
Why are you here? 
•  Use existing Monte Carlo codes to model 

data sets – set up source locations & 
luminosities, change density structure, get 
images and spectra to compare with 
observations  

•  Learn techniques so you can develop your 
own Monte Carlo codes 

•  General interest in computational radiation 
transfer techniques 



Format 
•  Lectures & lots of “unscheduled time” 
•  Breakout sessions – tutorial exercises, using 

codes, informal discussions 
•  Coffee served at 10.30 & 15.30 
•  Lunch at 13.00 or 12.30 
•  Dinner at 7pm (different locations) 



Lecturers 
•  Kenny Wood – general intro to MCRT, write a 

short scattered light code, photoionization code 
•  Tom Robitaille – radiative equilibrium, improving 

efficiency of MCRT codes, using HYPERION 
•  Tim Harries – 3D gridding techniques, radiation 

pressure, time dependent MCRT, using TORUS 
•  Michiel Hogerheijde – NLTE excitation, 

development of NLTE codes, using LIME 
•  Barbara Ercolano – photoionization, using 

MOCASSIN 



Lecturers 
•  Stuart Sim – radiation hydrodynamics with MCRT 
•  Peter Camps – MCRT for modeling of dust in 

galaxies, SKIRT 
•  Steve Jacques – MCRT in medicine, laser-tissue 

interactions, planning cancer treatments, etc 
•  Jon Bjorkman (cancelled due to illness) – theory 

of MCRT, radiative equilibrium techniques, error 
estimates, normalizing output results 



Reflection Nebulae: can reflections from 
grains diagnose albedo? 

Mathis, Whitney, & Wood (2002) 

3D density: viewing angle effects 

NGC 7023 
Reflection Nebula 



Photo- or shock- ionization? 

Ercolano et al. (2012) 

[O III] 
Hα + [O III] 

“Photoionzed” 

“Shock-ionzed” 



Dusty Ultra Compact H II Regions 

Indebetouw, Whitney, Johnson, & Wood (2006) 

3D Models: Big variations with viewing angle 



What happens physically? 

•  Photons emitted, travel some distance, interact 
with material 

•  Scattered, absorbed, re-emitted 
•  Photon interactions heat material, change level 

populations, alter ionization balance and hence 
change opacity 

•  If medium in hydrostatic equilibrium: density 
structure related to temperature structure 

•  Density structure may depend on radiation field 
and vice versa 



Atmospheric Physics 
Clouds important for photon  
transport and temperature  
structure of atmosphere 



Medical Physics 
Light activated treatments such as photodynamic therapy: how  
deep does the radiation penetrate into skin and tissue? 
Imaging using x-ray, ultraviolet, optical, infrared, & polarised light 
Optical tweezers, photo-acoustic imaging, nuclear medicine, etc, etc 

Monte Carlo simulations of computed 
topography (CT) x-ray imaging doses 
Rensselaer Polytechnic Institute 



Nuclear Physics & Neutron Transport 
Compute controlled criticality assemblies & geometries for  
nuclear fission reactors 
Nuclear safety – radioactive shielding calculations 
Uncontrolled reactions – critical masses for bombs 

Chain reaction in 235U Chicago Pile 1, December 1942 
World’s first artificial nuclear reactor 



Buffon’s needles 

What is the probability that a  
needle will cross a line? 

Georges-Louis Leclerc 
Comte de Buffon 

1707-1788 



Needles of length l 
Line separation s 
x = distance from needle centre  
to closest line 
Needle touches/crosses line if 
 
 
 Probability density function: function of a variable that gives  

probability for variable to take a given value 
 
Exponential distribution: p(x) = e-x , for x in range 0 to infinity 
 
Uniform distribution: p(x) = 1/L , for x in range 0 to L 
 
Normalised over all x:  
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Probability x lies in range a < x < b is ratio of “areas under the 
curve” 
 
 
 
 
x is distributed uniformly between (0, s/2), θ in range (0, π/2)

  p(x) = 2/s,  p(θ) = 2/π
 
Variables x and θ independent, so joint probability is  
 

   p(x, θ) = 4/(s π)
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Probability of a needle touching a line (l < s) is  
 
 
 
 
Drop lots of needles. Probability of needle crossing line is 
 
 
 
 
Can estimate π : 
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Brief History
•  Buffon’s needles – first Monte Carlo simulation 
•  Statistical sampling – draw conclusions on an entire 

population by conducting a study on a small subset of the 
population.  

