MCRT for astrophysical outflows: line interactions and line driving

Stuart Sim (QUB) SAMCSS 2015

Overview:

- Interaction physics
 - Lucy's Macro Atom method
- Line-driven winds
 - Suitability of MCRT techniques
 - Recent stellar wind explorations

Non-grey opacity

Pinto & Eastman 2000

Sobolev approximation

Algorithm for finding interaction point (only lines):

Optical depth accumulated

Sobolev approximation

Process for finding interaction point (generalized to include continuum):

Optical depth accumulated

(figure from Mazzali & Lucy 1993)

Redistribution

(figure from Kromer & Sim 2009)

Need for good microphysics:

Comparison of predicted spectral features for hydro model to observations (Sim et al. 2013)

Need for good microphysics:

Comparison of model spectral features to observations (Sim et al. 2013)

Line interaction events

Considerations:

<u>Radiation dominated</u>: naively calculating emission using level populations will not conserve energy unless converged

Use indivisible packets (Lucy) – imposes radiative equilibrium

• means any packet absorbed by a line transition must be re-emitted

How to emit?

(1) Extremely simple to use resonance scattering approximation

(2) Alternative schemes based on "down branching" (Mazzali & Lucy 1993) and Lucy's (2002, 2003) "macro atom" / "k-packet" methods give more physical realism (second lecture).

(radiation dominated)

Statistical equilibrium:

$$\frac{\mathrm{d}n_2}{\mathrm{d}t} = R_{12} - R_{21} = 0 \to R_{12} = R_{21}$$

Simple algorithm ("scatter"):

Every time a line absorbs an energy packet immediately replace it with a new energy packet emitted by the same line. Effectively a scattering event – just need a new direction.

[Some codes generalize to include collisional destruction (e.g. Long & Knigge 2002)]

Resonance line scattering assumption:

$$R_{12} = R_{21}$$

$$R_{23} = R_{32}$$

$$R_{13} = R_{31}$$

Advantages:

Very simple to implement in MCRT Should be reasonable for many cases

Problem:

Neglects a lot of atomic physics!

"Down-branching" approach:

Following excitation to an atomic level:

- Randomly select a transition out of that level based on energy flow rates (Lucy 1999)
- Emit an energy packet in that transition (energy equal to absorbed packet energy)

"Down-branching" approach:

E.g., following excitation to level 3, choose remission with

$$p_{31} = \frac{R_{31}\epsilon_3}{R_{31}\epsilon_3 + R_{32}(\epsilon_3 - \epsilon_2)}$$
$$p_{32} = \frac{R_{32}(\epsilon_3 - \epsilon_2)}{R_{31}\epsilon_3 + R_{32}(\epsilon_3 - \epsilon_2)}$$

Advantages:

Only minor complication to MCRT Major improvement for many cases

Problem:

Still neglects a lot of atomic physics!

General solution can be found; e.g. via Lucy's "Macro Atom"

(see Lucy 2002)

Statistical equilibrium:

$$R_{13} + R_{23} - R_{31} - R_{32} = 0$$

$$R_{12} + R_{32} - R_{21} - R_{23} = 0$$

Energy "flow" rates:

$$\dot{A}_2 = R_{12}\epsilon_2$$
 $\dot{A}_3 = R_{13}\epsilon_3 + R_{23}(\epsilon_3 - \epsilon_2)$

$$\dot{E}_2 = R_{21}\epsilon_2$$
 $\dot{E}_3 = R_{31}\epsilon_3 + R_{32}(\epsilon_3 - \epsilon_2)$

(see Lucy 2002)

Algebra with rates and stat. eqm. from last slide:

$$\dot{A}_3 + R_{23}\epsilon_2 = \dot{E}_3 + R_{32}\epsilon_2$$

$$\dot{A}_2 + R_{32}\epsilon_2 = \dot{E}_2 + R_{23}\epsilon_2$$

Interpret as traffic flow problem: "Macro Atom" (see Lucy 2002)

Algebra with rates and stat. eqm. from last slide:

$$\dot{A}_3 + R_{23}\epsilon_2 = \dot{E}_3 + R_{32}\epsilon_2$$
$$\dot{A}_2 + R_{32}\epsilon_2 = \dot{E}_2 + R_{23}\epsilon_2$$

