eq. (10), and
Pk,b,J(T ) is the probability of finding the representative grain of
bin k, b at temperature T .

The emission originating in a dust mixture with specified to-
tal mass M can then be written as

j(�) =
M
µ
"(�) (19)

with µ given by Eq. (7). When combining the emission from var-
ious dust mixes, it is useful to recall that it is physically mean-
ingful to add cross sections and masses, while mass coe�cients,
in general, cannot be added meaningfully:

1 + 2 =
&1

µ1
+
&2

µ2
,
&1 + &2

µ1 + µ2
· (20)

The challenge is thus to compute the probability distribution of
grain temperatures, Pk,b,J(T ), which depends on the input radi-
ation field in addition to the grain properties. See, for example,
Fig. 4 of Draine & Li (2007) for an illustration of various tem-
perature distribution curves.

In this discussion, we characterize P as a function of grain
temperature. The temperature of a grain and its internal energy
are related through Eq. (8), so we could equivalently characterize
P as a function of internal grain energy.

4.2. Equilibrium heating dust emission

When the representative grain in bin k, b is in LTE with the sur-
rounding radiation field J(�), the temperature probability distri-
bution Pk,b,J(T ) becomes a delta function at the grain equilibrium
temperature

Pk,b,J(T ) = �(T � T eq
k,b,J), (21)

and the equilibrium temperature can be determined via the en-
ergy balance equation
Z 1

0
&abs

k,b (�) J(�) d� =
Z 1

0
&abs

k,b (�) B(�,T eq
k,b,J) d�. (22)

4.3. Stochastic heating dust emission

When a single photon absorption can significantly change the
internal energy of a representative grain, the grain is not in LTE
with the surrounding radiation field J(�). The grain is stochas-
tically heated, and its state can no longer be characterized by a
single temperature. In that case, we need to solve for the tem-
perature probability distribution Pk,b,J(T ) to calculate the grain
emission. The six RT codes benchmarked in this paper em-
ploy the method described in Guhathakurta & Draine (1989),
Siebenmorgen et al. (1992), Manske & Henning (1998), and
Draine & Li (2001). For ease of reference, this section summa-
rizes the method using the quantities and notation introduced in
the previous sections of this paper. We focus on a single grain

size bin and a specific radiation field, dropping the indices k, b,
and J from the notation.

We select an appropriate temperature grid with N bins Ti,
i = 0, . . . ,N � 1 (see Sect. 4.1). Our goal is to determine the
probabilities Pi = P(Ti) that a grain resides in temperature bin i.
We define a transition matrix Af ,i that describes the probability
per unit time for a grain to transfer from initial temperature bin i
to final temperature bin f . The transition matrix elements in the
case of heating ( f > i) are given by

Af ,i = 4⇡ &abs(� f i) J(� f i)
hc�Hf

h
H(T f ) � H(Ti)

i3 , (23)

where H(T f ) and H(Ti) are the enthalpies of a dust grain in the
final and initial temperature bins, �Hf = H(T max

f ) � H(T min
f ) is

the enthalpy width of the final temperature bin, and � f i is the
transition wavelength that can be obtained from

� f i =
hc

H(T f ) � H(Ti)
· (24)

We assume that a dust grain cools by radiating photons with an
energy that is very small compared to the internal energy of the
grain. With this continuous cooling approximation, cooling tran-
sitions occur only to the next lower level, so that Af ,i = 0 for
f < i � 1 and

Ai�1,i =
4⇡

H(Ti) � H(Ti�1)

Z 1

0
&abs(�) B(�,Ti) d�. (25)

The diagonal matrix elements are defined as Ai,i = �P f,i A f ,i.
However, there is no need to explicitly calculate these values
because they are not used in the final procedure.

Assuming a steady state situation, the probabilities Pi can be
obtained from the transition matrix by solving the set of N linear
equations
N�1X

i= 0

Af ,i Pi = 0 f = 0, ...,N � 1, (26)

along with the normalization condition
N�1X

i= 0

Pi = 1 (27)

where N is the number of temperature bins. Because the matrix
values for f < i � 1 are zero, these equations can be solved by a
recursive procedure of computational order O(N2). To avoid the
numerical instabilities caused by the negative diagonal elements,
the procedure employs a well-chosen linear combination of the
original equations. This leads to the following recursion relations
for the adjusted matrix elements Bf ,i

BN�1,i = AN�1,i i = 0, . . . ,N � 2 (28)
Bf ,i = Bf+1,i + Af ,i, f = N � 2, . . . , 1; i = 0, . . . , f � 1, (29)

for the unnormalized probability distribution Xi

X0 = 1 (30)

Xi =

Pi�1
j= 0 Bi, jX j

Ai�1,i
i = 1, . . . ,N � 1, (31)

and finally for the normalized probabilities Pi

Pi =
XiPN�1

j= 0 Xj
i = 0, . . . ,N � 1. (32)

A87, page 6 of 21



Temperature%probability%funcPons%

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0  5  10  15  20  25
Pr

ob
ab

ilit
y

T (K)

Graphite grains
300 AA
500 AA

1500 AA
3000 AA

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0  20  40  60  80  100  120

Pr
ob

ab
ilit

y

T (K)

Graphite grains
4 AA
9 AA

30 AA
40 AA

100 AA

•  For&large&grains,&P(T)&!&δ(Teq),&so&calculaFon&becomes&unstable&
•  Cutoff&point&for&switching&to&equilibrium&calculaFon&is&subject&to&debate&



Dust%emission%in%typical%ISRF%

•  AssumpFons&
»  Interstellar&radiaFon&field&
(ISRF)&as&observed&in&solar&
neighborhood&
(Mathis'et'al.'1983)&

»  Simple&dust&model&
approximaFng&Milky&Way&
observaFons&

•  We&see&that&
»  SHGs&shiB&emission&to&
shorter&wavelengths&
(up&to&factor&10&or&more)&

»  PAH&emission&features&
sharp&peaks&in&wavelength&
range&3<20&μm&



Dust%
emission%
for%a%range%

of%
embedding%

fields%

•  weak&to&strong&
»  conFnuum&

peak&shiBs&

•  soB&to&hard&
»  SHG&emission&

increases&
&

Camps'et'al.'2015'



StochasPcally%heated%grains%benchmark%

•  Compare&SHG&emission&calculaFons&in&the&context&of&RT&&
»  Reference&soluFon&by&non<RT&code&+&6&RT&codes&
»  Precisely&defined&dust&model&
»  17&input&fields&ranging&from&weak&to&strong,&soB&to&hard&

•  Explain&differences&and&provide&guidelines&for&implementaFon&
»  For&all&but&the&most&extreme&input&fields,&we&find&agreement&within&
10%&across&the&important&wavelength&range&3&μm&≤&λ&≤&1000&μm&

»  A&lot&of&algorithmic&and&discreFzaFon&details&must&be&handled&with&
care&to&achieve&this&level&of&accuracy&with&acceptable&performance&
»  TransiFon&from&stochasFc&to&equilibrium&
»  Grids&for&temperature,&wavelength,&grain&size&

»  Can&calculate&several&hundred&spectra&per&second&per&core&
!&a&few&hours&for&5&million&cells&on&a&regular&desktop&computer&



%%%%%%%QuesPons%?%



Dust%grids%

SecPon%BM2%



Dust%grids%in%(SKI)RT%
•  Dust&grid&=&spaFal&discreFzaFon&of&dust&medium&
•  Physical&quanFFes&are&assumed&constant&in&each&cell&

»  RadiaFon&field&
»  Dust&density,&opFcal&properFes,&temperature&

•  Need&small&cells&to&properly&resolve&the&physics&
•  Number&of&cells&N&determines&resource&requirements&

»  Memory&needs&and&execuFon&Fme&roughly&scale&with&N&
(need&more&photons&to&properly&sample&all&cells)&

&
&
•  Quest&for&schemes&that&place&
many&small&cells&where&needed&and&
fewer&large&cells&elsewhere&



Fixed%dust%grids%

1D,&2D,&3D&&&&&&&
regular,&log,&power&law&



Hierarchical%grids%



Hierarchical%
dust%grids%

Sa?ly'et'al.'2013'

Cut&through&octree&
with&recursive&
barycentric&
subdivision&based&
on&dust&density&
distribuFon&of&a&
spiral&galaxy&



!"#$%#&&'$()#$
*)+#)#+$,-$
."#$()#($*/$
*0#)&(1$
,#.2##3$."#$
%4))#3.$%#&&$
(3+$5.'$
3#56",*)'7$

!"#'#$%#&&'$
25&&$3*.$,#$
%"#%8#+$
,#%(4'#$."#$
%#&&9$2"5%"$
"('$."#$3#:.$
1*'5;*39$2('$
/*43+7$

Grid%traversal%

Using&a&neighbor&list&
for&each&cell&wall&
accelerates&grid&
traversal&by&20%&

For&each&cell:&
1.  Calculate&the&path&to&the&

boundary&of&the&cell&
2.  Determine&the&neighboring&cell&

at&the&exit&posiFon&&

Sa?ly'et'al.'2013'



Quality&measure&
standard&deviaFon&of&
randomly&sampled&

density&error&
Octree&subdivides&a&node&into&eight&subnodes&

k<d&tree&subdivides&a&node&into&two&subnodes&

Octree%versus%kMd%tree%

k<d&tree&needs&20%&
fewer&cells&to&

achieve&the&same&
quality&&

Sa?ly'et'al.'2013'



Sp
ira

l&g
al
ax
y&
&

&A
GN

&to
ru
s&

SP
H&
&si
m
ul
aF

on
&

W. Saftly et al.: Octrees in Monte Carlo radiative transfer

Fig. 6. Illustration of the geometry and the octree grid structures for the three test models: the logarithmic spiral galaxy (top row),
the AGN torus (middle row), and the galaxy from an SPH simulation (bottom row). On each row, the left column represents a cut
through the dust density. For the two galaxy models, this cut corresponds to the xy plane, for the AGN torus model it is a cut through
the xz plane. The central and right column are cuts through the octree grids corresponding to the same planes, and correspond to the
regular and barycentric subdivision recipes, respectively. The di�erent shades of gray in the middle and right columns illustrate the
density of the cells: darker gray means higher density.

the spiral arms. An illustration of the dust density in the central
plane of the galaxy is shown on the top left panel of Figure 6.

