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Line-driven winds with Monte Carlo radiation hydrodynamics 5

once frequency-dependent processes are included, since now pack-
ets with different frequencies accumulate varying amounts of opti-
cal depths on their trajectories.

For the current work, we have conceptually restricted the
wealth of physical radiation–matter interactions that packets may
experience to include only frequency-dependent bound-bound pro-
cesses, which we treat as resonant scatterings. All continuum pro-
cesses are neglected, apart from Thomson scattering, which is in-
corporated approximately by reducing the mass of the central star
as outlined in Section 2.1. With respect to the Monte Carlo scheme,
the challenge lies in identifying the total optical depth packets ac-
cumulate along their trajectories due to line interactions. The diffi-
culties arise due to the relativistic Doppler effect, which constantly
shifts the packet frequency in and out of resonance with line tran-
sitions. Thus, an integration over the physical conditions along the
entire packet trajectory would be required to determine the line op-
tical depth. Fortunately, the conditions in line-driven stellar winds
are suitable for the use of the so-called Sobolev approximation (af-
ter Sobolev 1960, see also Lamers & Cassinelli 1999, for a sum-
mary) which reduces the computational effort in the line interac-
tion procedure tremendously (see, e.g., Pauldrach et al. 1986, for a
discussion of the applicability of the Sobolev approximation). The
optical depth determination is now a purely local problem, only de-
pending on the physical conditions at the so-called Sobolev point,
rs. At this location, the packet frequency in the CMF coincides with
the rest-frame frequency of the line transition. In addition to simpli-
fying the optical depth calculation, the Sobolev approximation also
facilitates the handling of a large number of possible atomic line
transitions. Since the line-profile is formally replaced by a delta
function around the rest-frame frequency, no line overlaps occur in
frequency space in this approximation. Thus, at all times, the line
transition a packet comes into resonance with next may be unam-
biguously identified.

For calculating the location of the line-interaction events,
packets experience, we adopt and simplify the optical depth sum-
mation approach of Mazzali & Lucy (1993). On its trajectory, a
packet propagates freely to the Sobolev point of the next line in-
teraction it comes into resonance with. Each time such a resonance
point is reached, the optical depth is incremented instantaneously
by the full line optical depth of the corresponding transition. The
packet undergoes an interaction once the value drawn in (11) is
surpassed by the optical depth accumulated. If this occurs during
the instantaneous increases at one of the Sobolev points, the packet
undergoes a resonant line interaction, otherwise it may leave the
current grid cell uninterrupted. Figure 1, inspired by Mazzali &
Lucy (1993), illustrates this optical depth accumulation scheme.
This procedure may be easily extended to include additional inter-
action types, in particular frequency-independent processes, such
as Thomson scatterings (see Mazzali & Lucy 1993), but for the
current work we have omitted to do so.

3.6 Monte Carlo estimators

In reconstructing the radiation field characteristics from the ensem-
ble of packet interaction histories, we follow the volume-averaged
estimator approach proposed by Lucy (1999a) and refined in Lucy
(2003, 2005). This formalism aims at reducing the statistical fluctu-
ations inherent to the Monte Carlo approach by increasing the num-
ber of contributions to the packet census. This is best illustrated at
the example of reconstructing the radiative energy. Instead of look-
ing at the instantaneous distribution of packets, a cell-averaged ra-
diation energy density is calculated by accounting for all packets
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Figure 1. Illustration of the optical depth summation routine. Between the
Sobolev points, the packet propagates freely along its trajectory l. At each
resonance point, the full line optical depth is added instantly. Depending
on the outcome of the random number experiment of Equation (11), de-
termining the optical depth to the next interaction location, a packet either
interacts with a resonance line (case I) or escapes uninterrupted into the next
cell (case II).

whose trajectories intercept the cell and by letting each packet en-
ergy contribute according to the relative dwell time of the packet
in the cell (c.f. Lucy 1999a). Using analogous considerations, esti-
mators for various other radiation field characteristics may be for-
mulated. For the case of frequency-independent processes being
the only interaction channel, adequate estimators have already been
derived and presented in Noebauer et al. (2012). Similar estimators
are also presented by Roth & Kasen (2014).

To determine the radiative acceleration due to spectral line in-
teractions, we consider the energy and momentum transfer in such
an event. Assuming, as already mentioned, that these interactions
occur as resonant scatterings, a packet transfers

�E = "

b
h
1 � �

2
(1 + �µ

a
0)(1 � �µ

b
)

i
, (17)

�p =

"

b

c

h
µ

b � �

2
(µ

a
0 + �)(1 � �µ

b
)

i
(18)

energy and momentum onto the material. Estimators for the radia-
tion force components can be obtained by summing over the trans-
fer terms of all interacting packets. To reduce the statistical fluctua-
tions in these estimators we follow the suggestion of Lucy (1999b)
and include all packets that come into resonance with a line and
weight their contributions with the corresponding interaction prob-
ability given by (1 � e

�⌧s
). Here, ⌧s denotes the Sobolev opti-

cal depth, whose explicit form will be introduced in Section 3.7.
Taking the forward-backward symmetry of the re-emission into ac-
count, thus neglecting all terms that are of odd power in µ

f
0 , the

following estimators for the radiation force due to line interactions
are obtained, assuming isotropic re-emission:
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Combining with the contributions due to continuous processes,
which may be reconstructed employing estimators as presented in
Noebauer et al. (2012), the total radiation force can be calculated
and used in the final splitting step to update the fluid state.
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Figure 9. SNID comparison of spectral features in our N40 model to
SN2004eo (the best match SN identified for our N40 maximum light spec-
trum). We show results for three epochs, −7, 0 and +7 d relative to maxi-
mum light in B band. The epoch of the relevant observation, the rlap value
of the match and the redshift parameter (z), is indicated in each panel.
The spectra are shown flattened, as they are compared by SNID (i.e. after
a pseudo-continuum has been fitted and subtracted). Small red-shifts are
allowed in identifying the best correlation. These are included here and can
be used to quantify the typical mismatch in velocities between the models
and observations (see text and Table 2).

best matching SN identified for a given model is not the same at
all epochs considered. This is not particularly surprising – from
Section 3.1, it is clear that the time evolution of the models is
imperfect. Moreover, it does not imply that insisting on comparison
to one particular object leads to poor rlap values. This is illustrated
for one of our models in Fig. 9, which shows SNID comparisons
between N40 and SN2004eo at all three epochs analysed (we chose
this comparison object since it is the best match at tB

max).
In all cases, at tB

max and one week before tB
max, the best SNID match is

with a template for a normal SNe Ia (according to the classifications
in the SNID data base). Moreover, the quality of the fit is generally
good (rlap > 7 in all cases) and it is best for the models with
moderate numbers of ignition sparks (N40, N100, N100L, N100H –

i.e. the same models which were most promising based on their
light-curve characteristics, see Section 3.1). We do note, however,
that the models often fail to match well in the redder parts of the
spectrum (around O I 7774 Å and the Ca II IR triplet, particularly
at the later epochs). Both for models with many fewer or many
more ignition sparks, the best rlap value is generally poorer but still
sufficiently high that, if realized in nature, such models would be
spectroscopically classified as SNe Ia.

At the later epoch (one week after tB
max), the best match is still

with a normal SN Ia for most models. At this epoch, the rlap
value is typically slightly poorer although still good for our models
with intermediate deflagration strengths (N40–N100). For our very
faintest model, the best post-maximum match is to a 91bg-like
SN Ia. This match with a peculiar SNe Ia at the extreme of our
model sequence is not particularly informative, however – based on
the light curves (i.e. absolute brightnesses), we can easily exclude
our models with the largest numbers of ignition sparks from being
appropriate for the bulk of normal SNe Ia. Physical correspondence
with 91bg-like SNe at the extreme of our model sequence is also
unlikely based on light curves: our N1600 and N1600C models
show slow post-maximum decline rates (the smallest !mB

15 values
amongst our models), while observed 91bg-like SNe Ia are noted
for their rapid decline after maximum light.

We note that in none of our comparisons was the best SNID match
with a 1991T-like SN Ia. Considering our five models with high 56Ni
mass (N1, N3, N5, N10 and N20), the best rlap values in comparison
to 1991T-like events were only 7.4, 5.3 and 5.4, respectively, for the
−7, 0 and +7 d epochs considered. These are substantially poorer
than the matches found for spectroscopically normal SNe Ia (see
Table 2), suggesting that our models are not particularly promising
candidates to explain 1991T-like events.

Our SNID fits also allow us to more accurately assess the extent
to which the line velocities that manifest in our spectra agree with
observations. The best correlation is generally obtained when a
small blueshift is applied to the template spectra, meaning that
the velocities in the simulations are slightly too high (typically by
around 1500 km s−1 for maximum light spectra). This systematic
effect suggests that slightly too much kinetic energy is typically
released. This might be a consequence of the assumed initial WD
composition in our models. In particular, a smaller C/O ratio could
lead to less energy generation and more slowly expanding ejecta –
this will be considered further in a forthcoming study.

3.2.2 Orientation dependence of spectra

Fig. 10 shows synthetic spectra for models N40 and N3 at four
epochs for three example observer orientations, which correspond to
the directions in which the peak bolometric magnitude was largest,
smallest and close to the median value.7

As expected based on the discussion of light curves in Sec-
tion 3.1.2, our synthetic spectra for model N40 are not very sensitive
to the observer orientation (only the region around the Ca II infrared
triplet and the blue/ultraviolet region of the spectrum are notice-
ably affected). In particular, neither the strength nor blueshift of the
Si II 6355 Å feature is significantly direction dependent. This degree

7 In order to improve signal-to-noise ratio in these MC spectra, each is
obtained by averaging over five of the synthetic spectra drawn from our
sample of 100 orientations: the five brightest, five faintest and five around
median brightness.
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Figure 9. SNID comparison of spectral features in our N40 model to
SN2004eo (the best match SN identified for our N40 maximum light spec-
trum). We show results for three epochs, −7, 0 and +7 d relative to maxi-
mum light in B band. The epoch of the relevant observation, the rlap value
of the match and the redshift parameter (z), is indicated in each panel.
The spectra are shown flattened, as they are compared by SNID (i.e. after
a pseudo-continuum has been fitted and subtracted). Small red-shifts are
allowed in identifying the best correlation. These are included here and can
be used to quantify the typical mismatch in velocities between the models
and observations (see text and Table 2).

best matching SN identified for a given model is not the same at
all epochs considered. This is not particularly surprising – from
Section 3.1, it is clear that the time evolution of the models is
imperfect. Moreover, it does not imply that insisting on comparison
to one particular object leads to poor rlap values. This is illustrated
for one of our models in Fig. 9, which shows SNID comparisons
between N40 and SN2004eo at all three epochs analysed (we chose
this comparison object since it is the best match at tB

max).
In all cases, at tB

max and one week before tB
max, the best SNID match is

with a template for a normal SNe Ia (according to the classifications
in the SNID data base). Moreover, the quality of the fit is generally
good (rlap > 7 in all cases) and it is best for the models with
moderate numbers of ignition sparks (N40, N100, N100L, N100H –

i.e. the same models which were most promising based on their
light-curve characteristics, see Section 3.1). We do note, however,
that the models often fail to match well in the redder parts of the
spectrum (around O I 7774 Å and the Ca II IR triplet, particularly
at the later epochs). Both for models with many fewer or many
more ignition sparks, the best rlap value is generally poorer but still
sufficiently high that, if realized in nature, such models would be
spectroscopically classified as SNe Ia.