Interpret as traffic flow problem: "Macro Atom" (see Lucy 2002)

Absorption of radiation packets Emission of packets

Algebra with rates and stat. eqm. from last slide:

$$\dot{A}_{3} + R_{23}\epsilon_{2} = \dot{E}_{3} + R_{32}\epsilon_{2}$$
$$\dot{A}_{2} + R_{32}\epsilon_{2} = \dot{E}_{2} + R_{23}\epsilon_{2}$$

Interpret as traffic flow problem: "Macro Atom" (see Lucy 2002)

Absorption of radiation packets Emission of packets Internal macro atom (radiationless) transition out of level Internal macro atom (radiationless) transition into level

<u>Algorithm:</u>

- 1. Following activation of some state, select either an emission or internal transition (probabilities proportion to terms above)
- 2a. If select emission emit a photon (as in "down-branch" scheme)
- 2b. If select an internal transition, change the macro atom state and GOTO 1

Fig. 1. Schematic representation of the interaction of a macroatom with a packet of energy ϵ_0 . The macro atom is activated by absorbing the energy packet, makes two internal transitions, and then de-activates by emitting a packet of energy ϵ_0 .

Kerzendorf & Sim (2014)

radiative packet transport algorithm Governed by macro atom internal transition rules

Generalization (Lucy 2003)

For full solution in radiative and thermal equilibrium can extend to include third energy pool: (for SNe implementation e.g. Kromer & Sim 2009)

Macro Atom implementation

- Use Macro Atom implementation in our ARTIS supernova code (Kromer & Sim 2009)
- Also implemented now in non-homologous flow codes, both Python (Long & Knigge 2002) and Sim et al. (2008,2010)
- Available as an mode in publicly available TARDIS code (extensions planned)

Lines in radiation hydrodynamics

Lines in radiation hydrodynamics

 $\rho \frac{\mathrm{D}}{\mathrm{D}t}u + \frac{\mathrm{d}}{\mathrm{d}r}P = \rho g + G^{1}$

Momentum transferred from radiation field

Lines in radiation hydrodynamics

For hot, ionized media, the radiation force can be dominated by bound-bound transitions (resonant cross-sections high)

Astrophysical line driving: OB stars

Radiating at few percent of Eddington limit but show strong winds: radiatively driven by pressure on spectral lines (CAK75).

Astrophysical line driving: OB stars

CAK approximation

(Castor, Abbott & Klein 1975)

Description of the radiation force due to attenuated continuum:

$$f_{\rm rad} = \frac{\sigma_{\rm e} F}{c} M(t)$$

$$t = \sigma_{\rm e} \rho v_{\rm th} \left(\frac{dv}{dr}\right)^-$$

"Force multiplier"

CAK approximation

(Castor, Abbott & Klein 1975)

(from Parkin & Sim 2013)

CAK approximation

(Castor, Abbott & Klein 1975)

Description of the radiation force due to attenuated continuum:

Widely used and powerful – but neglects multiple scattering, attenuation...

Astrophysical line driving: OB stars

Also long history of successful use of MCRT to study mass-loss from hot stars:

Abbott & Lucy (1985); Lucy & Abbott (1993)

Vink et al. (1999, 2000, 2001) massloss "recipes"

Astrophysical line driving: CV disk winds

Astrophysical line driving: CV disk winds

(Monte Carlo RT calculation for CV disk wind from Long & Knigge 2002)

Astrophysical line driving: CV disk winds

(Figure from Matthews et al. 2015)

UV bright accretion disk – similar physics to hot star?

Astrophysical line driving: AGN disk winds

Astrophysical line driving: AGN disk winds

(X-shooter spectrum of BAL QSO from Borguet et al. 2012)

Astrophysical line driving: AGN disk winds

(from Higginbottom et al. 2013)

Astrophysical line driving: hydro simulation

(from Proga & Kallman 2004)

Astrophysical line driving: hydro simulation + post-processing

(from Sim et al. 2010)

From a MC simulation of radiation in expanding media, want to record the momentum transfer rate on a computational grid.

From a MC simulation of radiation in expanding media, want to record the momentum transfer rate on a computational grid.