3.2. AGN torus

Our second test model is a model for the central region of an
active galactic nucleus (AGN). The model consists of a central,
isotropic source surrounded by an optically thick dust torus. A

large variety of models for such tori have been proposed, rang-
ing from smooth, axisymmetric models (?????) to completely
clumpy structures (????). The model that we adopt here is sim-
ilar to the AGN torus models presented by ?, in the sense that
it consists of a number of compact and optically thick clumps
embedded in a smooth interclump medium. Contrary to the ap-
proach adopted by ?, where the two-phase clumpy medium was
generated in a statistical way by applying a clumpiness algo-
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W. Saftly et al.: Octree and k-d trees in Monte Carlo radiative transfer

Fig. 3. Contour plots illustrating di⇥erent properties of octree grids (left panels) and k-d tree grids (right panels), corresponding as
a function of the �max and ⇤max threshold values. The solid lines in each panel correspond to lines of equal numbers of grid cells,
whereas the dashed lines correspond to iso-quality contours, corresponding to the density quality metric �⇥ (top panels) and the
optical depth quality metric �⇤ (bottom panel).

stopping criteria become more stringent towards the bottom-left
corner. Consequently, the number of cells and the quality in-
crease towards that same corner.

From these plots, we can identify the best combination of the
stopping criteria to construct a grid with a certain quality metric.
Assume, for example, that we want to construct an octree based
grid with a density quality metric �⇥ = 375 (recall that the abso-
lute value is not relevant). We can then look at the top left plot,
which displays the contours of Ncells and �⇥ as a function of �max
and ⇤max. The contour corresponding to �⇥ = 375 connects all
points in the parameters space that correspond to grids with the
same quality. We can, for example, create such a grid by setting
�max = 3 ⇥ 10�6 and ⇤max = 0.033, and looking at the Ncells con-
tours, we see that this grid will contain about 1.2 million grid
cells. We can relax the mass criterion to �max = 6 ⇥ 10�6 and
tighten the optical depth criterion to ⇤max = 0.026: this will yield
a grid with the same density quality, but the number of grid cells
reduces to about 1 million. If we relax the mass threshold even
further to �max = 10�5 and tighten the optical depth threshold to
⇤max = 0.022, we obtain another grid with the same density qual-
ity, but the number of cells increases again to about 1.4 million.
The same exercise can be repeated for other values of the density

quality, but also for the optical depth quality. The bottom-line is
always the same: for a given quality requirement, there seems
to be an optimal combination of �max and ⇤max that yields grids
with a minimum number of cells. Typically, the number of cells
in this ideal combination is reduced by 20% compared to the
grid based on a mass criterion only (which corresponds to the
asymptotic values of the contours towards the right in the panels
of Fig. 3).

These figures also demonstrate the superiority of the k-d tree
compared to the octree, also in the case when more advanced
tree construction criteria are adopted. Taking the same example
as used above, we see that the smallest octree with a density
quality �⇥ = 375 contains around 1 million cells, whereas a k-d
tree with 800,000 cells can be constructed with the same quality.

The question is now how the two criteria need to be com-
bined to give the optimal results. In other words, how do we set
the values �max and ⇤max such that this combination is ideal ? In
our parameter space study, we can identify these point by search-
ing along every iso-quality contour the point that corresponds to
the smallest number of grid cells. These points are indicated in
red in the di⇥erent panels of Fig. 3. However, it is obviously
impossible to construct this entire parameter space of grids for
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Fig. 4. Histograms of the distribution of the optical depth ⇤cell in each cell for the spiral galaxy model octree grid (left panel) and
k-d tree (right panel), corresponding to a mass threshold criterion �max = 3 ⇥ 10�6.

every possible radiative transfer simulation. Instead, it would be
useful to have a simple recipe that can identify this combination.
A simple numerical relation between �max and ⇤max seems im-
possible, as the useful range of ⇤max values depends on the total
mass, the geometric complexity, and the opacity of our model.

Our approach consists of two steps. As a first step, we fix the
value of �max and construct a grid using this subdivision stopping
criterion only. Subsequently, we look at the distribution of the
optical depth of the cells. Fig. 4 shows the histograms of cell
optical depth for the logarithmic spiral galaxy models for a fixed
�max = 3⇥ 10�6, for the octree and k-d tree grids respectively. In
both histograms, there is a long tail of high optical depth, but not
necessarily high mass, cells which are the prime candidates for
further subdivision. The vertical lines in these plots indicates the
90% percent of the optical depth distribution, which we found
to be a suitable value as to where this distribution should be cut
o�. In order words, we create an ordered list of the ⇤ values,
and we set ⇤max equal to the optical depth of the cell at position
0.9 Ncells. The combinations of �max and ⇤max we have obtained
in this way are indicated as green dots in the di�erent panels of
Fig. 3, and they lie very close to the optimal points recovered
from searching the parameter space.

This recipe of finding the optimal value of ⇤max correspond-
ing to a given value of �max is simple and fast, as the necessary
calculations are easily done during the tree construction phase.
The recipe is exactly the same for both octree and k-d tree based
grids. Our conclusion is that an additional optical depth criterion,
chosen according to a simple recipe, is very useful in producing
octree or k-d trees with fewer cells for a given quality require-
ment, or vice versa, with higher quality for a fixed number of
grid cells.

4.2. Strong gradients and sharp edges

The other problem we referred to in the Introduction is the is-
sue of very strong gradients or sharp boundaries in the density
fields. Grids based on a mass criterion (or the combination of a
mass and optical depth criterion) have di⇥culties in dealing with
these. A clear example is the octree based grid for the clumpy
AGN model considered by Saftly et al. (2013). This model is
characterized by a density field with sharp boundaries at the
edges of the torus. During the tree construction process, we en-
counter many nodes at the edges of this boundary, that only have

a tiny and compact corner filled with dust. When we compute
the dust mass in such a node, it will soon be below the dust
mass (and/or optical depth) threshold, such that the subdivision
is stopped. This result is relatively large cells with a relatively
low density, whereas the true underlying density field is rela-
tively high in one tiny corner and zero in most of the cell, see the
central panel in Figure 6 . This automatic stopping of subdivision
is a problem, as the regions with strong density gradients and/or
sharp boundaries are exactly regions that we want to resolve at
high resolution.

One way to solve this problem is to introduce artificial
boundaries in the grid. In the case of the clumpy AGN model,
one could construct a hierarchical grid within the sharp bound-
aries of the torus itself. This solution might work e⇥ciently for
a number of analytical models, but it is not the general solution
desired for arbitrary applications, where the occurrence and lo-
cation of sharp boundaries and strong gradients is not always
known a priori.

Our proposed solution is to introduce a node subdivision cri-
terion that depends on the density gradient within a node, and
add this criterion to the already applied dust mass (and optical
depth) threshold criteria. We have considered a very simple ap-
proach that does not introduce a strong computational overhead.
During the construction of the grid, the mass density is evaluated
in Nran random positions in each node as part of the estimate of
the mass in that node. If a certain node is not to be subdivided
further according to the �max and/or ⇤max criteria, we compute
the quantity

q =

�⌅⌅⌅⇤
⌅⌅⌅⇥

⇥max � ⇥min

⇥max
if ⇥max > 0,

0 if ⇥max = 0.
(3)

where ⇥min and ⇥max are the smallest and largest sampled den-
sity values from the list of Nran sampled positions in the node.
This quantity is a simple measure for the uniformity of the den-
sity within the node: for a constant density in the node, q = 0,
whereas q approaches 1 if a steep gradient is present. The ad-
ditional criterion we impose is that a node is subdivided if q
exceeds a preset maximum value qmax . 1. In principle, nodes
that contain a sharp edge will continue to be subdivided for ever,
since such cells have by definition q = 1. Thus it is important to
always specify a reasonable maximum subdivision level when
using this subdivision criterion.
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Fig. 5. Histograms of the distribution of the density dispersion q in each cell in our three models using the k-d tree grids, corre-
sponding to a mass threshold criterion �max = 3 ⇥ 10�6. The left panel is the three-armed spiral galaxy model, the middle panel the
dust clumpy AGN model, and the right panel the SPH galaxy model.

Fig. 6. Illustration on how the density dispersion criterion qmax solves the problem of sharp edges in models such as the AGN torus.
In this example we used an octree grid. The left panel represents a cut through the true dust density in xz plane, and the central
panel shows the grid density as obtained without a density dispersion criterion. The edges of the torus are clearly poorly resolved.
The right panel shows the grid density after adding the density dispersion criterion qmax = 0.99, where the edges are now clearly
resolved.

In Fig. 5 we show histograms of q for k-d tree based grids for
the three test models we consider, before applying any q-based
subdivision. The logarithmic three-armed spiral galaxy model
(left panel) is the smoothest and most regular of the three mod-
els, and is characterized by cells in which the vast majority has
q < 0.35. The SPH galaxy model (right panel) is characterized
by a somewhat more irregular, but still relatively smooth density
field. The corresponding distribution of q values is a fairly broad
distribution that peaks around 0.35 and then decreases smoothly
towards larger values of q. A small number of cells have q = 1:
these correspond to cells at the edges of cavities in the dust den-
sity. Finally, the clumpy AGN model (central panel) is designed
to be a test model with strong density gradients and sharp edges.
This is clearly evident in the histogram: a large fraction of the
cells is characterized by large values of q and particularly con-
spicuous is the large number of cells with q = 1, correspond-
ing to grid cells overlapping with the sharp edge of the torus. In
such a model, we clearly need higher resolution for those cells.
Figure 6 illustrates the di�erences in the octree based grid for
this model before and after adding the q-based subdivision crite-
rion. This simple recipe clearly solves the problem.