At the later epoch (one week after tB
max), the best match is still

with a normal SN Ia for most models. At this epoch, the rlap
value is typically slightly poorer although still good for our models
with intermediate deflagration strengths (N40–N100). For our very
faintest model, the best post-maximum match is to a 91bg-like
SN Ia. This match with a peculiar SNe Ia at the extreme of our
model sequence is not particularly informative, however – based on
the light curves (i.e. absolute brightnesses), we can easily exclude
our models with the largest numbers of ignition sparks from being
appropriate for the bulk of normal SNe Ia. Physical correspondence
with 91bg-like SNe at the extreme of our model sequence is also
unlikely based on light curves: our N1600 and N1600C models
show slow post-maximum decline rates (the smallest !mB

15 values
amongst our models), while observed 91bg-like SNe Ia are noted
for their rapid decline after maximum light.

We note that in none of our comparisons was the best SNID match
with a 1991T-like SN Ia. Considering our five models with high 56Ni
mass (N1, N3, N5, N10 and N20), the best rlap values in comparison
to 1991T-like events were only 7.4, 5.3 and 5.4, respectively, for the
−7, 0 and +7 d epochs considered. These are substantially poorer
than the matches found for spectroscopically normal SNe Ia (see
Table 2), suggesting that our models are not particularly promising
candidates to explain 1991T-like events.

Our SNID fits also allow us to more accurately assess the extent
to which the line velocities that manifest in our spectra agree with
observations. The best correlation is generally obtained when a
small blueshift is applied to the template spectra, meaning that
the velocities in the simulations are slightly too high (typically by
around 1500 km s−1 for maximum light spectra). This systematic
effect suggests that slightly too much kinetic energy is typically
released. This might be a consequence of the assumed initial WD
composition in our models. In particular, a smaller C/O ratio could
lead to less energy generation and more slowly expanding ejecta –
this will be considered further in a forthcoming study.

3.2.2 Orientation dependence of spectra

Fig. 10 shows synthetic spectra for models N40 and N3 at four
epochs for three example observer orientations, which correspond to
the directions in which the peak bolometric magnitude was largest,
smallest and close to the median value.7

As expected based on the discussion of light curves in Sec-
tion 3.1.2, our synthetic spectra for model N40 are not very sensitive
to the observer orientation (only the region around the Ca II infrared
triplet and the blue/ultraviolet region of the spectrum are notice-
ably affected). In particular, neither the strength nor blueshift of the
Si II 6355 Å feature is significantly direction dependent. This degree

7 In order to improve signal-to-noise ratio in these MC spectra, each is
obtained by averaging over five of the synthetic spectra drawn from our
sample of 100 orientations: the five brightest, five faintest and five around
median brightness.
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  packets	
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Ȧ2 = R12✏2
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Ė3 = R31✏3 +R32(✏3 � ✏2)
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Ȧ3 � Ė3 = R13✏3 �R31✏3 +R23✏3 �R23✏2 �R32✏3 +R32✏2

R13 +R23 �R31 �R32 = 0

1



Two-­‐level	
  atom	
  

✏1 = 0

✏2

✏3
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Ė3 = R31✏3 +R32(✏3 � ✏2)
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Ȧ2 = R12✏2
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Ȧ3 � Ė3 = (R13 �R31)✏3 + (R23 �R32)(✏3 � ✏2)
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Ȧ2 = R12✏2
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Ȧ2 = R12✏2
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Ȧ2 = R12✏2
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Ė3 = R31✏3 +R32(✏3 � ✏2)
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Ė3 = R31✏3 +R32(✏3 � ✏2)
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Ė2 = R21✏2
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Ȧ2 = R12✏2
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Ȧ3 � Ė3 = (R13 �R31)✏3 + (R23 �R32)(✏3 � ✏2)
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Ȧ3 � Ė3 = (R13 �R31)✏3 + (R23 �R32)(✏3 � ✏2)
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Very	
  simple	
  to	
  implement	
  in	
  MCRT	
  
Should	
  be	
  reasonable	
  for	
  many	
  cases	
  
	
  
Problem:	
  	
  
Neglects	
  a	
  lot	
  of	
  atomic	
  physics!	
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Ȧ3 � Ė3 = R13✏3 �R31✏3 +R23✏3 �R23✏2 �R32✏3 +R32✏2

R13 +R23 �R31 �R32 = 0

1

✏1 = 0

✏2

✏3
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Ė3 = R31✏3 +R32(✏3 � ✏2)
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Ȧ3 � Ė3 = R13✏3 �R31✏3 +R23✏3 �R23✏2 �R32✏3 +R32✏2

R13 +R23 �R31 �R32 = 0

1

✏1 = 0

✏2

✏3

Ȧ3 = R13✏3 +R23(✏3 � ✏2)
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Ė3 = R31✏3 +R32(✏3 � ✏2)
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“Down-­‐branching”	
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Following	
  excita*on	
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  an	
  atomic	
  level:	
  
	
  
1.  Randomly	
  select	
  a	
  transi*on	
  out	
  of	
  

that	
  level	
  based	
  on	
  energy	
  flow	
  rates	
  
(Lucy	
  1999)	
  

2.  Emit	
  an	
  energy	
  packet	
  in	
  that	
  
transi*on	
  (energy	
  equal	
  to	
  absorbed	
  
packet	
  energy)	
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Ȧ3 = R13✏3 +R23(✏3 � ✏2)
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Ȧ3 � Ė3 = R13✏3 �R31✏3 +R23✏3 �R23✏2 �R32✏3 +R32✏2

R13 +R23 �R31 �R32 = 0

1

✏1 = 0

✏2

✏3

Ȧ3 = R13✏3 +R23(✏3 � ✏2)

Ė3 = R31✏3 +R32(✏3 � ✏2)
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Ȧ3 � Ė3 = (R13 �R31)✏3 + (R23 �R32)(✏3 � ✏2)
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  following	
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  level	
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  with	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Advantages:	
  	
  
Only	
  minor	
  complica*on	
  to	
  MCRT	
  
Major	
  improvement	
  for	
  many	
  cases	
  
	
  
Problem:	
  	
  
S*ll	
  neglects	
  a	
  lot	
  of	
  atomic	
  physics!	
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Figure 13. Each panel illustrates the wavelength redistribution that occurred during the last interaction of escaping packets (co-moving frame wavelength prior
to interaction versus wavelength after interaction) for calculations at t

exp

= 18 days (scatter mode left, downbranch mode centre, macroatom mode
right).

Figure 14. Comparison between Jb

lu

obtained using the estimators in Equa-
tion 17 (dashed) and Jb

lu

= WB(⌫) (solid) for selected transitions at
t
exp

=18 days. For clarity we have applied offsets to each curve (increment
5 ⇥ 10

�5).

combining the nebular ionization / dilute-lte excitation
plasma modes with the dilute-blackbody and macroatom
interaction modes as a viable (computationally manageable) mode
of operation. To fit a particular observation, a user would need to
supply the luminosity and then develop a model by choosing a
density profile [which could be empirical or based on an explo-
sion model such as W7 (Nomoto et al. 1984)] and a set of ejecta
abundances (which can be uniform or stratified). The density and
abundances can then be modified to attempt to improve the fit (and
therefore constrain the SN properties, as in e.g. Stehle et al. 2005;
Mazzali et al. 2008; Hachinger et al. 2009; Tanaka et al. 2011).
However, we stress that this is only one potential use/mode of op-
eration for TARDIS and we encourage potential users to refer to the
manual http://tardis.rtfd.org for further details.

In the near future, we plan to focus on two distinct TARDIS
projects. First and foremost, the implementation of additional
physics (bound-free/thermalization processes) with the goal of
adding modules that include more sophisticated ionization approx-
imations and allow for spectral synthesis for SNe II (Klauser &
Kromer et al., in prep.). Secondly, since TARDIS was mainly de-
veloped to provide a means to fit SNe Ia with an approach similar
to Mazzali et al. (2007), we aim to couple TARDIS with a suitable
algorithm for automatic fitting of observations. We have explored

Figure 15. Comparison of spectra obtained for detailed and
dilute-blackbody radiative rates modes (Si II treated in nlte ex-
citatrion mode; all other ions in dilute-lte mode).

this problem already, using the ML93 spectral synthesis code and
genetic algorithms as the optimization algorithm and find that this
is a promising approach (see Kerzendorf 2011, priv. comm. S.
Hachinger, P. Mazzali).
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Ȧ2 = R12✏2
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Ȧ3 = R13✏3 +R23(✏3 � ✏2)
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Ȧ2 = R12✏2
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  2002)	
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Ė3 = R31✏3 +R32(✏3 � ✏2)
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Ȧ3 � Ė3 = (R13 �R31)✏3 + (R23 �R32)(✏3 � ✏2)
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Sta*s*cal	
  equilibrium:	
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  rates:	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
(see	
  Lucy	
  2002)	
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Ė3 = R31✏3 +R32(✏3 � ✏2)
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Algebra	
  with	
  rates	
  and	
  stat.	
  eqm.	
  
from	
  last	
  slide:	
  
	
  
	
  
	
  
	
  
	
  
	
  
Interpret	
  as	
  traffic	
  flow	
  problem:	
  	
  
“Macro	
  Atom”	
  (see	
  Lucy	
  2002)	
  
	
  
	
  
	
  
	
  

R13 +R23 �R31 �R32 = 0

R12 +R32 �R21 �R23 = 0
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Ė2 = R21✏2
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Ė3 = R31✏3 +R32(✏3 � ✏2)
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Ė3 = R31✏3 +R32(✏3 � ✏2)
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Ȧ2 = R12✏2
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Ȧ3 � Ė3 = (R13 �R31)✏3 + (R23 �R32)(✏3 � ✏2)
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Ȧ2 +R32✏2 = Ė2 +R23✏2
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Fig. 1. Schematic representation of the interaction of a macro-
atom with a packet of energy ϵ0. The macro atom is activated
by absorbing the energy packet, makes two internal transitions,
and then de-activates by emitting a packet of energy ϵ0.

enforce energy-packet indivisibility and yet do not have to
adopt any simplifications with regard to line formation. If
this can be achieved, then Monte Carlo codes for general
NLTE transfer problems become feasible.