•  Used in maths since 1800s, but slow before computers.  
•  Lord Kelvin studied kinetic theory using random sampling 

to evaluate integrals. Generated random numbers by 
pulling pieces of paper from a jar. 

•  Fission of 235U by neutrons discovered in 1938, possibility 
of chain reactions for power and explosives 

•  Enrico Fermi developed mechanical machine, the 
FERMIAC, to simulate neutron random walks 



Enrico Fermi and the FERMIAC

Mechanical device that plots 2D random  
walks of slow and fast neutrons in fissile material 



Los Alamos
•  Development of computers from the 1940s made Monte Carlo 

practical – the ENIAC, MANIAC, etc  
•  Ideas from Metropolis, Ulam, von Neumann, Teller developed 

for neutron propagation 



Stan Ulam with the FERMIAC 

MANIAC: Mathematical Analyzer Numerical Integrator and Computer 

The ENIAC 
Electronic Numerical Integrator and Computer 

No whining about fortran…!!!! 



•  Stan Ulam had ideas on numerical simulations when he 
was ill and playing solitaire (patience) 

•  Technique given name by Nick Metropolis 
•  First declassified paper published in 1949 by Metropolis & 

Ulam: “The Monte Carlo Method”  



Just in case you think you’re doing something new… 

Fig. 1. The first and last pages of von Neumann’s remarkable letter to Robert Richtmyer are shown above, as well as a portion of his tentative
computing sheet. The last illustrates how extensively von Neumann had applied himself to the details of a neutron-diffusion calculation.

132 Los Alamos Science Special Issue 1987



Just in case you think you’re doing something new… 
 
 
 
 
 
 
 
 

John von Neumann had Monte Carlo radiation 
transport coupled with hydrodynamics all figured 

out… in 1947!! 
 

Dear Bob, 
 
I have been thinking a good deal about the possibility of using statistical methods  
to solve the neutron diffusion and multiplication problem, in accordance with the  
principle suggested by Stan Ulam… 
 
If and when the problem of neutron diffusion has been satisfactorily handled…  
it will be time to investigate the more general case, where hydrodynamics  
also come into play… I think I know how to set up this problem, too… 



Recap of radiation transfer basics 

•  Intensities 
•  Opacities 
•  Mean free path 
•  Equation of radiation transfer 



Specific Intensity 
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dEν = Iν cosθdAdtdν dΩ

Units of Iν: J/m2/s/Hz/sr  (ergs/cm2/s/Hz/sr) 
Function of position and direction 
Independent of distance when no sources or sinks 
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Mean Intensity 
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Function of position 
 
Determines heating, ionization, level populations, etc 
 



What is Jν at r from a star with uniform specific  
intensity I* across its surface? 
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I = I*  for  0 < θ < θ*  (µ* < µ < 1);  µ = cos θ  
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Monochromatic Flux 
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Energy passing through a surface.  Units: J/s/m2/Hz 



Stellar Luminosity 
Flux = energy/second per area/Hz 
Luminosity = energy/second/Hz 
 
 
 
Assume Iν = Bν and integrate to get total luminosity: 
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Energy Density & 
Radiation Pressure 
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uν : J/m3/Hz    pν : N/m2/Hz 
 
Isotropic radiation:  pν = uν/3 
 
Radiation pressure analogous to gas pressure:  
pressure of the photon gas 



Moments of the Radiation Field 
First three moments of specific intensity are named  
J (zeroth moment), H (first), and K (second): 
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Photon Interactions 

•  Scattering: change direction (and energy) 
•  Absorption: energy added to K.E. of particles: 

photon thermalized 
•  Emission: energy taken from thermal energy 

of particles  



Emission Coefficient 
Ω≡ ddddd ννν tVjE

Energy, dEν, added:  stimulated emission 
    spontaneous emission 
    thermal emission 
    energy scattered into the beam 