5. Discussion and conclusion

The main goal of this paper was to critically investigate the
e⇥ciency and accuracy of the standard octree algorithm in

the frame of Monte Carlo radiative transfer simulations, and
to investigate the use of alternative hierarchical grid structures
and node subdivision stopping criteria beyond a straightforward
mass threshold value.

We have investigated the use of hierarchical k-d tree grids as
an alternative to octree grids to partition the dusty medium. We
have implemented a flexible k-d tree structure in the 3D Monte
Carlo code SKIRT (Baes et al. 2003, 2011). The construction
algorithm of the k-d tree is completely similar to the technique
we used for the construction of the octree grid in SKIRT, and we
can use the same, very e⇥cient, neighbor list search grid traver-
sal method. Using three di�erent test models, and a set of objec-
tive grid quality metrics, we have critically compared the octree
and k-d based grids. We have found that, for a fixed value of the
mass threshold �max, the k-d tree generates only half as many
cells as the octree, irrespective of the chosen model. Moreover,
if we compare the quality of the octree and k-d tree grids for a
fixed total number of cells, the latter have a higher accuracy. We
can generate a k-d tree with roughly 20% fewer cells compared
to an octree grid for a certain required density or optical depth
quality.

As a second objective, we have investigated whether there
are useful alternatives to the simple mass threshold as a crite-
rion to stop the recursive subdivision of the nodes in hierarchi-
cal trees (both octrees and k-d trees). In order to stimulate the
subdivision of small, high-density cells, we have tested the op-
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Fig. 6. Illustration on how the density dispersion criterion qmax solves the problem of sharp edges

in models such as the AGN torus. In this example we used an octree grid. The left panel represents

a cut through the true dust density in xz plane, and the central panel shows the grid density as

obtained without a density dispersion criterion. The edges of the torus are clearly poorly resolved.

The right panel shows the grid density after adding the density dispersion criterion qmax = 0.99,

where the edges are now clearly resolved.

5. Discussion and conclusion

The main goal of this paper was to critically investigate the e⇥ciency and accuracy of the standard

octree algorithm in the frame of Monte Carlo radiative transfer simulations, and to investigate

the use of alternative hierarchical grid structures and node subdivision stopping criteria beyond a

straightforward mass threshold value.

We have investigated the use of hierarchical k-d tree grids as an alternative to octree grids

to partition the dusty medium. We have implemented a flexible k-d tree structure in the 3D Monte

Carlo code SKIRT (Baes et al. 2003, 2011). The construction algorithm of the k-d tree is completely

similar to the technique we used for the construction of the octree grid in SKIRT, and we can use the

same, very e⇥cient, neighbor list search grid traversal method. Using three di�erent test models,

and a set of objective grid quality metrics, we have critically compared the octree and k-d based

grids. We have found that, for a fixed value of the mass threshold �max, the k-d tree generates only

half as many cells as the octree, irrespective of the chosen model. Moreover, if we compare the

quality of the octree and k-d tree grids for a fixed total number of cells, the latter have a higher

accuracy. We can generate a k-d tree with roughly 20% fewer cells compared to an octree grid for

a certain required density or optical depth quality.

As a second objective, we have investigated whether there are useful alternatives to the simple

mass threshold as a criterion to stop the recursive subdivision of the nodes in hierarchical trees

(both octrees and k-d trees). In order to stimulate the subdivision of small, high-density cells, we

have tested the option of an optical depth criterion, but this gave rise to grids with an unacceptably

low accuracy. A combination of a mass and an optical depth criterion, however, turned out to be a

sensible criterion. Using an optimal combination of both, it was possible to reduce the number of

cells in the grids by 20% for a given quality requirement, and also decrease the average number of

cells crossed on a path, resulting in faster run time of the simulations. We have presented a simple

recipe that enables to approximate this optimal combination without the need to scan the entire

parameter space.

Finally, we have considered the problem caused by discontinuities, strong gradients or sharp

edges. In hierarchical grids (octrees or k-d trees) governed by mass and/or optical depth threshold
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Fig. 5. Example of the photon path deviating from a straight line due
to the unstructured grid. Photons that are travelling in the direction of
the Delaunay edge coming in from the left, should be travelling in a
straight line along the dotted blue line. However, as this is impossible on
the unstructured grid, photons travel along the Delaunay edges closest
to their original direction. This path is depicted by the red arrows. The
total path depicted by the red arrows is longer than the length of the
blue line, which is corrected for by a global factor.

the light speed on the unstructured grid. We solve this problem
by applying a global correction factor to the distance between
grid points, thus ensuring photons travel with the correct speed.

Introducing these global directions on the unstructured grid
gives rise to preferential directions, one of the problems the un-
structured grid was meant to solve. By rotating the solid angles
over random angles in between photon transport, the preferential
directions disappear. The drawback of this procedure is that it
makes direction conserving transport computationally more ex-
pensive than ballistic transport. For the latter, the most straight-
forward directions are calculated from the grid and thus have to
be calculated only once, at the start of the simulation. For direc-
tion conserving transport it is necessary to recalculate the most
straightforward directions every time the direction bins rotate.
Another drawback of direction conserving transport is that the
photons now have to be stored in n direction bins instead of on
average 16 neighbours. Typically, n = 42 gives converged re-
sults, but as we will see in Sect. 5.2 this depends on the num-
ber of optically thin grid points the photons traversed. Thus,
the memory requirements for direction conserving transport are
higher.

2.2.4. Combined transport

The three modes of transport described above are in general
applied simultaneously during a simulation. Depending on the
physical process at hand, photons are transported to all neigh-
bours (diffuse transport), or to the d most straightforward neigh-
bours (ballistic or direction conserving transport). In regions
where the optical depth is higher than or close to one, ballis-
tic transport is used, while in the optically thin regions direction
conserving transport is applied.

Of the three modes of transport, direction conserving trans-
port is computationally the most expensive (see Sect. 3.3 for a
comparison between the computation time of ballistic and di-
rection conserving transport). By applying this scheme only in
the regions where it is necessary, the computation time is dras-
tically reduced. As mentioned earlier, numerical diffusion starts
to dominate in ballistic transport after approximately 5 steps. A
first guess would therefore be to switch from ballistic to direction
conserving transport when the optical depth after 5 interactions
is less than one. That way, we are sure that the majority of pho-
tons does not take more than 5 steps in ballistic transport. The
influence of the optical depth at which is switched in a realistic
simulation is studied in more detail in Sect. 5.1.3. Another way
to reduce the computation time is by applying the grid dynamics

scheme from Sect. 2.1.4. Removing superfluous grid points in
the low opacity regime limits the number of vertices at which
direction conserving transport is performed.

In combined transport we need to convert from one trans-
port scheme to another. This is straightforward because every
Delaunay edge of an optically thin vertex is associated with a
solid angle in a global direction. When this vertex sends photons
to an optically thick vertex the photons are transported along the
Delaunay edges, so the optically thick vertex stores the photons
according to the Delaunay edge associated with the solid angle.
In the opposite case, when an optically thick vertex sends pho-
tons to an optically thin vertex, the photons are converted to the
solid angles associated with the Delaunay edge along which the
photons were sent.

3. Parallellisation strategy

Even though the radiative transfer scheme presented in the pre-
vious sections is computationally efficient, in order to do large
simulations involving a very high number of grid points it is nec-
essary that the algorithm can run in parallel on distributed mem-
ory machines. This will not only reduce the computation time
involved, it also reduces the amount of memory needed at each
processor to store the physical properties of the grid points. The
transport algorithm described in Sect. 2.2 has the advantage that
it is local: the only information needed to do a radiative transfer
calculation is stored at the neighbours of the vertex. This makes
the method relatively easy to parallellise. By choosing a smart
domain decomposition we can minimise the number of commu-
nications involved.

3.1. Domain decomposition

The computation time of a SIMPLEX calculation is independent
of the number of sources, it is therefore sufficient to have a do-
main decomposition that assigns every processor an approxi-
mately equal number of grid points. Dividing space into equal
volumes and assigning each volume to a processor is not suffi-
cient because the number of points in each volume may differ
dramatically due to the adaptive grid. We therefore use a domain
decomposition based on the space-filling Hilbert curve, which is
also employed in other methods without a regular grid (Shirokov
& Bertschinger 2005; Springel 2005, 2010). The Hilbert curve
is a fractal that completely fills a cubic rectangular volume.
A Hilbert curve is uniquely defined by its order m and its di-
mensionality d, filling every cell of a d-dimensional cube of
length 2m. The following properties of the Hilbert curve are ben-
eficial when using it for domain decomposition:

– Locality: points that are close along the 1D Hilbert curve are
in general also close in 3D space.

– Compactness: a set of cells defined by a continuous section
of the Hilbert curve has a small surface to volume ratio.

– Self-similarity: the Hilbert curve can be extended to arbitrar-
ily large size.

The first two properties minimise the number of communications
between processors, while the third property ensures that we can
use an arbitrarily large number of cells to determine the domain
decomposition.

The first step in the domain decomposition is dividing the
domain into 2md equal, regular cells, where d is again the dimen-
sion and m the order of the Hilbert curve. We then step through
the cells along the Hilbert curve, counting the number of grid
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Fig. 4. The propagation of photons from one point in one particular ini-
tial direction. As the photons step through the grid they choose the fol-
lowing step by weighing the probability with the inverse angle the direc-
tion makes with the initial direction, i.e., a large angle produces a small
probability of going in that direction. The inset shows the distribution
of photon arriving at the surface. A Gaussian distribution is overplotted
for comparison.

the original direction of the photon. The outgoing line is picked
at random, but weighted by the ratio of the two angles,

p(ℓ2) = (∠1/∠2)p(ℓ1), (9)

where ∠1 < ∠2. The same procedure is used at all subsequent
grid points (using the original momentum vector to determine
the outgoing direction) until the photons escape the model. By
sending a number of photons along each initial Delaunay line,
we thus probe, not a single line of sight, but rather a cone, while
still conserving momentum on average. An example of the pho-
ton propagation is shown in Fig. 4 for a single point and a sin-
gle direction. Because of the relative low number of photons
needed to probe the spatial directions, we can allow ourself to
increase the number of photons used to sample different frequen-
cies, while we still maintain a low (initial) number of photons per
grid point. The inset in Fig. 4 shows the distribution of the lo-
cation where the photons reach the surface of the grid. This dis-
tribution is reasonably well described by a Gaussian distribution
around the intersection of the original momentum vector and the
surface. The number of initial photons is a user-defined setting,
but as a default value, we use five times the number of neighbor
points, so that each neighbor is initially probed by five photons.
These photons are distributed evenly across a frequency range
of ±3σ with respect to the line center so that the median pho-
ton coincides with the local rest frequency. σ is determined by
the local turbulent velocity dispersion through the user-defined
Doppler b-parameter.