2. Macro-atoms

As discussed in Sect. 1, it is common in Monte Carlo
transfer codes to quantize radiation into monochromatic
energy packets. But matter is not quantized, neither nat-
urally into individual atoms nor artificially into parcels of
matter. Instead, the continuum description of matter is
retained, with macroscopic absorption and scattering co-
efficients governing the interaction histories of the energy
packets.

Nevertheless, it now proves useful to imagine that mat-
ter is quantized into macro-atoms whose properties are
such that their interactions with energy packets asymp-
totically reproduce the emissivity of a gas in statistical
equilibrium. But these macro-atoms, unlike energy pack-
ets, do not explicitly appear in the Monte Carlo code. As
conceptual constructs, they facilitate the derivation and
implementation of the Monte Carlo transition probabili-
ties that allow an accurate treatment of line formation.

The general properties of macro-atoms are as follows:
1) Each macro-atom has discrete internal states in one-

to-one correspondence with the energy levels of the atomic
species being represented.

2) An inactive macro-atom can be activated to one of
its internal states i by absorbing a packet of kinetic energy
or a packet of radiant energy of an appropriate co-moving
frequency.

3) An active macro-atom can undergo an internal tran-
sition from state i to any other state j without absorbing
or emitting an energy packet.

4) An active macro-atom becomes inactive by emitting
a packet of kinetic energy or a packet of radiant energy of
an appropriate co-moving frequency.

5) The de-activating packet has the same energy in
the macro-atom’s frame as the original activating packet.
Figure 1 illustrates these general rules. An inactive macro-
atom, with internal states shown schematically, encounters

a packet of energy ϵ0 and is activated to one of these states.
The active macro-atom then undergoes two internal tran-
sitions before de-activating itself by emitting a packet of
energy ϵ0.

Subsequently, energy packets will in general be referred
to as e-packets but also as r- or k-packets when specifying
their contents to be radiant or kinetic energy, respectively.

3. Transition probabilities

In Sect. 2, the concept of a macro-atom was introduced
by stating some general properties concerning its inter-
action with e-packets. The challenge now is to derive ex-
plicit rules governing a macro-atom’s activation, its subse-
quent internal transitions, and its eventual de-activation.
Asymptotically, the result of obeying these rules must be
the emissivity corresponding to statistical equilibrium.

3.1. Energy flow rates

For the moment, we drop the notion of a macro-atom and
consider a real atomic species interacting with its environ-
ment. Let ϵi denote the excitation plus ionization energy of
level i and let Rij denote the radiative rate for the transi-
tion i → j. The rates per unit volume at which transitions
into and out of i absorb and emit radiant energy are then

ȦR
i = Rℓiϵiℓ and ĖR

i = Riℓϵiℓ, (1)

respectively, where ϵiℓ = hνiℓ = ϵi − ϵℓ. Note the sum-
mation convention adopted for the suffix ℓ, which ranges
over all levels <i, including those of lower ions. Similarly,
below, the suffix u implies summation over all levels >i,
including those of higher ions.

The corresponding rates at which kinetic energy is ab-
sorbed from, or contributed to, the thermal pool by tran-
sitions to and from level i are

ȦC
i = Cℓiϵiℓ and ĖC

i = Ciℓϵiℓ, (2)

where Cij is the collisional rate per unit volume for the
transition i → j.

If we now define the total rate for the transition i → j
to be Rij = Rij + Cij , then the net rate at which level i
absorbs energy is

ȦR
i + ȦC

i − ĖR
i − ĖC

i = (Rℓi −Riℓ)(ϵi − ϵℓ). (3)

This is an identity that follows directly from the defining
Eqs. (1) and (2); it is therefore quite general and does not
assume statistical equilibrium.

3.2. Statistical equilibrium

We now assume that the level populations ni are in sta-
tistical equilibrium. For level i, this implies that

(Rℓi −Riℓ) + (Rui −Riu) = 0. (4)

A useful alternative representation of statistical equilib-
rium is obtained by multiplying Eq. (4) by ϵi and then

Lucy	
  2002	
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16 Kerzendorf & Sim

Figure 13. Each panel illustrates the wavelength redistribution that occurred during the last interaction of escaping packets (co-moving frame wavelength prior
to interaction versus wavelength after interaction) for calculations at t

exp

= 18 days (scatter mode left, downbranch mode centre, macroatom mode
right).

Figure 14. Comparison between Jb

lu

obtained using the estimators in Equa-
tion 17 (dashed) and Jb

lu

= WB(⌫) (solid) for selected transitions at
t
exp

=18 days. For clarity we have applied offsets to each curve (increment
5 ⇥ 10

�5).

combining the nebular ionization / dilute-lte excitation
plasma modes with the dilute-blackbody and macroatom
interaction modes as a viable (computationally manageable) mode
of operation. To fit a particular observation, a user would need to
supply the luminosity and then develop a model by choosing a
density profile [which could be empirical or based on an explo-
sion model such as W7 (Nomoto et al. 1984)] and a set of ejecta
abundances (which can be uniform or stratified). The density and
abundances can then be modified to attempt to improve the fit (and
therefore constrain the SN properties, as in e.g. Stehle et al. 2005;
Mazzali et al. 2008; Hachinger et al. 2009; Tanaka et al. 2011).
However, we stress that this is only one potential use/mode of op-
eration for TARDIS and we encourage potential users to refer to the
manual http://tardis.rtfd.org for further details.

In the near future, we plan to focus on two distinct TARDIS
projects. First and foremost, the implementation of additional
physics (bound-free/thermalization processes) with the goal of
adding modules that include more sophisticated ionization approx-
imations and allow for spectral synthesis for SNe II (Klauser &
Kromer et al., in prep.). Secondly, since TARDIS was mainly de-
veloped to provide a means to fit SNe Ia with an approach similar
to Mazzali et al. (2007), we aim to couple TARDIS with a suitable
algorithm for automatic fitting of observations. We have explored

Figure 15. Comparison of spectra obtained for detailed and
dilute-blackbody radiative rates modes (Si II treated in nlte ex-
citatrion mode; all other ions in dilute-lte mode).

this problem already, using the ML93 spectral synthesis code and
genetic algorithms as the optimization algorithm and find that this
is a promising approach (see Kerzendorf 2011, priv. comm. S.
Hachinger, P. Mazzali).

8 ACKNOWLEDGEMENTS

We gratefully acknowledge Markus Kromer and Michael Klauser
for many useful discussions and suggestions during all stages in
the development of TARDIS. We thank Paolo Mazzali and Stephan
Hachinger for helpful discussions of ionization/excitation treat-
ments and formulation of the automatic spectral fitting project from
which this work arose. We thank Knox Long for making available
the PYTHON code, the LK02 ⇣-values and for advice in making our
comparisons with PYTHON. We are grateful to Ken Dere for help
with CHIANTIPY and to Brian Schmidt for suggestions and support
throughout the development of this project. We thank Adam Suban-
Loewen for help in developing the TARDIS user interface and Aoife
Boyle for participating in the testing of the code. We also would like
to thank Erik Bray for helping with the installation frameworks im-
plemented in TARDIS. We acknowledge the referee R. C. Thomas
for very helpful suggestions and critical assessment of the paper.
This research made use of Astropy, a community-developed core

c� 0000 RAS, MNRAS 000, 000–000

Kerzendorf	
  &	
  Sim	
  (2014)	
  



Radia@on-­‐dominated	
  example	
  

Radia*on	
  
energy	
  pool	
  

Excita*on	
  
energy	
  pool	
  

Absorp*on	
  
and	
  emission	
  

events	
  

Governed	
  by	
  
radia*ve	
  packet	
  

transport	
  
algorithm	
  

Governed	
  by	
  
macro	
  atom	
  

internal	
  transi*on	
  
rules	
  



Generaliza@on	
  (Lucy	
  2003)	
  

Radia*on	
  
energy	
  pool	
  

Excita*on	
  
energy	
  pool	
  

Line+photoioniza*on	
  
absorp*on	
  

Line+radia*ve	
  	
  
recombina*on	
  

Thermal	
  kine*c	
  
energy	
  pool	
  

Electron	
  collisions	
  
Free-­‐free	
  and	
  
photoioniza*on	
  

For	
  full	
  solu*on	
  in	
  radia*ve	
  and	
  thermal	
  equilibrium	
  can	
  extend	
  
to	
  include	
  third	
  energy	
  pool:	
  

(for	
  SNe	
  implementa*on	
  e.g.	
  Kromer	
  &	
  Sim	
  2009)	
  



Macro	
  Atom	
  implementa@on	
  

•  Use	
  Macro	
  Atom	
  implementa*on	
  in	
  our	
  ARTIS	
  supernova	
  code	
  (Kromer	
  &	
  
Sim	
  2009)	
  

•  Also	
  implemented	
  now	
  in	
  non-­‐homologous	
  flow	
  codes,	
  both	
  Python	
  (Long	
  
&	
  Knigge	
  2002)	
  and	
  Sim	
  et	
  al.	
  (2008,2010)	
  

•  Available	
  as	
  an	
  mode	
  in	
  publicly	
  available	
  TARDIS	
  code	
  (extensions	
  
planned)	
  



Lines	
  in	
  radia@on	
  hydrodynamics	
  



Lines	
  in	
  radia@on	
  hydrodynamics	
  
1741

1746

1751

1756

1761

1766

1771

1776

1781

1786

1791

1796

1803

1808

1813

1818

1823

1828

1833

1838

1843

1848

1853

1858

Line-driven winds with Monte Carlo radiation hydrodynamics 15

with

Z(v, α, β) = fN(v, α,β)
1

1−α

×

⎡

⎣1 +

√√√√ 2
α

(
1 −

(
1

fN(v, α, β)

) 1
1−α

)⎤

⎦ , (A14)

fN(v, α,β) = β
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1 − v

β

)α+1
]

. (A15)

In these expressions, the inverse of the radial distance relative to
the photosphere, v = R⋆/r, is used. Throughout this work, the
MCAK equations are solved for β = 0.8 (see Pauldrach et al. 1986;
Kudritzki et al. 1989, for a motivation of this value).