 
Intensity contribution from emission along ds: 

ds)()(d sjsI νν =



Extinction Coefficient 
Energy removed from beam  
Defined per particle, per mass, or per volume 

ds)(d ννν αIsI −= αν: units of m-1 

ds)(d nIsI ννν σ−=
σν = cross section per particle (m2)  
n = particle density (m-3)  

ds)(d ρκννν IsI −=
κν: units m2 kg-1  
ρ = density (kg m-3) 



Source Function 
Same units as intensity: 
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ην = ανl/ ανc = line-to-continuum extinction ratio;  
Sνc, Sνl are continuum and line source functions 



Optical Depth 
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Function of frequency via the opacity, and direction 
 
Physically τν is number of photon mean free paths 
 
Mean free path = 1 / α = 1 / ( n σ ) = 1 / ( ρ κ ) 
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Equation of Radiation Transfer 
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Goal: Determine source function! 



Interconnectedness 
Moments (Jν, Hν, Kν) depend on Iν 
Need to solve ERT to get Iν 
Iν (and hence Jν) depends on position  and direction 
Iν depends on Sν, hence on emissivity and opacity 
Opacity depends on temperature and ionization 
Temperature and ionization depends on Jν
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Example: Model H II Region 
•  Sources of ionizing photons 
•  Opacity from neutral H: bound-free 
•  1st iteration: 

–  Medium fully ionized (no neutral H) so opacity is zero  
–  Solve ERT throughout medium to get Jν 
–  Solve for ionization structure, some regions neutral 

•  2nd iteration:  
–  new opacity structure,  
–  different solution for ERT, different Jν values   
–  new ionization and opacity structure 

•  Iterate until get convergence: solution of ERT, Jν, 
ionization structure do not change with further 
iterations 



Monte Carlo Radiation Transfer I 

•  Monte Carlo “Photons” and interactions 
•  Sampling from probability distributions  
•  Optical depths, isotropic emission, scattering  



Monte Carlo Basics 
•  Emit luminosity packet, hereafter a “photon” 
•  Photon travels some distance 
•  Something happens… 

•  Scattering, absorption, re-emission 



Luminosity Packets 
Total luminosity = L (J/s, erg/s) 
Each packet carries energy Ei = L Δt / N,  
N = number of Monte Carlo photons.   
MC photon represents Nγ real photons, where Nγ = Ei / hνi  
MC photon packet moving in direction θ contributes to the  
specific intensity: 

€ 

Iν =
dEν

cosθdAdtdν dΩ

ΔIν =
Ei

cosθΔAΔtΔν ΔΩ



Iν is a distribution function.  MC works with discrete  
energies.  Binning the photon packets into directions,  
frequencies, etc, enables us to simulate a distribution  
function:  Spectrum: bin in frequency 

  Scattering phase function: bin in angle 
  Images: bin in spatial location I 

ν (spectrum) 
θ (phase function) 



Photon Interactions 

Energy removed from beam per particle /t / ν / dΩ= Iν σ
 

A 

Volume = A dl 

Number density n 

dl 
Cross section σ



Intensity differential over dl is dIν = - Iν n σ dl.  Therefore 
   Iν (l) = Iν (0) exp(-n σ l) 

Fraction scattered or absorbed / length = n σ
n σ = volume absorption coefficient = ρ κ
Mean free path = 1 / n σ = average dist between interactions 
Probability of interaction over dl is n σ dl 
Probability of traveling dl without interaction is 1 – n σ dl 
 
 
 
Probability of traveling L before interacting is  

 P(L)  =  (1 – n σ L / N) (1 – n σ L / N) … 
  =  (1 – n σ L / N)N = exp(-n σ L) (as N -> infty) 
 P(L)  =  exp(-τ) 

τ = number of mean free paths over distance L. 