Any given grid point will see more Delaunay connections
coming from high density regions than from low density regions,
simply because the grid point density is higher in high density re-
gions. Because of this inhomogeneity in the angular distribution

Fig. 5. A comparison of Jν between LIME and RATRAN. The small
black dots are the values from the LIME code and the yellow dots are
the cell values from RATRAN. The blue dots in panel d) are also from
a LIME model, but where all the grid points have been distributed ran-
domly over the model domain (with no density weighting).

of Delaunay connection, care must be taken when averaging the
radiation field using Eq. (6). In our implementation, this equa-
tion reduces to a discrete sum

Jν =
1

4π

∑

ν

N∑

i=0

Ii,νωiφ(ν), (10)

where N is the number of Delaunay neighbors. ωi is a weight
that is proportional to the solid angle represented by the i’th
Delaunay line. This angle corresponds strictly to a surface area
on a unit sphere, but we use the area of the Voronoi facet
that corresponds to the Delaunay line as a good approximation
(within 10%).

Figure 5 shows a comparison of Jν between LIME and
RATRAN. The input model is a thin flat disk with a density pro-
file ∝r−1. The radius is 500 AU and the height is 50 AU. The
disk is placed in an ambient low density field, n = 104 cm−3. For
LIME the model is sampled by 8000 points, whereas RATRAN
uses 400 grid cells. The radiation field of first three levels are
shown in panels a)–c) in Fig. 5. The LIME points are shown as
black points and the RATRAN points in yellow. The points for
each transition makes up two distinct populations, an almost hor-
izontal branch and a scattered population below. The tight hori-
zontal distribution of points are the ones that lie inside the disk.
These points are extremely well matched between the two codes.
The scattered population of points are the ones that fall outside
of the disk radius and these are also well matched. The LIME
points in the ambient low density region scatters a bit more than
the corresponding RATRAN points do. This is not a dilution of
the radiation field due to poor spatial sampling or erroneous pho-
ton propagation on the Delaunay grid, but simply because the
LIME grid has a much higher resolution than the RATRAN grid.
The proof of this can be seen in panel d) in Fig. 5 where a sim-
ilar comparison of the J = 3–2 transition between LIME and
RATRAN has been made, but with a LIME grid which is not
density weighted at all, which means that all spatial regions are
equally well sampled. This distribution is indistinguishable from
the one in panel c).
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P. Camps et al.: 3D Voronoi grids in radiative transfer

104 cells 104.5 cells 105 cells 105.5 cells 106 cells 106.5 cells

Fig. 3. A cut through the dust density distribution of the torus model, discretized on Voronoi grids with a resolution varying from 104 cells (left)
to 106.5 cells (right). All grids were constructed from a set of uniformly distributed sites.

(2010)). The distance covered by the path inside a particular grid
cell becomes a fuzzy concept, while this is an important quan-
tity in many RT codes, e.g. for tracking the amount of energy
absorbed in the cell. And finally the spread on direction makes it
hard to produce high-resolution images of the simulated object.

In Sect. 2 we present instead an e�cient method of calculat-
ing a straight path between two arbitrary points through a 3D
Voronoi grid, applicable in any RT code based on ray tracing
or Monte Carlo techniques. The path segments inside each grid
cell are calculated to high precision using a straightforward al-
gorithm that relies on the mathematical properties of Voronoi
tessellations. In Sect. 3 we introduce an implementation of the
method in our dust RT code SKIRT (Baes et al. 2011). We
demonstrate the method’s reliability, accuracy and e�ciency by
comparing results obtained through the Voronoi grid with those
generated by existing well-tested grids. In Sect. 4 we summarize
our conclusions.

2. Method

2.1. Voronoi tesselations of 3D space

Given a set of points {p1,p2, . . .pn

} in 3D space, called sites,
the corresponding Voronoi tessellation (Dirichlet 1850; Voronoi
1908) is a set of cells {C

i

} where each cell C

i

consists of all
the points p at least as close to p

i

as to any other site. The cor-
responding Delaunay triangulation (Delaunay 1934) is a graph
created by placing a straight edge between any two sites that
share a cell boundary in the Voronoi tessellation. Thus every site
is connected to its nearest neighbors.

An example Voronoi tessellation is shown in Fig. 1, and a
single Voronoi cell is illustrated in Fig. 2. A Voronoi cell is de-
limited by a convex polyhedron. A Delaunay edge, i.e. a line
segment that connects two sites sharing a polygonal face, is per-
pendicularly bisected by the plane containing the face, although
the bisection point may lie outside the face. For a set of sites cho-
sen randomly from a uniform distribution, the number of near-
est neighbors (or equivalently the number of cells sharing a face
with any given cell) has an expectation value of 15.54 (van de
Weygaert 1994).

To obtain an optimal grid in the context of a RT simulation,
the Voronoi sites should be more densely packed (generating
smaller cells) in regions where a higher resolution is desired. For
example one could select the positions randomly from a proba-
bility distribution that follows the density of the RT medium,
and perhaps place extra sites near sharp edges or large gradients.
If the density field is defined by a set of smoothed particles, the
particle locations form natural Voronoi sites. And of course if the
density field is already defined on a Voronoi mesh, the original
site locations can be used.

2.2. A straight path through a Voronoi grid

Consider a cuboidal spatial domain D defined by its corner
points (Dmin,Dmax), and a set of sites {p

m

2 D, m = 1 . . .M }.
All sites are inside the domain, and the corresponding Voronoi
cells are clipped by the domain walls, as illustrated in Fig. 1.
Given a ray describing the path of a photon package, defined by
a starting point r

0

2 D and a direction k, our aim is to calculate
the ray’s consecutive intersection points with the Voronoi cell
walls – or equivalently, the distance travelled in each cell – until
the ray leaves the domain. This is illustrated in Fig. 2 for a sin-
gle cell. The presented method can easily be adjusted for other
domain geometries, or for rays that originate outside the domain.

During a setup phase, before any straight paths are calcu-
lated, the following data is prepared:

1. The domain boundaries (Dmin,Dmax).
2. The positions of the sites {p

m

, m = 1 . . .M }.
3. For each site p

n

, the indices {m
n,i, i = 1 . . . I

n

} of all sites
neighboring that site, or equivalently of all cells neighboring
the cell corresponding to that site. Domain walls are repre-
sented by special (e.g. negative) index values.

Data items (1) and (2) are externally specified as part of
the problem definition. The neighbor lists (3) can be easily de-
rived from a Voronoi tessellation or Delaunay triangulation for
the specified set of sites, since nearest neighbor information is
the defining characteristic of these concepts. No information is

needed on the vertices, edges or faces of the polyhedra delimit-

ing the Voronoi cells.

To begin calculating a straight path, the current point r is set
to the starting point, and the current cell index m

r

is set to the
index of the cell containing the starting point. By definition of a
Voronoi tessellation, finding the cell containing a given point r

is equivalent to locating the site p

i

nearest to r. This is a straight-
forward operation that can easily be optimized as described later
in Sect. 2.3. For the time being assume that there is a function
C(r) that returns the index m of the cell containing a given point.

Once initialized, the method loops over the algorithm that
computes the exit point from the current cell, i.e. the intersection
of the ray formed by the current point r and the direction k with
the current cell’s boundary. The algorithm also produces the in-
dex of the neighboring cell without extra cost. If an exit point
is found, the loop adds a path segment to the output, updates the
current point and the current cell index, and continues to the next
iteration. If the exit is towards a domain wall, the loop is termi-
nated. Due to computational inaccuracies it may occur that no
exit point is found. In that case, no path segment is added to the
output, the current point is advanced in the direction k over an
infinitesimal distance ✏ ⌧ ||Dmax � Dmin|| and the new current
cell index is determined by calling the function C(r).

The algorithm computing the exit point from the current cell
requires the following input data: the current point r; the ray’s
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Fig. 3. A cut through the dust density distribution of the torus model, discretized on Voronoi grids with a resolution varying from 104 cells (left)
to 106.5 cells (right). All grids were constructed from a set of uniformly distributed sites.

(2010)). The distance covered by the path inside a particular grid
cell becomes a fuzzy concept, while this is an important quan-
tity in many RT codes, e.g. for tracking the amount of energy
absorbed in the cell. And finally the spread on direction makes it
hard to produce high-resolution images of the simulated object.

In Sect. 2 we present instead an e�cient method of calculat-
ing a straight path between two arbitrary points through a 3D
Voronoi grid, applicable in any RT code based on ray tracing
or Monte Carlo techniques. The path segments inside each grid
cell are calculated to high precision using a straightforward al-
gorithm that relies on the mathematical properties of Voronoi
tessellations. In Sect. 3 we introduce an implementation of the
method in our dust RT code SKIRT (Baes et al. 2011). We
demonstrate the method’s reliability, accuracy and e�ciency by
comparing results obtained through the Voronoi grid with those
generated by existing well-tested grids. In Sect. 4 we summarize
our conclusions.