A P P E N D I X B : R A D I AT I O N H Y D RO DY NA M I C S
E QUAT I O N S

We briefly review the radiation hydrodynamical equations on which
our numerical scheme is based (cf. Mihalas & Mihalas 1984). In
general, these equations describe the conservation of mass, mo-
mentum and energy. Since we assume in this work that the wind
outflow remains isothermal at all times, we only consider the first
two of these equations and use the isothermal equation of state
to relate fluid density and thermodynamic pressure. Cast into a
pseudo-Lagrangian form by using the substantial derivative

D
Dt

= d
dt

+ u
d
dr

, (B1)

this radiation hydrodynamical problem in one-dimensional spheri-
cal symmetry is described by (cf. Mihalas & Mihalas 1984)

D
Dt

ρ + ρ
1
r2

d
dr

(r2u) = 0, (B2)

ρ
D
Dt

u + d
dr

P = ρg + G1, (B3)

P = a2
isoρ . (B4)

The fluid density ρ and its velocity u appear together with the ther-
modynamic pressure P, the isothermal sound speed aiso and a static
external gravitational field g. The transfer of momentum between
the fluid and the radiation field is captured by the radiation force,
which may be determined from the first moment of the transfer
equation (cf. Mihalas & Mihalas 1984):

G1 = 2π

c

∫ ∞

0
dν

∫ 1

−1
dµ(χI − η)µ. (B5)

Here, the description of the radiation field by the specific intensity
I is used and the material functions opacity χ and emissivity η,
describing the absorption and emission of radiative energy, appear.
The integration is performed with respect to the entire frequency
spectrum and to all possible values for the cosine of the propagation
direction, µ.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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with the terminal speed being a multiple of the local escape speed
from the photosphere, uesc:

u1 =

r
↵

1� ↵
uesc. (A6)

The constant mass-loss rate of the wind is given by
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1
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Once the finite extent of the star is taken into account, the force
multiplier is modified by a finite-cone correction factor

MFC(t) = DFC(t)MCAK(t), (A8)
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We follow Kudritzki et al. (1989) and predict the wind structure
according to their approximate analytic solution technique. In par-
ticular, we adopt their proposed approach for the case of a “frozen-
in” ionisation state (� = 0, c.f. Kudritzki et al. 1989, section 4.1).
The wind velocity is assumed to be very close to a �-type law and
the mass-loss rate decreases with respect to the original CAK case
according to
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The wind velocity in this approach follows from performing the
integration
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In these expressions, the inverse of the radial distance relative to
the photosphere, v = R?/r, is used. Throughout this work, the
MCAK equations are solved for � = 0.8 (see Pauldrach et al. 1986;
Kudritzki et al. 1989, for a motivation of this value).

APPENDIX B: RADIATION HYDRODYNAMICS
EQUATIONS

We briefly review the radiation hydrodynamical equations on which
our numerical scheme is based (c.f. Mihalas & Mihalas 1984). In

general, these equations describe the conservation of mass, momen-
tum and energy. Since we assume in this work, that the wind out-
flow remains isothermal at all times, we only consider the first two
of these equations and use the isothermal equation of state to re-
late fluid density and thermodynamic pressure. Cast into a pseudo-
Lagrangian form by using the substantial derivative

D

Dt
=

d

dt
+ u

d

dr
, (B1)

this radiation hydrodynamical problem in one-dimensional spheri-
cal symmetry is described by (c.f. Mihalas & Mihalas 1984)

D

Dt
⇢+ ⇢

1

r2
d

dr
(r2u) = 0, (B2)

⇢
D

Dt
u+

d

dr
P = ⇢g +G1, (B3)

P = a2
iso⇢. (B4)

The fluid density ⇢ and its velocity u appear together with the
thermodynamic pressure P , the isothermal sound speed aiso and
a static external gravitational field g. The transfer of momentum
between the fluid and the radiation field is captured by the radia-
tion force, which may be determined from the first moment of the
transfer equation (c.f. Mihalas & Mihalas 1984):

G1
=

2⇡
c

Z 1

0

d⌫

Z 1

�1

dµ(�I � ⌘)µ. (B5)

Here, the description of the radiation field by the specific intensity
I is used and the material functions opacity � and emissivity ⌘,
describing the absorption and emission of radiative energy, appear.
The integration is performed with respect to the entire frequency
spectrum and to all possible values for the cosine of the propagation
direction, µ.
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Figure 1. Schematic illustration depicting the wind–wind collision in an equal wind massive star binary system without (left) and with self-regulating shocks (right).
The stars are represented by the circles. Arrows indicate the wind direction, and arrow length indicates velocity magnitude. The solid and dashed lines demark the
regions of post-shock stellar wind and the contact discontinuity, respectively. The shaded region indicates plasma temperature—fainter shading corresponds to lower
temperature.
(A color version of this figure is available in the online journal.)

the wind–wind collision shocks on the wind driving. Stevens
& Kallman (1990) examined the dependence of the radiative
line force on X-ray ionization for the case of a high-mass X-ray
binary system, finding that the stellar wind acceleration could be
significantly suppressed by a particularly bright compact object
because the excessive X-ray ionization reduces the radiative line
force (see also Stevens 1991). This effect has also been explored
for line-driven instability shocks embedded in a massive star’s
wind (Krtička & Kubát 2009; Krtička et al. 2009) and for
radiatively driven disk winds of active galactic nuclei (Proga
et al. 2000).

In this paper we make the first attempt to examine the
feedback of ionizing X-rays from the wind–wind collision
shocks on wind acceleration in a massive star binary system.
Because of the direct coupling between the radiation force
that drives the stellar winds and the ionizing X-ray emission
that results from the wind–wind collision, we term this effect
self-regulated shocks (SRSs). Figure 1 depicts the basic scenario
under consideration and highlights some key effects due to
SRSs. First, wind velocities are reduced (shorter arrows in
the right panel) which causes a lower post-shock plasma
temperature (fainter shading). Consequently, radiative cooling
may become sufficiently important to introduce instabilities
which will perturb the shock fronts (Stevens et al. 1992; Parkin
& Pittard 2010; van Marle et al. 2011; Parkin et al. 2011;
Lamberts et al. 2011). The goal of this work is to provide a
qualitative picture, and initial quantitative estimates, of when/if
the SRS effect might be important. Therefore, we will make
simplifications in order to elucidate the physics.

The structure of this paper is as follows. In Section 2 we
calculate the influence of X-ray ionization on the line force
due to an ensemble of spectral lines. The semi-analytical wind
acceleration model is described in Section 3, followed by results
for model binary systems in Section 4. An approximate model
for SRSs is presented in Section 5. We compare results to
observations in Section 6 and then discuss some implications
of our findings, and possible avenues for going beyond the
illustrative wind acceleration model adopted in this work, in
Section 7. The main conclusions of this work are summarized
in Section 8.

2. THE LINE FORCE

For the wind models that will be presented in Section 3,
we need to compute the radiation force due to spectral lines
for appropriate stellar parameters while accounting for the
influence of X-ray irradiation arising from a wind collision.
We will adopt an approximate treatment of the radiation force
due to spectral lines following Castor et al. (1975, hereafter
CAK) and closely follow the approach by Stevens & Kallman
(1990) to estimate the effect of X-ray ionization on the line
force—essentially, our goal is to repeat their calculations for
the stellar parameters appropriate to our study. In this section
we outline the method and the implementation used here. For
full details of the methodology and discussions of its validity, we
refer the reader to CAK, Abbott (1982), and Stevens & Kallman
(1990).

The total force due to lines is given by

frad = σeF

c
M(t), (1)

where σe is the electron scattering opacity and F is the radiative
flux. M(t) is known as the line force multiplier, which depends
on the dimensionless optical depth parameter in a stellar wind,
defined by

t = σeρvth

(
dv

dr

)−1

, (2)

where ρ is the mass density, vth is the thermal velocity of a
hydrogen atom, and dv/dr is the radial velocity gradient. The
Sobolev optical depth of a spectral line between lower state l
and upper state u is given by τ S

u,l = ηu,l t , where

ηu,l = hc

4π

nlBl,u − nuBu,l

σeρvth
. (3)

Here, nl and nu are the lower and upper level population number
densities and Bl,u and Bu,l are the usual Einstein coefficients
for absorption and stimulated emission, respectively. The force
multiplier, M(t), is composed from a sum over all line transitions

M(t) =
∑

lines

∆νD

Fν

F

1 − exp(−ηu,l t)
t

, (4)
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force (see also Stevens 1991). This effect has also been explored
for line-driven instability shocks embedded in a massive star’s
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radiatively driven disk winds of active galactic nuclei (Proga
et al. 2000).

In this paper we make the first attempt to examine the
feedback of ionizing X-rays from the wind–wind collision
shocks on wind acceleration in a massive star binary system.
Because of the direct coupling between the radiation force
that drives the stellar winds and the ionizing X-ray emission
that results from the wind–wind collision, we term this effect
self-regulated shocks (SRSs). Figure 1 depicts the basic scenario
under consideration and highlights some key effects due to
SRSs. First, wind velocities are reduced (shorter arrows in
the right panel) which causes a lower post-shock plasma
temperature (fainter shading). Consequently, radiative cooling
may become sufficiently important to introduce instabilities
which will perturb the shock fronts (Stevens et al. 1992; Parkin
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Lamberts et al. 2011). The goal of this work is to provide a
qualitative picture, and initial quantitative estimates, of when/if
the SRS effect might be important. Therefore, we will make
simplifications in order to elucidate the physics.

The structure of this paper is as follows. In Section 2 we
calculate the influence of X-ray ionization on the line force
due to an ensemble of spectral lines. The semi-analytical wind
acceleration model is described in Section 3, followed by results
for model binary systems in Section 4. An approximate model
for SRSs is presented in Section 5. We compare results to
observations in Section 6 and then discuss some implications
of our findings, and possible avenues for going beyond the
illustrative wind acceleration model adopted in this work, in
Section 7. The main conclusions of this work are summarized
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For the wind models that will be presented in Section 3,
we need to compute the radiation force due to spectral lines
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where ∆νD is the Doppler width and Fν is the specific flux at
the line frequency (ν).

