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Overview:

* Interaction physics
* Lucy’s Macro Atom method

e Line-driven winds
e Suitability of MCRT techniques
* Recent stellar wind explorations
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Optical depth accumulated
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Sobolev approximation

Algorithm for finding interaction point (only lines):
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Sobolev approximation

Process for finding interaction point (generalized to include continuum):
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Redistribution
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Need for good microphysics:
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Comparison of predicted spectral features for hydro model to observations
(Sim et al. 2013)



Need for good microphysics:
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Line interaction events

Considerations:

Radiation dominated: naively calculating emission using level populations will
not conserve energy unless converged

Use indivisible packets (Lucy) —imposes radiative equilibrium
* means any packet absorbed by a line transition must be re-emitted

How to emit?

(1) Extremely simple to use resonance scattering approximation

(2) Alternative schemes based on “down branching” (Mazzali & Lucy 1993)
and Lucy’s (2002, 2003) “macro atom” / “k-packet” methods give more
physical realism (second lecture).



Two-level atom

(radiation dominated)




Two-level atom

For homologous flow:
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Two-level atom
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Statistical equilibrium:
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Two-level atom
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Statistical equilibrium:
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Two-level atom
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Simple algorithm (“scatter”):

Every time a line absorbs an energy packet immediately replace it

with a . Effectively a
scattering event — just need a new direction.

[Some codes generalize to include collisional destruction (e.g. Long
& Knigge 2002)]



Radiation-dominated example
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Radiation-dominated example




Radiation-dominated example

== —— Resonance line scattering assumption:
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Very simple to implement in MCRT
Should be reasonable for many cases

Problem:
Neglects a lot of atomic physics!



Radiation-dominated example

____________ “Down-branching” approach:
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Radiation-dominated example

“Down-branching” approach:

E.g., following excitation to level 3,
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Only minor complication to MCRT
Major improvement for many cases

Problem:
Still neglects a lot of atomic physics!



Radiation-dominated example

Kerzendorf & Sim (2014)
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Radiation-dominated example
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Radiation-dominated example

Statistical equilibrium:
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(see Lucy 2002)



Radiation-dominated example

Algebra with rates and stat. eqm.
from last slide:

As + Ryses = F3 + Ragey

Ay + Rszes = Fy + Rosey

Interpret as traffic flow problem:
“Macro Atom” (see Lucy 2002)



Radiation-dominated example

Algebra with rates and stat. eqm.

€3 from last slide:
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F Ros R13  Interpret as traffic flow problem:
“Macro Atom” (see Lucy 2002)

Absorption of radiation packets



Radiation-dominated example

Algebra with rates and stat. eqm.
€3 from last slide:

R32 . .
Ros Ag_ - B3 4+

€9 — N :
As - Fs -

F R13  Interpret as traffic flow problem:
“Macro Atom” (see Lucy 2002)

Absorption of radiation packets

Internal macro atom (radiationless)

transition out of level
Internal macro atom (radiationless)

transition into level



Radiation-dominated example

Rss Algebra with rates and stat. eqm.
Ros from last slide:

—

R31 . .
Ry2 Ri3 Ag | = b -4—
R21

Interpret as traffic flow problem:
e1 =0 “Macro Atom” (see Lucy 2002)

Algorithm:

1. Following activation of some state, select either an emission or internal
transition (probabilities proportion to terms above)

2a. If select emission emit a photon (as in “down-branch” scheme)

2b. If select an internal transition, change the macro atom state and GOTO 1



Radiation-dominated example
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Fig. 1. Schematic representation of the interaction of a macro-
atom with a packet of energy ¢;. The macro atom is activated
by absorbing the energy packet, makes two internal transitions,
and then de-activates by emitting a packet of energy ¢g.

Lucy 2002



Radiation-dominated example

Kerzendorf & Sim (2014)
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Radiation-dominated example

Radiation
energy pool

Governed by
radiative packet
transport
algorithm

Absorption
and emission
events

Excitation
energy pool

Governed by
macro atom
internal transition
rules



Generalization (Lucy 2003)

For full solution in radiative and thermal equilibrium can extend
to include third energy pool:
(for SNe implementation e.g. Kromer & Sim 2009)

Line+photoionization
absorption

H

Line+radiative
recombination

Free-free and

photoionization Electron collisions




Macro Atom implementation

Use Macro Atom implementation in our ARTIS supernova code (Kromer &
Sim 2009)

Also implemented now in non-homologous flow codes, both Python (Long
& Knigge 2002) and Sim et al. (2008,2010)

Available as an mode in publicly available TARDIS code (extensions
planned)



Lines in radiation hydrodynamics



Lines in radiation hydrodynamics
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Lines in radiation hydrodynamics
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For hot, ionized media, the radiation force can be dominated by
bound-bound transitions (resonant cross-sections high)



Astrophysical line driving: OB stars

Radiating at few percent of
Eddington limit but show strong
winds: radiatively driven by
pressure on spectral lines (CAK75).




Astrophysical line driving: OB stars
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Eddington limit but show strong
winds: radiatively driven by
pressure on spectral lines (CAK75).



CAK approximation

(Castor, Abbott & Klein 1975)

Description of the radiation force due to attenuated continuum:
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CAK approximation

(Castor, Abbott & Klein 1975)

Description of the radiation force due to attenuated continuum:

—1
f %FM () f dv
rad — ; — OcPVUth | —
C - dr
“Force
multiplier”

Widely used and powerful — but neglects multiple scattering,
attenuation...