2. Method

2.1. Voronoi tesselations of 3D space

Given a set of points {p1,p2, . . .pn

} in 3D space, called sites,
the corresponding Voronoi tessellation (Dirichlet 1850; Voronoi
1908) is a set of cells {C

i

} where each cell C

i

consists of all
the points p at least as close to p

i

as to any other site. The cor-
responding Delaunay triangulation (Delaunay 1934) is a graph
created by placing a straight edge between any two sites that
share a cell boundary in the Voronoi tessellation. Thus every site
is connected to its nearest neighbors.

An example Voronoi tessellation is shown in Fig. 1, and a
single Voronoi cell is illustrated in Fig. 2. A Voronoi cell is de-
limited by a convex polyhedron. A Delaunay edge, i.e. a line
segment that connects two sites sharing a polygonal face, is per-
pendicularly bisected by the plane containing the face, although
the bisection point may lie outside the face. For a set of sites cho-
sen randomly from a uniform distribution, the number of near-
est neighbors (or equivalently the number of cells sharing a face
with any given cell) has an expectation value of 15.54 (van de
Weygaert 1994).

To obtain an optimal grid in the context of a RT simulation,
the Voronoi sites should be more densely packed (generating
smaller cells) in regions where a higher resolution is desired. For
example one could select the positions randomly from a proba-
bility distribution that follows the density of the RT medium,
and perhaps place extra sites near sharp edges or large gradients.
If the density field is defined by a set of smoothed particles, the
particle locations form natural Voronoi sites. And of course if the
density field is already defined on a Voronoi mesh, the original
site locations can be used.

2.2. A straight path through a Voronoi grid

Consider a cuboidal spatial domain D defined by its corner
points (Dmin,Dmax), and a set of sites {p

m

2 D, m = 1 . . .M }.
All sites are inside the domain, and the corresponding Voronoi
cells are clipped by the domain walls, as illustrated in Fig. 1.
Given a ray describing the path of a photon package, defined by
a starting point r

0

2 D and a direction k, our aim is to calculate
the ray’s consecutive intersection points with the Voronoi cell
walls – or equivalently, the distance travelled in each cell – until
the ray leaves the domain. This is illustrated in Fig. 2 for a sin-
gle cell. The presented method can easily be adjusted for other
domain geometries, or for rays that originate outside the domain.

During a setup phase, before any straight paths are calcu-
lated, the following data is prepared:

1. The domain boundaries (Dmin,Dmax).
2. The positions of the sites {p

m

, m = 1 . . .M }.
3. For each site p

n

, the indices {m
n,i, i = 1 . . . I

n

} of all sites
neighboring that site, or equivalently of all cells neighboring
the cell corresponding to that site. Domain walls are repre-
sented by special (e.g. negative) index values.

Data items (1) and (2) are externally specified as part of
the problem definition. The neighbor lists (3) can be easily de-
rived from a Voronoi tessellation or Delaunay triangulation for
the specified set of sites, since nearest neighbor information is
the defining characteristic of these concepts. No information is

needed on the vertices, edges or faces of the polyhedra delimit-

ing the Voronoi cells.

To begin calculating a straight path, the current point r is set
to the starting point, and the current cell index m

r

is set to the
index of the cell containing the starting point. By definition of a
Voronoi tessellation, finding the cell containing a given point r

is equivalent to locating the site p

i

nearest to r. This is a straight-
forward operation that can easily be optimized as described later
in Sect. 2.3. For the time being assume that there is a function
C(r) that returns the index m of the cell containing a given point.

Once initialized, the method loops over the algorithm that
computes the exit point from the current cell, i.e. the intersection
of the ray formed by the current point r and the direction k with
the current cell’s boundary. The algorithm also produces the in-
dex of the neighboring cell without extra cost. If an exit point
is found, the loop adds a path segment to the output, updates the
current point and the current cell index, and continues to the next
iteration. If the exit is towards a domain wall, the loop is termi-
nated. Due to computational inaccuracies it may occur that no
exit point is found. In that case, no path segment is added to the
output, the current point is advanced in the direction k over an
infinitesimal distance ✏ ⌧ ||Dmax � Dmin|| and the new current
cell index is determined by calling the function C(r).

The algorithm computing the exit point from the current cell
requires the following input data: the current point r; the ray’s
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⇢dust – cylindrical grid ⇢dust – octree grid ⇢dust – Voronoi grid

Tdust – cylindrical grid Tdust – octree grid Tdust – Voronoi grid

f – cylindrical grid f – octree grid f – Voronoi grid

Fig. 4. Illustration of the results for the torus model with three di↵erent dust grids. Rows – top: the dust density distribution (cut through the central
edge-on plane); middle: the calculated dust temperature (cut through the central edge-on plane); bottom: the calculated flux density escaping from
the model (edge-on view). Columns – left: regular 2D cylindrical grid with 2502 = 62 500 cells; middle: adaptive octree grid with ⇡ 950 000 cells;
right: Voronoi grid with ⇡ 950 000 uniformly distributed cells.

the results with those produced by the existing and well-tested
grids.

We employed the open source library Voro++ (Rycroft
2009) to setup the input data described in Sects. 2.2 and 2.3.
The library and its data structures are used only during setup.
All relevant information is extracted and stored in our own data
structures for reference after setup.

3.2. Test models

We tested the Voronoi dust grid with two synthetic models of our
own making, called torus and spiral, and we ran the RT bench-
mark described by Pascucci et al. (2004). We first present the
results for our models, and in Sect. 3.5 we discuss the results for
the Pascucci benchmark.

The torus model consists of a central light source surrounded
by an axisymmetric dusty torus, as might be present in the cen-
ter of active galactic nuclei. The dust geometry is described by a
radial power-law density from a given inner to outer radius, with
an opening angle of 50 degrees. A cut through the dust distribu-
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⇢dust – octree grid ⇢dust – Voronoi grid

f – octree grid f – Voronoi grid

Fig. 5. Illustration of the results for the spiral model, edge-on view. Rows – top: the dust density distribution (cut through the central edge-on
plane); bottom: the calculated flux density escaping from the model (edge-on view). Columns – left: adaptive octree grid with ⇡ 1 350 000 cells;
right: Voronoi grid with ⇡ 1 350 000 cells with a non-uniform, weighed distribution.

⇢dust – octree grid ⇢dust – Voronoi grid

f – octree grid f – Voronoi grid

Fig. 6. Illustration of the results for
the spiral model, face-on view. Rows

– top: the dust density distribution (cut
through the central face-on plane); bot-

tom: the calculated flux density escap-
ing from the model (face-on view).
Columns – left: adaptive octree grid
with ⇡ 1 350 000 cells; right: Voronoi
grid with ⇡ 1 350 000 cells with a non-
uniform, weighed distribution.

tion is shown in the top row of Fig. 4. The sites for the Voronoi
dust grid are selected randomly from a uniform distribution over
the cuboidal domain enclosing the torus. Since the model is ax-
isymmetric, we can compare the results of the Voronoi grid with
those produced by a regular two-dimensional (2D) cylindrical
grid, in addition to those produced by an adaptive (3D) octree
grid. In Fig. 3 we illustrate the e↵ect of the number of Voronoi
grid cells for the torus model.

The spiral model represents an idealized spiral galaxy with
three arms, similar to the spiral model presented in Saftly et al.
(2013). The stellar distribution includes a flattened Sérsic bulge
and a double-exponential disk with a spiral arm perturbation.
The dust is distributed in a thinner, similarly perturbed double-
exponential disk. Cuts through the dust distribution are shown in
the top row of Figs. 5 and 6. In this case the sites for the Voronoi

Table 1. Grid quality. The di↵erence between the theoretical and grid-
ded dust density is sampled at a large number of random points, uni-
formly distributed over the domain. The standard deviation on this dif-
ference is used as a quality measure for the grid. In the table, the value
for the octree grid is normalized to unity for each model. Smaller num-

bers indicate better quality.

Model Cylindrical Octree Voronoi
Torus 0.82 1 1.75
Spiral – 1 1.68

dust grid are selected randomly from the dust distribution, as op-
posed to a uniform distribution. Areas with a higher dust density
are thus – on average – covered with smaller cells.
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right: Voronoi grid with ⇡ 1 350 000 cells with a non-uniform, weighed distribution.
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Fig. 6. Illustration of the results for
the spiral model, face-on view. Rows

– top: the dust density distribution (cut
through the central face-on plane); bot-

tom: the calculated flux density escap-
ing from the model (face-on view).
Columns – left: adaptive octree grid
with ⇡ 1 350 000 cells; right: Voronoi
grid with ⇡ 1 350 000 cells with a non-
uniform, weighed distribution.

tion is shown in the top row of Fig. 4. The sites for the Voronoi
dust grid are selected randomly from a uniform distribution over
the cuboidal domain enclosing the torus. Since the model is ax-
isymmetric, we can compare the results of the Voronoi grid with
those produced by a regular two-dimensional (2D) cylindrical
grid, in addition to those produced by an adaptive (3D) octree
grid. In Fig. 3 we illustrate the e↵ect of the number of Voronoi
grid cells for the torus model.

The spiral model represents an idealized spiral galaxy with
three arms, similar to the spiral model presented in Saftly et al.
(2013). The stellar distribution includes a flattened Sérsic bulge
and a double-exponential disk with a spiral arm perturbation.
The dust is distributed in a thinner, similarly perturbed double-
exponential disk. Cuts through the dust distribution are shown in
the top row of Figs. 5 and 6. In this case the sites for the Voronoi

Table 1. Grid quality. The di↵erence between the theoretical and grid-
ded dust density is sampled at a large number of random points, uni-
formly distributed over the domain. The standard deviation on this dif-
ference is used as a quality measure for the grid. In the table, the value
for the octree grid is normalized to unity for each model. Smaller num-

bers indicate better quality.

Model Cylindrical Octree Voronoi
Torus 0.82 1 1.75
Spiral – 1 1.68

dust grid are selected randomly from the dust distribution, as op-
posed to a uniform distribution. Areas with a higher dust density
are thus – on average – covered with smaller cells.
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tion is shown in the top row of Fig. 4. The sites for the Voronoi
dust grid are selected randomly from a uniform distribution over
the cuboidal domain enclosing the torus. Since the model is ax-
isymmetric, we can compare the results of the Voronoi grid with
those produced by a regular two-dimensional (2D) cylindrical
grid, in addition to those produced by an adaptive (3D) octree
grid. In Fig. 3 we illustrate the e↵ect of the number of Voronoi
grid cells for the torus model.