To evaluate M(t), we need to supply a list of line transitions
(frequencies and oscillator strengths), specify the form of the
radiation field Fν , and compute the associated level populations
(nl, nu, relative to the total density ρ).

The line list used in this study is drawn from two sources.
For low-ionization metal atoms/ions, we use the CD23 line
database of Kurucz & Bell (1995). From this source we include
elements with atomic number 6 ! Z ! 30 and include
ionization stages i–v with the following exceptions: for C,
we include only i–iv while for Z > 20 we include ions i–vii,
where available. In order to extend our calculations to regimes
of higher ionization, we also included data from the chianti
atomic database (Dere et al. 1997, 2009). From this source,
we take line lists for H and He and the high ions of the
astrophysically abundance metals: C, N, O, Ne, Mg, Si, S, Ar,
Ca, Fe, and Ni (for each of these metals, we include chianti
line lists for all available ions that we did not take from Kurucz
& Bell 1995; we excluded theoretically predicted lines from the
database). In total, our line list contains ∼7.7 × 105 transitions.

The stellar radiation field, Fν , was taken from ATLAS9 model
atmosphere grids (Castelli & Kurucz 2004). For the specific
stellar parameters used, see below.

The level populations (nl, nu) for each transition were com-
puted in a two-stage process. First, we used Cloudy v10.00
(Ferland et al. 1998) to compute the ionization stage of a shell
of gas illuminated by a specified radiation field. In all cases,
we assumed that the irradiating spectrum contains two com-
ponents: emission from the star and hard radiation associated
with emission from the wind collision region. The shape of the
stellar component was taken from the same model atmospheres
used for Fν/F . In setting the intensity of this component, we
follow Stevens & Kallman (1990) and consider only a single
value for the ratio of the electron number density to the geomet-
rical dilution factor (ne/W = 3.5 × 1010 cm−3). To describe
the spectral shape of the hard ionizing radiation, we adopt a
thermal Bremsstrahlung spectrum at a temperature of 10 keV.
The intensity of this component is specified as an ionization
parameter,

ξ = 4πFXµmH

ρ
(5)

where, in this work, FX is the flux of X-rays from the wind
collision shocks and ρ is the gas density. The value of ξ is varied
to quantify the effect of X-ray ionization on M(t). From the ion
populations provided by the Cloudy calculations, we compute
level populations assuming local thermodynamic equilibrium
(LTE, adopting the gas temperature calculated by Cloudy).
Although simplistic, this assumption makes it easy to compute
the force multiplier reasonably quickly. Ideally, full non-LTE
calculations should be performed for complete atomic models
associated with each ion. This, however, would significantly
complicate the calculation and is not expected to qualitatively
affect our findings (see Stevens & Kallman 1990 for further
discussion).

2.1. Example Calculation

Using the procedure outlined above, we can calculate M(t)
accounting for the effects of excess ionization (as controlled by
ξ ). As an example, we show results for a star with effective
temperature Teff = 38,500 K, surface gravity log g = 3.92, and
solar metallicity log(Z/Z⊙) = 0 in Figure 2.
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Figure 2. Force multiplier vs. dimensionless optical depth parameter (t) for
log ξ = −2, 0, 2, and 4 (solid lines). Dashed lines show our fits (see the
text). These calculations are for a star with Teff = 38,500 K, log g = 3.92,
and log(Z/Z⊙) = 0. For comparison, we also show calculations from Abbott
(1982) for a star with Teff = 40,000 K and log g = 4.0 (black spots).
(A color version of this figure is available in the online journal.)

As expected, our results are in good agreement with Stevens &
Kallman (1990). For each value of ξ , M is largest (and constant)
when t is sufficiently small that all lines are optically thin. At
large t, M decreases as lines become optically thick and saturate.
For calculations with low ionization parameter (log ξ < 0), M
remains significant (M " 1) up to around t ∼ 1 (M is essentially
independent of ionization parameter for log ξ < −2). As found
by Stevens & Kallman (1990), we also see that as log ξ is
increased beyond zero, M drops and the regime in which M(t)
is well described by the optically thin limit extends to higher t
values. For log ξ > 3, the force multiplier is always small.

For comparison, we also show in Figure 2 the M values
reported by Abbott (1982) from calculations for a star with
similar parameters (Teff = 40,000 K, log g = 4.00, and
ne/W = 1.8 × 1011 cm−3). Since no excess ionization radi-
ation was included by Abbott (1982), his calculations should
be compared to our results for the lowest ionization param-
eter shown (log ξ = −2). In general, the agreement is very
good—the biggest discrepancy occurs around log t = −2.5 and
is at worst a factor of two.

2.2. Parameterizing the Force Multiplier

Although the force multiplier M can be directly used to
specify the line force, it is convenient to parameterize its
dependence on t for use in wind calculations. Although this
approach means that the full complexity of M(t) is not captured,
it is widely used because of the relative ease of manipulating
simply parameterized forms for M(t) when deriving wind
solutions.

The basic ansatz under the CAK approximation is to fit a
power law to the run of M(t) with t,

M(t) = kt−α, (6)

where α defines the slope and k the amplitude of M at t = 1
(i.e., k = M(1)). To capture the flattening of M(t) for small t,
we follow Owocki et al. (1988) and modify Equation (6) such
that the force multiplier becomes constant at low t (as it must
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Figure 1. Schematic illustration depicting the wind–wind collision in an equal wind massive star binary system without (left) and with self-regulating shocks (right).
The stars are represented by the circles. Arrows indicate the wind direction, and arrow length indicates velocity magnitude. The solid and dashed lines demark the
regions of post-shock stellar wind and the contact discontinuity, respectively. The shaded region indicates plasma temperature—fainter shading corresponds to lower
temperature.
(A color version of this figure is available in the online journal.)

the wind–wind collision shocks on the wind driving. Stevens
& Kallman (1990) examined the dependence of the radiative
line force on X-ray ionization for the case of a high-mass X-ray
binary system, finding that the stellar wind acceleration could be
significantly suppressed by a particularly bright compact object
because the excessive X-ray ionization reduces the radiative line
force (see also Stevens 1991). This effect has also been explored
for line-driven instability shocks embedded in a massive star’s
wind (Krtička & Kubát 2009; Krtička et al. 2009) and for
radiatively driven disk winds of active galactic nuclei (Proga
et al. 2000).

In this paper we make the first attempt to examine the
feedback of ionizing X-rays from the wind–wind collision
shocks on wind acceleration in a massive star binary system.
Because of the direct coupling between the radiation force
that drives the stellar winds and the ionizing X-ray emission
that results from the wind–wind collision, we term this effect
self-regulated shocks (SRSs). Figure 1 depicts the basic scenario
under consideration and highlights some key effects due to
SRSs. First, wind velocities are reduced (shorter arrows in
the right panel) which causes a lower post-shock plasma
temperature (fainter shading). Consequently, radiative cooling
may become sufficiently important to introduce instabilities
which will perturb the shock fronts (Stevens et al. 1992; Parkin
& Pittard 2010; van Marle et al. 2011; Parkin et al. 2011;
Lamberts et al. 2011). The goal of this work is to provide a
qualitative picture, and initial quantitative estimates, of when/if
the SRS effect might be important. Therefore, we will make
simplifications in order to elucidate the physics.

The structure of this paper is as follows. In Section 2 we
calculate the influence of X-ray ionization on the line force
due to an ensemble of spectral lines. The semi-analytical wind
acceleration model is described in Section 3, followed by results
for model binary systems in Section 4. An approximate model
for SRSs is presented in Section 5. We compare results to
observations in Section 6 and then discuss some implications
of our findings, and possible avenues for going beyond the
illustrative wind acceleration model adopted in this work, in
Section 7. The main conclusions of this work are summarized
in Section 8.

2. THE LINE FORCE

For the wind models that will be presented in Section 3,
we need to compute the radiation force due to spectral lines
for appropriate stellar parameters while accounting for the
influence of X-ray irradiation arising from a wind collision.
We will adopt an approximate treatment of the radiation force
due to spectral lines following Castor et al. (1975, hereafter
CAK) and closely follow the approach by Stevens & Kallman
(1990) to estimate the effect of X-ray ionization on the line
force—essentially, our goal is to repeat their calculations for
the stellar parameters appropriate to our study. In this section
we outline the method and the implementation used here. For
full details of the methodology and discussions of its validity, we
refer the reader to CAK, Abbott (1982), and Stevens & Kallman
(1990).

The total force due to lines is given by

frad = σeF

c
M(t), (1)

where σe is the electron scattering opacity and F is the radiative
flux. M(t) is known as the line force multiplier, which depends
on the dimensionless optical depth parameter in a stellar wind,
defined by

t = σeρvth

(
dv

dr

)−1

, (2)

where ρ is the mass density, vth is the thermal velocity of a
hydrogen atom, and dv/dr is the radial velocity gradient. The
Sobolev optical depth of a spectral line between lower state l
and upper state u is given by τ S

u,l = ηu,l t , where

ηu,l = hc

4π

nlBl,u − nuBu,l

σeρvth
. (3)

Here, nl and nu are the lower and upper level population number
densities and Bl,u and Bu,l are the usual Einstein coefficients
for absorption and stimulated emission, respectively. The force
multiplier, M(t), is composed from a sum over all line transitions

M(t) =
∑

lines

∆νD

Fν

F

1 − exp(−ηu,l t)
t

, (4)
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The stars are represented by the circles. Arrows indicate the wind direction, and arrow length indicates velocity magnitude. The solid and dashed lines demark the
regions of post-shock stellar wind and the contact discontinuity, respectively. The shaded region indicates plasma temperature—fainter shading corresponds to lower
temperature.
(A color version of this figure is available in the online journal.)

the wind–wind collision shocks on the wind driving. Stevens
& Kallman (1990) examined the dependence of the radiative
line force on X-ray ionization for the case of a high-mass X-ray
binary system, finding that the stellar wind acceleration could be
significantly suppressed by a particularly bright compact object
because the excessive X-ray ionization reduces the radiative line
force (see also Stevens 1991). This effect has also been explored
for line-driven instability shocks embedded in a massive star’s
wind (Krtička & Kubát 2009; Krtička et al. 2009) and for
radiatively driven disk winds of active galactic nuclei (Proga
et al. 2000).