L 

N segments of length L / N 



PDF for photons to travel τ before an interaction is exp(-τ).   
If we pick τ uniformly over the range 0 to infinity we will  
not reproduce exp(-τ).  Want  
to pick lots of small τ and fewer  
large τ.  Same with a scattering  
phase function: want to get the  
correct number of photons  
scattered into different directions,  
forward and back scattering, etc. 

exp(-τ) N 

τ

Probability Distribution Function 



Cumulative Distribution Function 

∫== xxP d)( under PDFArea CDF

Randomly choose τ, θ, λ, … so that PDF is reproduced 
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ξ is a random number  
uniformly chosen in  
range [0,1] 

This is the fundamental principle behind Monte Carlo  
techniques and is used to sample randomly from PDFs. 



e.g., P(θ) = cos θ and we want to map ξ to θ. Choose  
random θs to “fill in” P(θ) 
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Sample many random θi in this way and “bin” them, we  
will reproduce the curve P(θ) = cos θ.



P(τ) =  exp(-τ), i.e., photon travels τ before interaction 
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Since ξ is in range [0,1], then (1-ξ) is  
also in range [0,1], so we may write: ξτ log−=

Choosing a Random Optical Depth 

Physical distance, L, that the photon has traveled from: 
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Random Isotropic Direction 
Solid angle is dΩ = sin θ dθ dφ, choose (θ, φ) so they  
fill in PDFs  for θ and φ. P(θ) normalized over [0, π],  
P(φ) normalized over [0, 2π]: 

  P(θ) = ½ sin θ   P(φ) = 1 / 2π
Using fundamental principle from above: 
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Use this for emitting photons isotropically from a point  
source, or choosing isotropic scattering direction. 



Rejection Method 
Used when we cannot invert the PDF as in the above  
examples to obtain analytic formulae for random θ, λ, etc. 

a b x1 x2 

y2 

y1 

Pmax 

P(x) 

x 

e.g., P(x) can be complex 
function or tabulated 
 
Multiply two random  
numbers: 
uniform probability / area 

Pick x1 in range [a, b]: x1 = a + ξ(b - a), calculate P(x1) 
Pick y1 in range [0, Pmax]: y1 = ξ Pmax 
If y1 > P(x1), reject x1.  Pick x2, y2 until y2 < P(x2): accept x2 
Efficiency = Area under P(x) 



Calculate π by the Rejection Method 
Pick N random positions (xi, yi): 
xi in range [-R, R]: xi = (2ξ - 1) R 
yi in range [-R, R]: yi = (2ξ - 1) R 
Reject (xi, yi) if   xi

2 + yi
2 > R2 

Number accepted / N = π R2 / 4R2 

 NA / N = π / 4 
Increase accuracy (S/N): large N 

do i = 1, N 
   x = 2.*ran – 1. 
   y = 2.*ran –1. 
   if ( (x*x + y*y) .lt. 1. ) NA = NA + 1 
end do 
pi = 4.*NA / N 

FORTRAN 77: 

2 R 



Albedo 
Photon gets to interaction location at randomly chosen τ,  
then decide whether it is scattered or absorbed.  Use the  
albedo or scattering probability.  Ratio of scattering to total  
opacity: 

AS

Sa
σσ

σ
+
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To decide if a photon is scattered: pick a random number in  
range [0, 1] and scatter if ξ < a, otherwise photon absorbed 
 
Now have the tools required to write a Monte Carlo  
radiation transfer program for isotropic scattering in a  
constant density slab or sphere 



Monte Carlo II 
Scattering Codes 

•  Plane parallel scattering atmosphere 
•  Optical depths & physical distances 
•  Emergent flux & intensity 
•  Internal intensity moments 
 



Constant density slab, vertical optical depth τmax = n σ zmax   
Normalized length units z = z / zmax.   
 
Emit photons 
Photon scatters in slab until:   

   absorbed: terminate, start new photon 
   z < 0: re-emit photon  
   z > 1: escapes, “bin” photon 

 
Loop over photons 
Pick optical depths, test for absorption, test if still in slab 
 



z = zmax 

z = 0 

τmax = n σ zmax 

Bin this photon in angle 

Re-start this photon 

θ

Photon absorbed 
Start next photon 



Emitting Photons:  Photons need an initial starting location  
and direction.  Uniform specific intensity from a surface.   
 