The spiral model represents an idealized spiral galaxy with
three arms, similar to the spiral model presented in Saftly et al.
(2013). The stellar distribution includes a flattened Sérsic bulge
and a double-exponential disk with a spiral arm perturbation.
The dust is distributed in a thinner, similarly perturbed double-
exponential disk. Cuts through the dust distribution are shown in
the top row of Figs. 5 and 6. In this case the sites for the Voronoi

Table 1. Grid quality. The di↵erence between the theoretical and grid-
ded dust density is sampled at a large number of random points, uni-
formly distributed over the domain. The standard deviation on this dif-
ference is used as a quality measure for the grid. In the table, the value
for the octree grid is normalized to unity for each model. Smaller num-

bers indicate better quality.

Model Cylindrical Octree Voronoi
Torus 0.82 1 1.75
Spiral – 1 1.68

dust grid are selected randomly from the dust distribution, as op-
posed to a uniform distribution. Areas with a higher dust density
are thus – on average – covered with smaller cells.
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Table 2. Run time. The elapsed time for the photon shooting phase of
a simulation is divided by the number of grid cells crossed during that
phase. The result is an indication of the time spent per cell crossing,
including grid traversal calculations and some overhead for generating
the random paths and for storing results. The tests were performed on
a typical desktop computer using a single core. The last column lists
the ratio between the run times for the Voronoi and octree grids. Larger

numbers indicate slower performance.

Time per cell crossing (ns)
Model Simulation type Octree Voronoi Vor./Oct.
Torus monochromatic 219 693 3.2
Torus panchromatic 400 1006 2.5
Spiral monochromatic 309 903 2.9
Spiral panchromatic 442 1095 2.5

3.3. Test grids

For the torus model we ran simulations with three di↵erent dust
grids: a regular 2D cylindrical grid with 2502 = 62 500 cells;
an adaptive octree grid with ⇡ 950 000 cells; and a Voronoi grid
with about the same number of uniformly distributed cells. The
top row of Fig. 4 shows a cut through the gridded dust density
distribution for each of these grids. The cylindrical grid captures
the sharp edges of the model perfectly, because the cylindrical
coordinate axes are lined up with the edges. The octree grid
does a fine job as well due to its adaptive nature: smaller cells
are automatically created along the sharp edges. The Voronoi
grid doesn’t do particularly well at the edges, due to the random
placement of its cells. This would not be an issue when import-
ing a grid from a moving mesh code, because the cell sizes would
already be properly adjusted to the underlying gradients.

For the spiral model we ran simulations with two di↵erent
dust grids: an adaptive octree grid with ⇡ 1 350 000 cells; and a
Voronoi grid with about the same number of cells, placed using a
weighed distribution according to the dust density (smaller cells
in higher density areas). The top rows of Figs. 5 and 6 show a cut
through the gridded dust density distribution for each of these
grids. The di↵erences between the grids are most easily seen in
the lower density areas.

Although this study does not focus on grid quality, we still
need to ensure that our Voronoi grid implementation properly
represents the theoretical dust densities defined by the synthetic
models. To obtain an objective quality measure, we sample the
theoretical dust density ⇢t and the gridded dust density ⇢g at a
large number of random points uniformly distributed over the
domain. We use the standard deviation of the di↵erence ⇢t � ⇢g
as a measure for how well the grid reflects the theoretical density
distribution. Table 1 lists the resulting numbers for the various
grids and models. For each model the value for the octree grid is
normalized to unity.

Taking into account our naive cell placement, the Voronoi
grid compares well with the highly tuned adaptive octree grid,
thus verifying this aspect of our implementation.

3.4. Results

Shooting photon packages through the grid is the more important
test in the context of this study.

The middle row of Fig. 4 shows the dust temperature calcu-
lated by a panchromatic simulation for the torus model, using
the three grids describe above. All quantities, including the radi-
ation field and the amount of dust absorption, are discretized on
the same grid as the dust density. In each simulation, the central

light source emits 105 photon packages for each of 100 wave-
length bins on a logarithmic grid. Scattering events cause addi-
tional photon packages to be created, which is particularly rele-
vant for this model due to the high optical depth of the torus. In
the end each simulation traces about 700 million photon pack-
ages through the dust grid.

The bottom rows of Figs. 4, 5 and 6 show the flux density cal-
culated by a monochromatic simulation for each model and grid
combination. The Poisson noise is caused by the statistical na-
ture of the Monte Carlo technique. In each simulation, the light
sources emit 10 million photon packages at a fixed wavelength,
and scattering events again cause additional photon packages to
be created.

Other than the e↵ects of grid resolution and the unavoidable
noise, the calculated temperature and flux density maps are the
same for the various grids. In particular, as noted in Sect. 3.3,
the Voronoi grid does not resolve the central area of the dust
distribution as well as the other grids, causing some deviation in
the central area of the calculated flux density field. This e↵ect is
ultimately due to the naive placement of the Voronoi cells in our
tests, and would not be present for a properly adjusted grid.

These results validate the accuracy of our straight path cal-
culation method for Voronoi grids.

Table 2 provides an indication of the processing time spent
per cell crossing for each simulation. To obtain these numbers,
the elapsed time for the photon shooting phase of a simulation
is divided by the number of grid cells crossed during that phase.
The result thus includes some overhead for generating the ran-
dom paths and for storing results, in addition to the grid traversal
calculation itself. The tests were performed on a typical desktop
computer using a single core. The last column lists the ratio be-
tween the cell crossing times for the Voronoi and octree grids.
The Voronoi grid performs roughly three times slower than our
highly optimized octree implementation (which maintains, for
example, a neighbor list for each cell to accelerate the process
of finding the next cell on a path). This seems surprisingly fast
in view of the high geometric complexity of a Voronoi grid (il-
lustrated in Figs. 1 and 2) compared to the cuboidal cells in an
octree. Moreover, as noted in the introduction, an octree grid
may need many more cells than the Voronoi grid to represent a
particular density field, further balancing performance in favor
of the Voronoi grid.

As discussed in Sect. 2.2, the cell crossing algorithm may
occasionally fail to find an exit point due to computational inac-
curacies. In our tests this occurred at most once per 50 million
cell crossings, so this issue does not a↵ect the algorithm’s per-
formance.

3.5. The Pascucci benchmark

The Pascucci benchmark (Pascucci et al. 2004) models a star
embedded in a circumstellar disk with an inner cavity free of
dust, prescribing an analytical 2D distribution and a set of optical
depths and viewing angles. A cut through the central edge-on
plane of the dust density distribution is shown in the left panel
of Fig. 7.

We ran panchromatic simulations for this model with opti-
cal depths ⌧ = 0.1, 1 and 10 using a 3D Voronoi grid consisting
of one million cells randomly placed according to a 1/r distri-
bution. This distribution serves to properly resolve the intense
radiation field in the center of the model. In each simulation, the
central light source emits 105 photon packages for each of 150
wavelength bins on a logarithmic grid.
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Unstructured%Voronoi%grids%
•  Rather&straighkorward&to&implement&in&radiaFve&transfer&
•  Only&3&Fmes&slower&per&cell&crossing&
•  Promise&to&have&fewer&and&more&opFmally&placed&cells&
(to&be&confirmed)&
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Data%format%
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Table 4. Measurements for the regions indicated in Table 3, the complete table is provided electronically.

Galaxy logΣH i logΣmol logΣspec logΣspec logΣspec EW(Hα) EW(Hβ) Hα/Hβ g − r u− r
16% median 84% Å Å

NGC2403-00 1.07 1.07 0.59 1.25 1.92 17.9 3.1 3.19 0.16 0.99
NGC2903-00 0.58 2.00 1.09 1.21 1.31 73.0 13.2 5.36 0.65 1.58
NGC2903-01 1.21 1.53 1.07 1.11 1.18 164.7 21.0 5.81 0.49 0.94
NGC2903-02 0.93 0.95 0.96 1.29 1.54 44.6 10.8 3.51 0.21 0.64
NGC2976-00 0.87 1.45 0.93 1.04 1.15 58.1 15.8 3.81 0.91 2.21
NGC2976-02 1.33 1.87 1.61 1.78 1.91 207.9 32.3 4.24 0.47 0.94
NGC2976-03 1.33 1.87 1.67 1.80 1.91 178.6 27.3 4.22 0.47 0.94
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Figure 9. The dust-to-metal ratio of the gas as a function of the
Balmer decrement in seven bins in oxygen abundance; the inferred
AV using a Seaton (1979) extinction curve is shown on the top
axis for reference. The shading indicate the uncertainty on the
mean — the spread around the mean is considerably larger. It is
clear that the trend with dust attenuation is similar at different
metallicities although there is a trend for an increasing depletion
at higher metallicity.

8.0 8.5 9.0
12 + Log O/H

-1.0
-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

L
og

  ξ

8.0 8.5 9.0
12 + Log O/H

-1.0
-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

L
og

  ξ

Figure 10. The dust-to-metal ratio of the gas as a function of
the oxygen abundance. The grey scale shows the conditional likeli-
hood of log ξ in bins of O/H. The solid blue line shows the median
trend and the yellow dashed-dotted line shows the linear fit at
high metallicity given in equation 27. Note the lack of constraints
on ξ below an oxygen abundance of 8.6.