In this paper we make the first attempt to examine the
feedback of ionizing X-rays from the wind–wind collision
shocks on wind acceleration in a massive star binary system.
Because of the direct coupling between the radiation force
that drives the stellar winds and the ionizing X-ray emission
that results from the wind–wind collision, we term this effect
self-regulated shocks (SRSs). Figure 1 depicts the basic scenario
under consideration and highlights some key effects due to
SRSs. First, wind velocities are reduced (shorter arrows in
the right panel) which causes a lower post-shock plasma
temperature (fainter shading). Consequently, radiative cooling
may become sufficiently important to introduce instabilities
which will perturb the shock fronts (Stevens et al. 1992; Parkin
& Pittard 2010; van Marle et al. 2011; Parkin et al. 2011;
Lamberts et al. 2011). The goal of this work is to provide a
qualitative picture, and initial quantitative estimates, of when/if
the SRS effect might be important. Therefore, we will make
simplifications in order to elucidate the physics.

The structure of this paper is as follows. In Section 2 we
calculate the influence of X-ray ionization on the line force
due to an ensemble of spectral lines. The semi-analytical wind
acceleration model is described in Section 3, followed by results
for model binary systems in Section 4. An approximate model
for SRSs is presented in Section 5. We compare results to
observations in Section 6 and then discuss some implications
of our findings, and possible avenues for going beyond the
illustrative wind acceleration model adopted in this work, in
Section 7. The main conclusions of this work are summarized
in Section 8.

2. THE LINE FORCE

For the wind models that will be presented in Section 3,
we need to compute the radiation force due to spectral lines
for appropriate stellar parameters while accounting for the
influence of X-ray irradiation arising from a wind collision.
We will adopt an approximate treatment of the radiation force
due to spectral lines following Castor et al. (1975, hereafter
CAK) and closely follow the approach by Stevens & Kallman
(1990) to estimate the effect of X-ray ionization on the line
force—essentially, our goal is to repeat their calculations for
the stellar parameters appropriate to our study. In this section
we outline the method and the implementation used here. For
full details of the methodology and discussions of its validity, we
refer the reader to CAK, Abbott (1982), and Stevens & Kallman
(1990).

The total force due to lines is given by

frad = σeF

c
M(t), (1)

where σe is the electron scattering opacity and F is the radiative
flux. M(t) is known as the line force multiplier, which depends
on the dimensionless optical depth parameter in a stellar wind,
defined by

t = σeρvth

(
dv

dr

)−1

, (2)

where ρ is the mass density, vth is the thermal velocity of a
hydrogen atom, and dv/dr is the radial velocity gradient. The
Sobolev optical depth of a spectral line between lower state l
and upper state u is given by τ S

u,l = ηu,l t , where

ηu,l = hc

4π

nlBl,u − nuBu,l

σeρvth
. (3)

Here, nl and nu are the lower and upper level population number
densities and Bl,u and Bu,l are the usual Einstein coefficients
for absorption and stimulated emission, respectively. The force
multiplier, M(t), is composed from a sum over all line transitions

M(t) =
∑

lines

∆νD

Fν

F

1 − exp(−ηu,l t)
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, (4)
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the case of our code, we have now progressed to the point of
spectral verisimilitude, where it is difficult to distinguish a
simulation from data. The wind prescriptions required to
produce verisimilitude are not that different from those
which were developed to model C iv line profiles.

On the other hand, preliminary comparisons of the
models and data suggest that considerable work will be
required to reproduce the spectra of some dwarf novae.
Nevertheless, we are already having some successes, such as
the model shown here for Z Cam and our model of the
FUSE spectrum of SS Cygni (Froning et al. 2002). We are
now embarking upon an effort to fully explore the parame-
ter space inherent in the existing models and to compare
these models to a variety of HUT, FUSE, andHubble Space
Telescope (HST) spectra of high-state CVs. This should
allow us to determine whether there is a single class of

models, broadly or narrowly collimated, for example, that
can be used to approximate the wind geometry in the
majority of CVs.
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Figure 2. Top Panel: ‘Case B’ Balmer decrements computed
with Python compared to analytic calculations by Seaton (1959).
Both calculations are calculated at Te = 10, 000K. (see Oster-
brock 1989 for a discussion of this commonly used approxima-
tion). Bottom Panel: a comparison of He I level populations (the
most complex ion we currently treat as a macro-atom) between
Python and Tardis models. The calculation is conducted with
physical parameters of ne = 5.96 × 104 cm−3, Te = 30, 600K,
TR = 43, 482K and W = 9.65× 10−5. Considering the two codes
use different atomic data and Tardis, unlike Python, currently
has a complete treatment of collisions between radiatively forbid-
den transitions, the factor of < 2 agreement is encouraging.

3.1 Wind Geometry and Kinematics

We adopt the kinematic disk wind model developed by
SV93. A schematic of this model is shown in Fig. 3. In this
parametrization, a smooth, biconical disk wind emanates
from the accretion disk between radii rmin and rmax. The
covering fraction of the outflow is also controlled by the in-
ner and outer opening angles of the wind, θmin and θmax,
and the launch angle of the other streamlines is given by

θ(r0) = θmin + (θmax − θmin)

(

r0 − rmin

rmax − rmin

)γ

, (8)

where r0 is the launch radius of the streamline.
The poloidal (non-rotational) velocity field of the wind,

vl, is given by

vl = v0 + [v∞(r0)− v0]
(l/Rv)

α

(l/Rv)
α + 1

, (9)

where l is the poloidal distance along a particular wind
streamline. The terminal velocity along a streamline, v∞,
is set to a fixed multiple of vesc, the escape velocity at the
launch point. The launch velocity from the disk surface, v0,
is assumed to be constant (set to 6 km s−1). Once the wind
is launched, it accelerates, reaching half of its terminal ve-
locity at l = Rv. The velocity law exponent α controls how
quickly the wind accelerates. Larger values of α cause the
main region of acceleration to occur close to Rv, whereas
smaller values correspond to fast acceleration close to the
disk (see Fig. 4). The rotational velocity vφ is Keplerian at
the base of the streamline and we assume conservation of
specific angular momentum, such that

vφr = vkr0, (10)

White Dwarf
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w
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Figure 3. Cartoon illustrating the geometry and kinematics of
the benchmark CV wind model.
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Figure 4. The adopted poloidal velocity law for various values
of the acceleration exponent, α.

where vk = (GMWD/r0)
1/2.

The density at position (r, z) in the wind, ρ(r, z), is
calculated from the mass continuity equation, yielding

ρ(r, z) =
r0
r
dr0
dr

φ(r0)
vz(r, z)

. (11)

Here, vz is the vertical velocity component and, following
SV93, φ(r0) is the local mass-loss rate per unit area at r0,
defined as

φ(r0) ∝ Ṁwindr
λ
0 cos[θ(r0)]. (12)

We adopt λ = 0 and normalize φ(r0) by matching its integral
over both sides of the disk to the user-specified total mass-
loss rate, Ṁwind.

3.2 Sources and Sinks of Radiation

The net photon sources in our CV model are the accretion
disk, the WD and, in principle, a boundary layer with user-
defined temperature and luminosity. All of these radiating
bodies are taken to be optically thick, and photons strik-
ing them are assumed to be destroyed instantaneously. The
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Fig. 1.— Reduced and fluxed UVB+VIS X-shooter spectra of the quasar SDSS J1106+1939.

We indicate the position of the absorption lines associated with the intrinsic outflow. The

VIS part of the spectrum (λobs > 5700 Å) has not been corrected for atmospheric absorption.

This does not affect our study since our diagnostic lines are located in regions free of such

contamination. The dashed line represents our unabsorbed emission model (see Section 3.1).
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Figure 7. Simulated spectra for four sightlines. The top panel shows the 40◦ sightline, over the top of the wind to the brightest parts of the accretion disc,
whilst the next panel shows the 75◦ sightline, looking through the upper parts of the wind. The next panel is for 80◦ looking through the lower part of the wind
and finally, the bottom panel shows the 85◦ sightline which is almost equatorial, and views the bright central source through the very base of the wind. For
each sightline, the unobscured continuum is also plotted for comparison along with a scaled continuum. The scaled continuum is the unobscured continuum
scaled to equal the simulated spectrum away from line features, and therefore takes account of electron scattering. The location of some of the spectral features
most relevant for BALQSOs are marked.

in directions along the disc plane. Thus, photons scattering in this
region tend to emerge preferentially along the more transparent
sightlines perpendicular to this plane, and the wind essentially acts
as a reflector.

More importantly, the emission lines superposed on the contin-
uum do correspond to the typical transitions seen in Type I QSOs,
but they are weaker than the observed features. For example, the
C IV emission line in our model has an equivalent width of only
1.4 Å. By contrast, the equivalent with of the C IV line in a typical
QSO with a continuum luminosity of Lλ(1550 Å) ≃ 1043 erg s−1

is ≃ 60 Å (Xu et al. 2008). Other sightlines above the wind cone
(0◦ ≤ i ≤ 70◦) yield qualitatively similar spectra. Overall, the pres-
ence of the right ‘sort’ of emission lines is encouraging, but their
weakness is an obvious shortcoming of the model. We will discuss
the topic of line emission in more detail in Section 6.2.

5.2.3 Sightlines looking through the base of the wind cone

Let us finally consider the highest inclinations, which correspond
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Figure 7. Simulated spectra for four sightlines. The top panel shows the 40◦ sightline, over the top of the wind to the brightest parts of the accretion disc,
whilst the next panel shows the 75◦ sightline, looking through the upper parts of the wind. The next panel is for 80◦ looking through the lower part of the wind
and finally, the bottom panel shows the 85◦ sightline which is almost equatorial, and views the bright central source through the very base of the wind. For
each sightline, the unobscured continuum is also plotted for comparison along with a scaled continuum. The scaled continuum is the unobscured continuum
scaled to equal the simulated spectrum away from line features, and therefore takes account of electron scattering. The location of some of the spectral features
most relevant for BALQSOs are marked.

in directions along the disc plane. Thus, photons scattering in this
region tend to emerge preferentially along the more transparent
sightlines perpendicular to this plane, and the wind essentially acts
as a reflector.
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uum do correspond to the typical transitions seen in Type I QSOs,
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is ≃ 60 Å (Xu et al. 2008). Other sightlines above the wind cone
(0◦ ≤ i ≤ 70◦) yield qualitatively similar spectra. Overall, the pres-
ence of the right ‘sort’ of emission lines is encouraging, but their
weakness is an obvious shortcoming of the model. We will discuss
the topic of line emission in more detail in Section 6.2.