Astrophysical line driving: OB stars

Also long history of successful use of
MCRT to study mass-loss from hot
stars:

Abbott & Lucy (1985);
Lucy & Abbott (1993)

Vink et al. (1999, 2000, 2001) mass-
loss “recipes”




Astrophysical line driving:
CV disk winds




Astrophysical line driving:

CV disk winds
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(Monte Carlo RT calculation for CV disk wind from Long & Knigge 2002)



Astrophysical line driving:
CV disk winds

White Dwarf

UV bright accretion disk — similar
(Figure from Matthews et al. 2015) physics to hot star?



Astrophysical line driving:
AGN disk winds
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Astrophysical line driving:
AGN disk winds
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(X-shooter spectrum of BAL QSO from Borguet et al. 2012)



Astrophysical line driving:
AGN disk winds

| 75° sightline — into upper wind cone
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(from Higginbottom et al. 2013)



Astrophysical line driving:
hydro simulation

(from Proga & Kallman 2004)




Astrophysical line driving:
hydro simulation + post-processing
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Astrophysical line driving:
simple MC algorithm

From a MC simulation of radiation in expanding media, want to
record the momentum transfer rate on a computational grid.



Astrophysical line driving:
simple MC algorithm

From a MC simulation of radiation in expanding media, want to
record the momentum transfer rate on a computational grid.

Challenges to consider:

(1) Recall from last time, in expanding (1D) medium

dvgys Vobs [ V(T) 2 o du(r)
= — _— 1 —
ds c ( r ( :uobs) + :uobs dr

... makes it hard to work directly with an estimator such as (see Tim
Harries’s talk):

1
Erad = 7oA 2 v



Astrophysical line driving:
simple MC algorithm

From a MC simulation of radiation in expanding media, want to
record the momentum transfer rate on a computational grid.

Challenges to consider:

(2) Known (previous work on winds) that many weak lines matter,
thus as not good to work directly with

AEcell — E :Epacket,in - E :Epacket,out

...as Tim explained, that doesn’t work well in optically thin limit



Astrophysical line driving:
simple MC algorithm

From a MC simulation of radiation in expanding media, want to
record the momentum transfer rate on a computational grid.

Simple alternative:

First consider momentum transferred in pure line absorption:

® = Sobolev point



Astrophysical line driving:
simple MC algorithm

From a MC simulation of radiation in expanding media, want to
record the momentum transfer rate on a computational grid.

Simple alternative:

First consider momentum transferred in pure line absorption:

® = Sobolev point



Astrophysical line driving:
simple MC algorithm

From a MC simulation of radiation in expanding media, want to
record the momentum transfer rate on a computational grid.

Simple alternative:

First consider momentum transferred in pure line absorption:

€p
ADeenn = E - n
y events—in—cell

® = Sobolev point Great if this is common...



Astrophysical line driving:
simple MC algorithm

From a MC simulation of radiation in expanding media, want to
record the momentum transfer rate on a computational grid.

Simple alternative:

First consider momentum transferred in pure line absorption:

€p
ADeenn = E - n
events—in—cell

® = Sobolev point But not if this is!

=



Astrophysical line driving:
simple MC algorithm

From a MC simulation of radiation in expanding media, want to
record the momentum transfer rate on a computational grid.

Simple alternative:

First consider momentum transferred in pure line absorption:

€p .
ADcen = Z —(1—e"")n

C

=

resonances—in—cell

/

® = Sobolev point Easily fixed (similar to Lucy 1999)



Astrophysical line driving:
simple MC algorithm

From a MC simulation of radiation in expanding media, want to
record the momentum transfer rate on a computational grid.

Simple alternative:

First consider momentum transferred in pure line absorption:

1D spherical grid:

€p T,
ADcell = E ;(1 —e )y
resonances—in—-cell

=

® = Sobolev point



Astrophysical line driving:
simple MC algorithm

From a MC simulation of radiation in expanding media, want to
record the momentum transfer rate on a computational grid.

Simple alternative:

Also include re-emission:

A g® b 2/ a b
pzz[u —v(uo+5)(1—ﬂu)}

Noebauer & Sim (2015)

=

® = Sobolev point



Astrophysical line driving:
simple MC algorithm

From a MC simulation of radiation in expanding media, want to
record the momentum transfer rate on a computational grid.

Simple alternative:

Also include re-emission: leads to estimator for the momentum term

1
]_ _ _ _7-3 .
Gline - AVCAt § :(]‘ € )8(/’6 6)

Noebauer & Sim (2015)

=

® = Sobolev point



Astrophysical line driving:
simple MC algorithm

Implemented in 1D (Noebauer & Sim 2015):

* Finite-volume PPM hydro scheme
* Operator splitting
e |sothermal

Used simplified stellar winds to investigate value of this approach



Astrophysical line driving:
simple MC algorithm

Example:

Parameter Value
Ly 10° Lo

T.q 4.2 x 104 K




Toy hot star wind simulation
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Toy hot star wind simulation

Appears to work quite well:
* noise is present (spurious fluctuations)
* but finds steady state

5 x 10% packets —— 10° packets
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Toy hot star wind simulation

Lots of nice extra information from this sort of simulation:
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relative contribution to gjine

Toy hot star wind simulation

Lots of nice extra information from this sort of simulation:

relative contribution to gjine
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u[kms™1]

Tests/comparisons

Compare to CAK expectations:

—— MCRH results ----  CAK/MCAK predictions —— finite cone, unattenuation
— - CAK-RH/MCAK-RH results point source, unattenuation — finite cone, full scattering
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Tests/comparisons

Compare to alternative method:

M [Mg yr—1]
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finite cone, full scattering

Miiller & Vink 2008
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Conclusions

Using MCRH to simulate line-driven flows looks promising:

* Easy to formulate estimator for Sobolev limit that captures weak line
contributions

* Noise is an issue but overall results are promising

 Comparisons to other methods suggests that results are reasonable