5.1 The dust-to-metal ratio as a function of

metallicity

We discussed the properties of ξ in section 3 but we did not
discuss what values our fitting procedure provides. In the
Milky Way we know there is a correlation between depletion
strength and (local) density (e.g. Jenkins 2009) and Fig. 9

shows that we find a similar result for our fits to star-forming
galaxies in SDSS DR7. This figure plots our ξ values against
Hα/Hβ as a proxy for line-of-sight attenuation. We indicate
the V-band attenuation, AV , obtained using a Seaton (1979)
extinction curve on the top axis for reference. The figure
was constructed by co-adding the individual PDFs of ξ and
Hα/Hβ. The PDF of the latter was calculated on a grid
with bins of 0.043 while the PDF for ξ was interpolated
onto a grid with bin size 0.004. We calculate the mean and
uncertainty on the mean on the resulting combined two-
dimensional PDF and only show the trends where at least
10 galaxies contribute to the bin in Hα/Hβ. In this and the
following figure we use all SF class galaxies in the SDSS
since we are comparing two quantities derived within the
same region, the figure does not change significantly except
in the metallicity ranged spanned when limiting attention
to a specific redshift range.

The solid line shows the mean and the shading the un-
certainty on the mean for each trend. The results are shown
for seven bins in oxygen abundance, from 0.5Z⊙ to ∼ 3Z⊙.
We do not include lower abundance bins because, as we dis-
cuss next, we are unable to constrain ξ accurately at low
metallicity.

The first point to notice is that we do see stronger deple-
tion in more dusty systems, similar to the trend seen along
different sight-lines in the Milky Way although the signifi-
cant difference in methodology bars us from making a much
stronger statement, and the trend is fairly weak. The second
point to note is that although the depletion appears to vary
systematically with oxygen abundance, the dependence on
attenuation appears to be the same for most metallicities.

This indicates a significant dependence of depletion on
metal abundance and we make this explicit in Fig. 10 which
shows the trend of ξ with oxygen abundance for star-forming
galaxies from the SDSS DR7. This uses the full likelihood
distributions but is shown conditional on the oxygen abun-
dance, with the solid line indicating the median to guide the
eye. This shows two noticeable features. Firstly we can see a
clear correlation between ξ and 12+ logO/H at high metal-
licity — in the sense that we predict a stronger depletion of
elements in galaxies with higher metallicity. For reference,
the behaviour at high metallicity is well described by

log ξ = −4.45 + 0.43OH, (27)

where OH = 12+ log O/H. This is a good fit to the data for
12 + log O/H > 8.7 and is overplotted as a dashed-dotted
yellow line in the figure. But note that this includes the trend
with attenuation as well thus the intrinsic trend at fixed
attenuation is slightly shallower but we ignore this here.

c⃝ 0000 RAS, MNRAS 000, 000–000

The&dust<to<metal&raFo&as&
a&funcFon&of&the&Balmer&

decrement&&(SDSS&sample,&
Brinchmann'et'al.'2013)&&
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3.5. Converting gas to dust distribution

We derive a dust mass Mdust for each gas particle in the SKIRT
input set according to

Mdust =

(
fdust Z M if T < Tmax or SFR > 0
0 otherwise,

(1)

where Z, M, T , and SFR are the metallicity, mass, temperature,
and star formation rate given by the particle’s properties in the
EAGLE snapshot, and fdust and Tmax are constant parameters.
In other words, we assume that a constant fraction fdust of the
metallic gas is locked up in dust, as long as the gas is colder than
the cuto↵ temperature Tmax or is forming stars.

The temperature cuto↵ T < Tmax is inspired by the fact that
dust can’t form or is rapidly destroyed in hot gas. We currently
use a value of Tmax = 8000 K. The second condition, SFR > 0,
captures the resampled star forming gas particles that did not
yet ignite (the "unspent" arrow in Fig. 1). We need this condition
because the EAGLE simulations place star forming gas particles
on a special equation of state, so that the temperature assigned to
these particles does not reflect a physical quantity (see Sect. 4.3
of Schaye et al. 2015). However, by definition, the star-forming
gas can be assumed to be su�ciently cold to form dust. Finally,
the dust fraction fdust is a free parameter, which we currently set
to a value of fdust = 0.4.

TO DO: discuss proper values for Tmax and fdust = 0.4, add
references, discuss ways to meaningfully constrain these param-
eters.

4. Radiative transfer on EAGLE galaxies

This section describes the SKIRT configuration used to perform
the radiative transfer simulations on the EAGLE galaxies re-
ported in this work.

4.1. Wavelength grid

The SKIRT code employs a single wavelength grid for all cal-
culations. The input SEDs and dust properties are sampled on
this grid, photon packages are given wavelengths corresponding
to the grid points, dust absorption and re-emission are calculated
for the wavelength bins defined by the grid, and the output fluxes
are written down on the same grid.

We designed a wavelength grid that resolves the relevant fea-
tures in the input SEDs (see Sect. 3.4) and in the emission spec-
trum of the dust population (see Sect. 4.3), as illustrated in Fig. 2.
The grid has 450 wavelength points from 0.02 to 2000 µm laid
out on a logarithmic scale. The bin widths are 0.04 dex in the
outer wavelength ranges where fluxes are low, 0.02 dex in the
dust emission continuum, 0.01 dex in the optical range, and un-
der 0.01 dex in the PAH emission range and for specific emission
or absorption features in the employed input spectra.

To verify that the wavelength grid properly resolves the rel-
evant spectral features, we compared band-integrated fluxes cal-
culated on our wavelength grid with those calculated on a high-
resolution grid with 20 000 points. For this purpose, we selected
a typical SED for a stellar population, one for a star forming re-
gion, and one for stochastically heated dust. We calculated the
fluxes in a set of 36 bands essentially covering the complete
wavelength range. The results our wavelength grid are accurate
to within 0.1 magnitude for all bands, and often a lot better. Fi
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distribution, the dust mass inside the box is calculated by summing over all the particles
and integrating over the box

Mbox = fdust Â
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with fdust the fraction of metals locked up in dust grains, Z

i

the metallicity and M

i

the
(gas) mass of the i’th particle, h

i

the SPH smoothing length of the i’th particle, and
W (h,r) the SPH smoothing kernel. To speed up the calculations, this function uses the
scaled Gaussian kernel
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with the empirically determined value of a = 2.42 to make this kernel approximate the
standard spline kernel to within two percent accuracy. The advantage of this kernel is
that the integration over a box can be written in terms of the error function
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Implements DustMassInBoxInterface.

8.221.3.12 DustMix⇤ mix ( int h ) const [virtual]

This function returns a pointer to the dust mixture corresponding to the h’th dust com-
ponent. If h is not equal to zero, an FatalError error is thrown.

Implements DustDistribution.

8.221.3.13 int Ncomp ( ) const [virtual]

This function returns the number of dust components that are involved in the dust distri-
bution. For an SPH dust distribution this is equal to one.

Implements DustDistribution.

8.221.3.14 Q INVOKABLE void setDustFraction ( double value )

Sets the fraction of the metals in the gas that is locked up in dust grains.

8.221.3.15 Q INVOKABLE void setDustMix ( DustMix ⇤ value )

Sets the DustMix instance that describes the attributes of the dust.

8.221.3.16 Q INVOKABLE void setFilename ( QString value )

Sets the name of the file containing the information on the SPH gas particles, optionally
including an absolute or relative path. This text file should contain exactly 6 columns
of numbers separated by whitespace; lines starting with # are ignored. The first three
columns are the x, y and z coordinates of the particle (in pc), the fourth column is the
SPH smoothing length h (in pc), the fifth column is the mass M of the particle (in M�),
and the sixth column is the metallicity Z of the dust (dimensionless fraction).
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with fdust the fraction of metals locked up in dust grains, Z
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the metallicity and M
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the
(gas) mass of the i’th particle, h

i

the SPH smoothing length of the i’th particle, and
W (h,r) the SPH smoothing kernel. To speed up the calculations, this function uses the
scaled Gaussian kernel
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with the empirically determined value of a = 2.42 to make this kernel approximate the
standard spline kernel to within two percent accuracy. The advantage of this kernel is
that the integration over a box can be written in terms of the error function
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Implements DustMassInBoxInterface.

8.221.3.12 DustMix⇤ mix ( int h ) const [virtual]

This function returns a pointer to the dust mixture corresponding to the h’th dust com-
ponent. If h is not equal to zero, an FatalError error is thrown.

Implements DustDistribution.

8.221.3.13 int Ncomp ( ) const [virtual]

This function returns the number of dust components that are involved in the dust distri-
bution. For an SPH dust distribution this is equal to one.

Implements DustDistribution.

8.221.3.14 Q INVOKABLE void setDustFraction ( double value )

Sets the fraction of the metals in the gas that is locked up in dust grains.

8.221.3.15 Q INVOKABLE void setDustMix ( DustMix ⇤ value )

Sets the DustMix instance that describes the attributes of the dust.

8.221.3.16 Q INVOKABLE void setFilename ( QString value )

Sets the name of the file containing the information on the SPH gas particles, optionally
including an absolute or relative path. This text file should contain exactly 6 columns
of numbers separated by whitespace; lines starting with # are ignored. The first three
columns are the x, y and z coordinates of the particle (in pc), the fourth column is the
SPH smoothing length h (in pc), the fifth column is the mass M of the particle (in M�),
and the sixth column is the metallicity Z of the dust (dimensionless fraction).
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8.221.2.2 ⇠SPHDustDistribution ( )

The destructor deletes the data structures allocated during setup.

8.221.3 Member Function Documentation

8.221.3.1 double density ( int h, Position bfr ) const [virtual]

This function returns the mass density r
h

(r) of the h’th component of the dust distribu-
tion at the position r. If h is not equal to zero, an FatalError error is thrown. In the other
case, the call is passed to the total density function.

Implements DustDistribution.

8.221.3.2 double density ( Position bfr ) const [virtual]

This function returns the total mass density r(r) of the dust distribution at the position
r. For an SPH dust distribution, the dust mass density is calculated by summing over
all the particles

r(r) = fdust Â
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with fdust the fraction of metals locked up in dust grains, Z

i

the metallicity and M

i

the
(gas) mass of the i’th particle, h

i

the SPH smoothing length of the i’th particle, and
W (h,r) the SPH smoothing kernel. We assume a standard spline kernel,

W (h,r) =
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with u = r/h.

Implements DustDistribution.