Challenges to consider:

(1) Recall from last time, in expanding (1D) medium

$$\frac{\mathrm{d}\nu_{ff}}{\mathrm{d}s} = -\frac{\nu_{obs}}{c} \left(\frac{v(r)}{r}(1-\mu_{obs}^2) + \mu_{obs}^2 \frac{\mathrm{d}v(r)}{\mathrm{d}r}\right)$$

... makes it hard to work directly with an estimator such as (see Tim Harries's talk):

$$\underline{\mathbf{F}}_{\mathrm{rad}} = \frac{1}{Vc\Delta T} \sum l\epsilon \kappa_{\nu} \underline{\mathbf{u}}$$

From a MC simulation of radiation in expanding media, want to record the momentum transfer rate on a computational grid.

Challenges to consider:

(2) Known (previous work on winds) that many weak lines matter, thus as not good to work directly with

$$\Delta \underline{\mathbf{p}}_{\text{cell}} = \sum \underline{\mathbf{p}}_{\text{packet,in}} - \sum \underline{\mathbf{p}}_{\text{packet,out}}$$

...as Tim explained, that doesn't work well in optically thin limit

From a MC simulation of radiation in expanding media, want to record the momentum transfer rate on a computational grid.

Simple alternative:

First consider momentum transferred in pure line absorption:

$$\Delta \mathbf{p} = \frac{\epsilon_b}{c} \mathbf{\underline{n}}$$

🗢 = Sobolev point

From a MC simulation of radiation in expanding media, want to record the momentum transfer rate on a computational grid.

Simple alternative:

First consider momentum transferred in pure line absorption:

$$\Delta \mathbf{p} = \frac{\epsilon_b}{c} \mathbf{\underline{n}}$$

🗢 = Sobolev point

From a MC simulation of radiation in expanding media, want to record the momentum transfer rate on a computational grid.

Simple alternative:

First consider momentum transferred in pure line absorption:

From a MC simulation of radiation in expanding media, want to record the momentum transfer rate on a computational grid.

Simple alternative:

First consider momentum transferred in pure line absorption:

From a MC simulation of radiation in expanding media, want to record the momentum transfer rate on a computational grid.

Simple alternative:

First consider momentum transferred in pure line absorption:

From a MC simulation of radiation in expanding media, want to record the momentum transfer rate on a computational grid.

Simple alternative:

First consider momentum transferred in pure line absorption:

1D spherical grid:

 $\sum \frac{\epsilon_b}{c} (1 - e^{-\tau_s}) \mu_b$ $\Delta p_{\rm cell} =$ resonances-in-cel

From a MC simulation of radiation in expanding media, want to record the momentum transfer rate on a computational grid.

Simple alternative:

Also include re-emission:

$$\underline{\mathbf{n}} \qquad \Delta p = \frac{\varepsilon^{b}}{c} \left[\mu^{b} - \gamma^{2} (\mu_{0}^{a} + \beta) (1 - \beta \mu^{b}) \right]$$

Noebauer & Sim (2015)

🗢 = Sobolev point

From a MC simulation of radiation in expanding media, want to record the momentum transfer rate on a computational grid.

Simple alternative:

Also include re-emission: leads to estimator for the momentum term

$$G_{\text{line}}^{1} = \frac{1}{\Delta V c \Delta t} \sum (1 - e^{-\tau_{s}}) \varepsilon(\mu - \beta)$$
Noebauer & Sim (2015)

🗢 = Sobolev point

Implemented in 1D (Noebauer & Sim 2015):

- Finite-volume PPM hydro scheme
- Operator splitting
- Isothermal

Used simplified stellar winds to investigate value of this approach

Example:

Parameter	Value
M_{\star}	$52.5M_{\odot}$
L_{\star}	$10^{6}L_{\odot}$
$T_{ m eff}$	$4.2 \times 10^4 \mathrm{K}$

(simulation from Noebauer & Sim 2015)

Appears to work quite well:

- noise is present (spurious fluctuations)
- but finds steady state

Lots of nice extra information from this sort of simulation:

Lots of nice extra information from this sort of simulation:

Tests/comparisons

Compare to CAK expectations:

Tests/comparisons

Compare to alternative method:

Conclusions

Using MCRH to simulate line-driven flows looks promising:

- Easy to formulate estimator for Sobolev limit that captures weak line contributions
- Noise is an issue but overall results are promising
- Comparisons to other methods suggests that results are reasonable