Start photon at (x, y, z) = (0, 0, 0) 
 
 
 
Sample µ from P(µ) = µ I (µ) using cumulative distribution.   
Normalization: emitting outward from lower boundary,  
so 0 < µ < 1 
 

)()( µµ
ννµ

µ νν I
d
dN

dddtdA
dE

dddtdA
dEI ∝

Ω
∝

Ω
⇒

Ω
=

ξµµ

µµ

µµ

ξ

µ

=⇒==

∫

∫
2

1

0

0

d)(

d)(

P

P



Distance Traveled:  Random optical depth τ = -log ξ,  
and τ = n σ L, so distance traveled is: 
 
 
 
Scattering:  Assume isotropic scattering, so new photon  
direction is: 
 
 
 
Absorb or Scatter:  Scatter if ξ < a, otherwise photon  
absorbed, exit “do while in slab” loop and start a new  
photon. 
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Structure of FORTRAN 77 program: 
do i = 1, nphotons 
1  call emit_photon 

 do while ( (z .ge. 0.) .and. (z .le. 1.) )  ! photon is in slab 
  L = -log(ran) * zmax / taumax 
  z = z + L * nz   ! update photon position, x,y,z 
  if ((z.lt.0.).or.(z.gt.zmax)) goto 2    ! photon exits 
  if  (ran .lt. albedo) then  
   call scatter 
  else 
   goto 3   ! terminate photon 
  end if 
 end do 

2  if (z .le. 0.) goto 1  ! re-start photon 
 bin photon according to direction 

3 continue  ! exit for absorbed photons, start a new photon 
end do 



Intensity Moments 
The moments of the radiation field are: 
 
 
 
 
Compute these moments throughout the slab.  First  
split the slab into layers, then tally number of photons,  
weighted by powers of their direction cosines to obtain  
J, H, K.  Contribution to specific intensity from a single  
photon is: 
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Substitute into intensity moment equations and convert the  
integral to a summation to get: 
 
 
 
 
Note the mean flux, H, is just the net energy passing  
each level: number of photons traveling up minus number  
traveling down. 
 
Pathlength formula (Lucy 1999) 
Long history of use in neutronics 
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Some Monte Carlo photon packets may pass through a cell without interacting  
(scatter or absorbed), but the path length estimator ensures they still contribute  
to the estimates for mean intensity, absorbed energy, radiation pressure, etc 

Ji =
L

4π N ΔVi
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Summing path lengths gives better estimates for intensities,  
absorbed energy, radiation pressure, etc. More photons pass  
through a cell than interact with a cell 
 
Mean intensity, J, related to photon energy density, u, via 
 
 
 
u related to time photon spends in a cell, t = l/c, so  
can form Monte Carlo estimator: 
 
 
 
Where εν = MC packet energy = L Δt / N. Hence, get estimator  
for J which will be accurate in optically thin regions: 
 
 Ji =

L
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How much energy absorbed in a cell? Could count number of  
absorption events in each cell, but this is inaccurate for optically  
thin systems. We know the change in intensity for radiation  
passing through a medium with absorbing particles is  
 

  dI = - I n σabs dl = - I dτabs 
 
Hence, a Monte Carlo estimator for absorbed energy: 
 

Ei
abs =

L
4π N ΔVi

nσ abs l∑



 
  
 
Net displacement of a single photon from starting position after N mean free paths 

between scatterings is: 
  
 
Square and average to get distance |R | travelled : 
  
 
 
The cross terms are all of the form: 
  
 
 
where δ is the angle of deflection during the scattering.  
For isotropic scattering, <cos δ> = 0, cross-terms vanish. 
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Random walks 



Thus, for a random walk we have 
 
 
 

    
  
 
 
 
 
 
Using: 
 
 
 
 If the medium is optically thin, then the probability of scattering is     
 
Using    then  
  
 
Therefore                        will be roughly correct  for any optical depth 
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Student exercises: write codes to… 
 
- Calculate pi via rejection method 
 
- Sample random optical depths and produce histogram vs tau 
 
- Monte Carlo isotropic scattering code for uniform density sphere  
illuminated by central isotropic point source. Compute average  
number of scatterings vs radial optical depth of sphere. 
 
-  Make scattered light images for uniform sphere using  
“peeling off” technique (“next event estimator”) 