8.221.3.3 int dimension ( ) const [virtual]

This function returns the dimension of the dust distribution, which for this class is always
3 since there are no symmetries in the geometry.

Implements DustDistribution.

8.221.3.4 Q INVOKABLE double dustFraction ( ) const

Returns the fraction of the metals in the gas that is locked up in dust grains.

8.221.3.5 Q INVOKABLE DustMix⇤ dustMix ( ) const

Returns the DustMix instance that describes the attributes of the dust. See also mix().
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Implements DustDistribution.

8.221.3.3 int dimension ( ) const [virtual]

This function returns the dimension of the dust distribution, which for this class is always
3 since there are no symmetries in the geometry.

Implements DustDistribution.

8.221.3.4 Q INVOKABLE double dustFraction ( ) const

Returns the fraction of the metals in the gas that is locked up in dust grains.

8.221.3.5 Q INVOKABLE DustMix⇤ dustMix ( ) const

Returns the DustMix instance that describes the attributes of the dust. See also mix().
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Implements DustMassInBoxInterface.

8.221.3.12 DustMix⇤ mix ( int h ) const [virtual]

This function returns a pointer to the dust mixture corresponding to the h’th dust com-
ponent. If h is not equal to zero, an FatalError error is thrown.

Implements DustDistribution.

8.221.3.13 int Ncomp ( ) const [virtual]

This function returns the number of dust components that are involved in the dust distri-
bution. For an SPH dust distribution this is equal to one.

Implements DustDistribution.

8.221.3.14 Q INVOKABLE void setDustFraction ( double value )

Sets the fraction of the metals in the gas that is locked up in dust grains.

8.221.3.15 Q INVOKABLE void setDustMix ( DustMix ⇤ value )

Sets the DustMix instance that describes the attributes of the dust.

8.221.3.16 Q INVOKABLE void setFilename ( QString value )

Sets the name of the file containing the information on the SPH gas particles, optionally
including an absolute or relative path. This text file should contain exactly 6 columns
of numbers separated by whitespace; lines starting with # are ignored. The first three
columns are the x, y and z coordinates of the particle (in pc), the fourth column is the
SPH smoothing length h (in pc), the fifth column is the mass M of the particle (in M�),
and the sixth column is the metallicity Z of the dust (dimensionless fraction).
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five SEDs for Solar metallicity PDRs, which all have the same
compactness parameter of logC ¼ 5:0, but which have different
pressures and stellar cluster masses. Although these five SEDs
appear indistinguishable, they are not exactly the same, because
their nebular excitation parameters (R; see SED3) are quite dif-
ferent, and consequently, their nebular continuum and emission
lines are different.

Provided that we could independently determineR (from the
nebular spectrum) and C (from the form of the dust continuum),
then in principle we could solve independently for the mean
pressure, P0/k, and mean cluster mass, Mcl;

log
Mcl

M"

! "
¼ log Cþ 2

5
logR; ð14Þ

log
P0=k

cm&3 K

! "
¼ logC& 3

5
logR: ð15Þ

In practice, the separation of these variableswould be assisted by
a direct measurement of the gas pressure. For P0/k > 106 cm&3 K

we can use the ratio of the [S ii] k6717, 6731 lines for this
purpose.
To show the effect of varying C on the form of the far-IR SED,

we present in Figure 5 six model PDR SEDs having the same
metallicity (1 Z") and pressure (P/k ¼ 105), with C varied by
varying the cluster mass. In the optical and near-IR, the model
SEDs show stellar emission, and the extinction of all six SEDs is
the same, as they pass through the same column depth of dust and
gas. At longer wavelengths, the progression in the dust tempera-
tures with increasing C is obvious.

4. PDR COVERING FRACTION

In x 3, our Figures 4 and 5 corresponded to a complete cover-
ing fraction of molecular clouds; fPDR ¼ 1. In this extreme, the
molecular gas and dust surrounding the H ii regions act as a dust
bolometer, absorbing essentially all of the stellar UV continuum,
and reradiating it into the far-IR bump and the PAH features.
However, in the case of isolated H ii region complexes in both
starburst and in normal disk galaxies, the placental molecular
cloud is quickly cleared away by the stellar winds, and by photo-
evaporation. In older clusters, the disruption of the cluster by this
gas ejection will cause the exciting stars to disperse away from the
regions of high extinction, although the timescale for this may
be greater than the H ii region lifetime (Boily & Kroupa 2003a,
2003b). This process is cutely referred to as ‘‘infant mortality.’’
Previously in SED1 and SED2, we parameterized this uncov-

ering of the exciting stars by the introduction of amolecular cloud
clearing or dissipation timescale, ! clear, where the covering frac-
tion of molecular cloud PDRs around a stellar cluster is given by;

fPDR ¼ exp (&t=!clear): ð16Þ

In SED2, we found that, for Galactic star-forming regions at least,
this timescale is quite short, on the order of 1Y2 Myr. However,
this certainly does not represent all star-forming regions and is
probably far too short for ULIRGs which have an extremely gen-
erous sink of molecular material. In these objects, the H ii regions
of individual clusters may merge, but the complex is still sur-
rounded bymolecular gas. Thus, the clearing timescale is likely
to show a large range and will depend on the local environment.
In addition, situations like the commonly observed ‘‘blister H ii

Fig. 3.—Time variation of the incident heating flux (L'/R
2
H ii) entering the H ii

region surrounding a solar metallicity starburst with log(P0/k) ¼ 5. Each curve
represents a differentC (Mcl), and reveals how the C parameterizes different L'/R

2
H ii

at any given time. [See the electronic edition of the Supplement for a color version
of this figure.]

Fig. 4.—Five SEDs with Solar metallicity, logC ¼ 5:0, and varying pressure
( logP/k ¼ 4, 5, 6, 7, and 8). The model SEDs are almost indistinguishable apart
from their nebula emission features, such as the [Ne ii] 12.8 "m emission line.
[See the electronic edition of the Supplement for a color version of this figure.]

Fig. 5.—Six model SEDs with Solar metallicity, logP0/k ¼ 5:0, and varying
compactness. The compactness parameter decreases from logC ¼ 6:5 to log C ¼
4:0 as the far-IR dust emission feature moves to longer wavelengths. [See the
electronic edition of the Supplement for a color version of this figure.]
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Fig. 4.—BARE-GR-S dust model: the size distributions (top left), extinction curve (top right), elemental requirements (bottom left), and emission spectrum
(bottom right). Two straight lines are the MRN size distributions for silicate (upper line) and graphite (lower line).
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L. Cortese et al.: The dust scaling relations of the Herschel Reference Survey

Fig. 3. The dust-to-stellar mass ratio as function of stellar mass (upper left), NUV − r colour (upper right), concentration index (lower left) and
stellar mass surface density (lower right). Circles and triangles show Herschel detections and non-detections, respectively. The typical errors
associated with our galaxies are indicated on the bottom-left corner of each panel.

The scaling relations for the four samples are plotted in Fig. 4.
In order to properly quantify the difference between different en-
vironments, in the right most panel of Fig. 4 and in Table 1 we
present the average trends (i.e., ⟨log(Mdust/M∗)⟩) for each sub-
sample, determined by placing the non-detections to their upper-
limit. Although for all four samples the dust-to-stellar mass ratio
decreases with stellar mass, colour and stellar mass surface den-
sity, galaxies in different environments have different dust con-
tents. In particular, for fixed stellar mass and stellar mass sur-
face density, Virgo and HI-deficient galaxies have, on average,
a lower dust-to-stellar mass ratio than HI-normal/field galaxies.
This difference is particularly strong between HI-normal and HI-
deficient galaxies (i.e., ∼0.5–0.7 dex), while it is less remarkable
(i.e., ∼0.2–0.4 dex) when galaxies are separated accordingly to
the environment they inhabit, suggesting that the atomic hydro-
gen content is more important than the local environment in reg-
ulating the positions of galaxies in the scaling relations.

In order to better quantify the difference between the various
subsamples, we estimated the residuals of the HI-deficient and
Virgo galaxies from the mean trends observed for HI-normal and
galaxies outside Virgo, respectively. A simple χ2 test indicates
that HI-deficient and HI-normal galaxies do not follow the same
Mdust/M∗ vs. M∗ and Mdust/M∗ vs. µ∗ relations at >99.99% sig-
nificance level. Galaxies in and outside Virgo do not follow the
same Mdust/M∗ vs. M∗ and Mdust/M∗ vs. µ∗ relations at a ∼99.7%

and ∼98% level, respectively. A similar conclusion is reached if,
instead of performing a χ2, we just compare the median residuals
of the two populations: while HI-deficient and HI-normal galax-
ies differ by∼7−8σ, galaxies inside and outside the Virgo cluster
show just a ∼2−3σ difference. The shift towards lower dust con-
tent for HI-deficient/Virgo galaxies is also confirmed by the fact
that the vast majority of non-detections are found among gas-
poor cluster galaxies. Finally, also the scatter of the Mdust/M∗
vs. M∗ and Mdust/M∗ vs. µ∗ relations varies among the four sub-
samples here considered: from ∼0.4−0.3 dex to ∼0.6−0.5 dex
when moving from HI-normal to HI-deficient systems and from
∼0.57−0.44 dex to ∼0.63−0.5 dex when moving from objects
outside and inside Virgo, respectively.

It is quite easy to understand why a rough cut in environ-
ment is less powerful in isolating dust poor systems than a cut
in gas content. On one side, our Virgo sample still includes
HI-normal star-forming galaxies not yet affected by the cluster
environment (Boselli & Gavazzi 2006; Cortese & Hughes 2009).
On the other side, we find HI-deficient galaxies also outside
Virgo (Cortese et al. 2011). These two factors together reduce
the difference between the two samples. This is clearly shown
in Fig. 4 where HI-deficient field galaxies and HI-normal Virgo
galaxies are highlighted. It is also important to remember that,
due to the lack of statistics available outside the Virgo cluster (in
particular for early-type galaxies), it is impossible to perform a
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