5.2.3 Sightlines looking through the base of the wind cone

Let us finally consider the highest inclinations, which correspond
to sightlines that do not lie along the wind cone, but for which the
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Line-driven winds with Monte Carlo radiation hydrodynamics 5

Once a packet interacts, the location of this event in optical
depth space has to be translated into a physical position within the
computational domain. This procedure is trivial in the grey case,
since optical depth and pathlength only differ by the opacity, a
constant multiplicative factor in the CMF, but complicated in the
presence of frequency-dependent processes. We adopt a simplified
version of the technique of Mazzali & Lucy (1993) to locate the
line-interaction events packets perform. On its trajectory, a packet
propagates freely to the Sobolev point of the next line with which it
comes into resonance. Each time such a resonance point is reached,
the optical depth is incremented by the full line optical depth of
the corresponding transition. The packet undergoes an interaction
once the value drawn in (11) is surpassed by the optical depth ac-
cumulated. If this occurs during the instantaneous increases at one
of the Sobolev points, the packet undergoes a resonant line inter-
action, otherwise it may leave the current grid cell uninterrupted.
This procedure may be easily extended to include additional inter-
action types, in particular frequency-independent processes, such
as Thomson scatterings (see Mazzali & Lucy 1993), but for the
current work we have omitted to do so.

3.6 Monte Carlo estimators

In reconstructing the radiation field characteristics from the ensem-
ble of packet interaction histories, we follow the volume-averaged
estimator approach proposed by Lucy (1999a) and refined in Lucy
(2003, 2005). This formalism aims at reducing the statistical fluctu-
ations inherent to the Monte Carlo approach by increasing the num-
ber of contributions to the packet census. For the case of frequency-
independent processes being the only interaction channel, adequate
estimators have already been derived and presented by Noebauer
et al. (2012) and similarly by Roth & Kasen (2015).

To determine the radiative acceleration due to spectral line in-
teractions, we consider the momentum transferred in such an event.
Assuming that these interactions occur as resonant scatterings, a
packet transfers

�p =

"b

c

h
µb � �2

(µa
0 + �)(1� �µb

)

i
(16)

momentum onto the material. Estimators for the radiation force can
be obtained by summing over the transfer terms of all interacting
packets. To reduce the statistical fluctuations in these estimators
we follow the suggestion of Lucy (1999b) and include all packets
that come into resonance with a line and weight their contributions
with the corresponding interaction probability given by (1�e�⌧s

).
Taking the forward-backward symmetry of the re-emission into ac-
count, thus cancelling all terms that are of odd power in µa

0 , the
following estimator for the radiation force [c.f. Equation (B5)] due
to line interactions are obtained:

G1
line =

1

�V c�t

X
(1� e�⌧s

)"(µ� �). (17)

Here, the volume of a grid cell, �V appears. The superscript b

has been dropped and only terms of O(u/c) have been retained.
Using this estimator, the radiation force is calculated and the fluid
momentum updated in the final splitting step.

3.7 Ionization and level population

The strength of the different line transitions, as encoded in the cor-
responding values for the Sobolev optical depth, ⌧s, depends on
the excitation and ionisation balance in the wind. Thus, the Monte

Carlo radiative transfer routine requires a separate calculation step
which determines the ionisation and the level population in each
cell of the computational grid. In this first study, we follow Abbott
& Lucy (1985), Vink et al. (1999) and Sim (2004) and adopt an ap-
proximate non-LTE treatment. We stress, however, that nothing in
our radiative transfer or hydrodynamics formalism requires these
approximations. A full, non-LTE scheme for calculating ionisation
and excitation states could be incorporated following the methods
described by Lucy (2003, see Section 6.3).

Following our simplified strategy, we determine the ionisation
balance by applying the modified nebular approximation (see, e.g.
Mazzali & Lucy 1993),
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Nj
=

✓
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This expression relates the number densities of two successive ion
stages, Nj , Nj+1 with the electron number density Ne. Compared
to a pure LTE calculation based on the Saha equation, whose results
are denoted by the asterisks, modifications due to the dilution of
the radiation field and due to recombination effects are taken into
account. As a consequence, the dilution factor W , the ratio of the
electron and radiation temperatures, Te and TR, and the fraction
⇣j of recombination processes going directly to the ground state
appear in the above formulation.

In the determination of the level population, we again follow
Abbott & Lucy (1985) and identify levels with no permitted elec-
tromagnetic dipole transitions to lower energy levels as metastable;
these levels are assumed to obey Boltzmann statistics

✓
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◆
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✓
ni
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TR

, (19)

with “1” denoting the ground state. For all other levels, the effect
of radiative processes on the level population is crudely taken into
account by including a dilution factor (see Vink et al. 1999; Sim
2004)

✓
ni

n1

◆
= W

✓
ni

n1

◆⇤

TR

. (20)

For the current work, we do not solve Equation (18) iteratively
to determine the ionisation state. Instead, we use a predefined char-
acteristic electron density Ne/W and calculate the ionisation ac-
cordingly (see, e.g. Abbott 1982, for a comparable strategy) in all
our wind simulations. Also, the radiation temperature is treated in
a simple fashion according to the prescription

TR = Te = Te↵ (21)

rather than relying on predictions of realistic atmosphere models.
With the excitation and ionisation balance accessible through

Equations (18), (19) and (20) in each cell of the computational
grid, the Sobolev optical depth of a line transition encountered on a
packet trajectory along the direction µ may be calculated according
to
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c
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Here, ⌫0 denotes the rest frame frequency of the transitions and fl
its oscillator strength. Also, the statistical weights gl,u associated
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Once a packet interacts, the location of this event in optical
depth space has to be translated into a physical position within the
computational domain. This procedure is trivial in the grey case,
since optical depth and pathlength only differ by the opacity, a
constant multiplicative factor in the CMF, but complicated in the
presence of frequency-dependent processes. We adopt a simplified
version of the technique of Mazzali & Lucy (1993) to locate the
line-interaction events packets perform. On its trajectory, a packet
propagates freely to the Sobolev point of the next line with which it
comes into resonance. Each time such a resonance point is reached,
the optical depth is incremented by the full line optical depth of
the corresponding transition. The packet undergoes an interaction
once the value drawn in (11) is surpassed by the optical depth ac-
cumulated. If this occurs during the instantaneous increases at one
of the Sobolev points, the packet undergoes a resonant line inter-
action, otherwise it may leave the current grid cell uninterrupted.
This procedure may be easily extended to include additional inter-
action types, in particular frequency-independent processes, such
as Thomson scatterings (see Mazzali & Lucy 1993), but for the
current work we have omitted to do so.

3.6 Monte Carlo estimators

In reconstructing the radiation field characteristics from the ensem-
ble of packet interaction histories, we follow the volume-averaged
estimator approach proposed by Lucy (1999a) and refined in Lucy
(2003, 2005). This formalism aims at reducing the statistical fluctu-
ations inherent to the Monte Carlo approach by increasing the num-
ber of contributions to the packet census. For the case of frequency-
independent processes being the only interaction channel, adequate
estimators have already been derived and presented by Noebauer
et al. (2012) and similarly by Roth & Kasen (2015).

To determine the radiative acceleration due to spectral line in-
teractions, we consider the momentum transferred in such an event.
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packet transfers

�p =

"b

c

h
µb � �2

(µa
0 + �)(1� �µb

)

i
(16)

momentum onto the material. Estimators for the radiation force can
be obtained by summing over the transfer terms of all interacting
packets. To reduce the statistical fluctuations in these estimators
we follow the suggestion of Lucy (1999b) and include all packets
that come into resonance with a line and weight their contributions
with the corresponding interaction probability given by (1�e�⌧s

).
Taking the forward-backward symmetry of the re-emission into ac-
count, thus cancelling all terms that are of odd power in µa

0 , the
following estimator for the radiation force [c.f. Equation (B5)] due
to line interactions are obtained:
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has been dropped and only terms of O(u/c) have been retained.
Using this estimator, the radiation force is calculated and the fluid
momentum updated in the final splitting step.

3.7 Ionization and level population

The strength of the different line transitions, as encoded in the cor-
responding values for the Sobolev optical depth, ⌧s, depends on
the excitation and ionisation balance in the wind. Thus, the Monte

Carlo radiative transfer routine requires a separate calculation step
which determines the ionisation and the level population in each
cell of the computational grid. In this first study, we follow Abbott
& Lucy (1985), Vink et al. (1999) and Sim (2004) and adopt an ap-
proximate non-LTE treatment. We stress, however, that nothing in
our radiative transfer or hydrodynamics formalism requires these
approximations. A full, non-LTE scheme for calculating ionisation
and excitation states could be incorporated following the methods
described by Lucy (2003, see Section 6.3).

Following our simplified strategy, we determine the ionisation
balance by applying the modified nebular approximation (see, e.g.
Mazzali & Lucy 1993),

Nj+1

Nj
=

✓
Ne

W

◆�1

⇥ [⇣j +W (1� ⇣j)]

r
Te

TR

✓
Nj+1Ne

Nj

◆⇤

TR

. (18)

This expression relates the number densities of two successive ion
stages, Nj , Nj+1 with the electron number density Ne. Compared
to a pure LTE calculation based on the Saha equation, whose results
are denoted by the asterisks, modifications due to the dilution of
the radiation field and due to recombination effects are taken into
account. As a consequence, the dilution factor W , the ratio of the
electron and radiation temperatures, Te and TR, and the fraction
⇣j of recombination processes going directly to the ground state
appear in the above formulation.

In the determination of the level population, we again follow
Abbott & Lucy (1985) and identify levels with no permitted elec-
tromagnetic dipole transitions to lower energy levels as metastable;
these levels are assumed to obey Boltzmann statistics

✓
ni

n1

◆
=

✓
ni

n1

◆⇤

TR

, (19)

with “1” denoting the ground state. For all other levels, the effect
of radiative processes on the level population is crudely taken into
account by including a dilution factor (see Vink et al. 1999; Sim
2004)

✓
ni

n1

◆
= W

✓
ni

n1

◆⇤

TR

. (20)

For the current work, we do not solve Equation (18) iteratively
to determine the ionisation state. Instead, we use a predefined char-
acteristic electron density Ne/W and calculate the ionisation ac-
cordingly (see, e.g. Abbott 1982, for a comparable strategy) in all
our wind simulations. Also, the radiation temperature is treated in
a simple fashion according to the prescription

TR = Te = Te↵ (21)

rather than relying on predictions of realistic atmosphere models.
With the excitation and ionisation balance accessible through

Equations (18), (19) and (20) in each cell of the computational
grid, the Sobolev optical depth of a line transition encountered on a
packet trajectory along the direction µ may be calculated according
to

⌧s =

c
⌫0

(l⇢)rs⇥
(1� µ2

)

u
r + µ2 du

dr

⇤
rs

, (22)

l⇢ =

⇡e2

mec
flnl

✓
1� nu

nl

gl
gu

◆
. (23)

Here, ⌫0 denotes the rest frame frequency of the transitions and fl
its oscillator strength. Also, the statistical weights gl,u associated
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Table 1. Overview of all chemical elements, that are taken into account in
our wind calculations. For each species, the included ionisation stages are
listed as well.

Element Ions Element Ions
H I,II He I-III
C I-IV N I-VI
O I-VI F I-VI
Ne I-VI Na I-VI
Mg I-VI Al I-VI
Si I-VI P I-VI
S I-VI Cl I-V
Ar I-V K I-V
Ca I-VI Ti I-VI
Cr I-VI Mn I-VI
Fe I-VI Co I-VI
Ni I-VI

Table 2. Properties of ⇣-Puppis according to Puls et al. (1996). We adopt
these stellar parameters in our wind test calculations.

Parameter Value
M? 52.5M�
L? 10

6L�
Te↵ 4.2⇥ 10

4
K

element. Information about the atomic structure and the line tran-
sitions in these ions are taken from the same database used in the
study of colliding winds by Parkin & Sim (2013), which is based
on the Kurucz & Bell (1995) atomic data set. To reduce the com-
putational effort in the Monte Carlo radiative transfer steps, we do
not account for all line transitions recorded in the data set, but only
those with log gf > �6. We have explicitly verified that the in-
clusion of more weak lines does not affect the outcome of our
simulations. When required, the recombination fractions for the
included ions, ⇣i, are adopted from the PYTHON code (Long &
Knigge 2002).

4.2 Stellar parameters

We perform all wind calculations for fixed sets of stellar parame-
ters. For the simulations series constituting the basic testing pro-
cess, we consider a system that is similar to the well-studied O-star
⇣-Puppis. The basic stellar parameters for these calculations are
listed in Table 2 and are adopted from Puls et al. (1996). These val-
ues imply a stellar radius of R? = 1.317⇥ 10

12
cm. Additionally,

we use Ne/W = 10

�15
cm

�3 in the ⇣-Puppis calculations. Per-
forming an ionisation and excitation calculation as outlined in the
previous section, we find a mean electron scattering cross section
of �e = 0.34 cm2

g

�1 throughout the wind, which corresponds
to the Eddington factor �e = 0.5. In all MCRH wind simulations
presented in the following, we account for the effect of electron
scattering by reducing the stellar mass by the factor (1 � �e), as
described in Sections 2.1 and 3.5.

4.3 CAK fitting

In the CAK theory, the wind structure may be readily determined
from the stellar properties and the power-law parameters k and ↵
of the force multiplier. However, the wind characteristics, mass-
loss rate and terminal wind speed, are sensitive to the exact val-
ues of these parameters. Given our aim at assessing the utility of
our approach for solving the line-driving problem, we refrain from

10−9 10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1 100

t
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10−3

10−2

10−1

100

101
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M
(t
)

MCRH direct summation

power-law fit

Abbott 1982, Ne/W = 1.8× 108 cm−3

Abbott 1982, Ne/W = 1.8× 1011 cm−3

Abbott 1982, Ne/W = 1.8× 1014 cm−3

Figure 2. Results of the direct determination of the force multiplier as a
function of the optical depth parameter t, performed with MCRH (orange)
according to Equation (24). In the transition region, between the optically
thick and thin regimes, a power-law fit according to Equation (A4) has been
performed (dashed blue). The parameters of this fit are included in Table 3
and the predicted wind state (in terms of t), according to the CAK theory and
the obtained k and ↵ values, is marked by a green cross. For comparison, the
force multiplier values of Abbott (1982), determined for a star with Te↵ =

4⇥ 10

4
K and Ne/W = 1.8⇥ 10

8, 1.8⇥ 10

11, 1.8⇥ 10

14
cm

�3 are
included (grey open symbols).

consulting previous studies, such as Abbott (1982) or Pauldrach
(1987), which provide these parameters for a wide range of stel-
lar conditions. Instead, we use the Monte Carlo routine of MCRH
to determine the values for k and ↵. This way, we ensure that the
MCRH–CAK/MCAK comparisons are not obscured by differences
in atomic data sets, the ionisation and excitation treatments or the
stellar parameters. In particular, we determine the values for k and
↵ by carrying out the force-multiplier summation

M(t) =
X F⌫0�⌫D

F
1

t


1� exp

✓
� lt
�⌫D�ref

e

◆�
(24)

explicitly with the MCRH modules for a large number of different
values of the dimensionless optical depth and by performing the
power-law fit according to Equation (A4) afterwards. The Doppler
width, �⌫D = ⌫0uth/c, according to the thermal motion uth [see
Equation (A3)], is used together with a reference specific electron
scattering cross section �ref

e [see Equation (A1)]. The results of the
direct summation procedure are shown in Figure 2 together with the
fitting curve. As a reference, the results of Abbott (1982), obtained
for comparable physical conditions are included. In general, both
calculations agree, but noticeable differences are present, which
are most likely a consequence of our simplified treatment of ion-
isation and excitation, differences in the atomic data sets and of the
use of realistic stellar atmosphere models instead of a simple black
body by Abbott (1982). Given the purpose of our calculations, these
differences are irrelevant but highlight the need for consistency be-
tween the MCRH and CAK calculations. The final CAK parameters,
which are used throughout this work, are listed in Table 3. Based on
the force multiplier parameters, the CAK predictions for the mass-
loss rate and the terminal wind speed are calculated and also pro-
vided in the table. Including the finite-cone effect according to the
MCAK approach increases the terminal wind speed by a factor of
⇠ 2.65 to about u1 ⇡ 2360 km s

�1 and reduces the mass-loss
rate to ˙M ⇡ 2⇥10

�5 M� yr

�1. With these modifications, the ter-
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Figure 3. Results of the stellar wind simulation series in terms of the final stationary wind velocity (left panel), density (central panel) and mass-loss rate (right
panel). The colour-coding reflects the different stages of the simulation series. The calculations which are based on the point-source approximation and use
the unattenuation of the radiation field are shown in blue. Red lines corresponds to calculations, in which the finite-cone effect is included and green to those
which also include the full scattering procedure. All MCRH results are presented by solid lines. Where applicable, the analytic predictions according to the
CAK and the MCAK theory are included as dotted lines. In these cases, also the results obtained with CAK-RH/MCAK-RH are given as an additional reference.

scheme to address the line-driving problem in hot-star winds self-
consistently.

4.7.2 Including the finite-cone effect

During the second stage of the wind simulation series, the point-
source approximation is dropped and the finite extent of the central
star is taken into account, analogously to the MCAK approach of
Pauldrach et al. (1986) and Kudritzki et al. (1989). In the MCRH
calculations during this stage, we allow Monte Carlo packets to
propagate on non-radial rays as well by sampling the initial direc-
tion according to Equation (9).

As in the point-source calculations, the stationary wind struc-
ture obtained with MCRH is compared with the analytic predic-
tions, now according to the MCAK theory as outlined in Appendix
A. Again, we include the numerical results calculated with the
MCAK-RH version of our scheme. When accounting for non-radial
photon propagation paths, the Monte Carlo-based results agree
again very well with the analytic predictions and the MCAK-RH
calculation, as illustrated by Figure 3.

As expected from numerous previous studies, most notably
from Friend & Abbott (1986), Pauldrach et al. (1986) and Kudritzki
et al. (1989), the inclusion of the finite-cone effect leads to higher
wind velocities, in our case by a factor of 2.5 in terms of the veloc-
ity at r = 10R? compared to the point-source case. At the same
time, the mass-loss rate drops by a factor of 0.5. Figure 4 illustrates
the difference in the radial dependence of the radiative acceleration,
which is responsible for the change in the structure of the wind flow.

4.7.3 Full inclusion of scatterings

After having established the basic applicability of our approach to
the line-driving problem in the first stages of the simulation series,
we take another step towards a realistic description of the radiation
field in hot-star winds by dropping the unattenuation approxima-
tion and accounting for the full scattering process in interactions.
Now the entire procedure described in Section 3.4 is performed: in
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r/R⋆
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12000

g l
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]
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Figure 4. The radial dependence of the line-driving force in the MCRH
calculations after a stationary state has established. The colour-coding is
the same as in Figure 3. For the results shown by the weak solid lines,
5 ⇥ 10

4 packets where used to discretise the radiation field emitted by the
central star in each simulation cycle. For comparison, the full solid lines
show the corresponding acceleration, when the 106 packets are used once a
stationary state has emerged. Notice the clear decrease in the Monte Carlo
noise but the same radial dependence of the radiative acceleration as in the
case with fewer packets.

particular, the emergent propagation directions in atomic line inter-
actions are drawn according to Equation (12). Accounting fully for
the multiple scattering phenomenon, these calculations reach be-
yond the capabilities of the basic CAK and MCAK approaches (as
outlined in Appendix A). We emphasise, that the key consequence
of multiple scattering lies in the capability of line interactions to
lengthen the photon propagation trajectory. By this process, pho-
tons may potentially exert a stronger acceleration onto the wind ma-
terial, compared to the unattenuated case in which they may also in-
teract multiple times but their trajectories are always straight lines.
Once the unattenuation of the radiation is dropped in the MCRH
simulations, some packets may potentially be back-scattered onto
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10 Noebauer et al.

the stellar disc. To counteract the luminosity loss induced by this
process, we follow Lucy & Abbott (1993) and scale the packet en-
ergies by a constant factor, which ensures that in each time step, net
radiative energy amounting to the luminosity L? is streaming into
the wind. This process may be interpreted as a colour correction of
the stellar spectral energy distribution (see Lucy 1999b, for a sim-
ilar strategy in the context of calculating synthetic observables for
supernovae).

Accounting both for the finite-cone effect and the full scat-
tering procedure, we again determine the stationary wind structure
with MCRH. The resulting wind velocity, the density stratification,
and the mass-loss rate are included in the summary plot of Figure
3. Compared to the unattenuated calculations with the finite-cone
effect, we find a slightly slower wind and, as shown in Figure 4,
a weaker radiative acceleration. At first glance, this seems to con-
tradict the statement about the effect of multiple scattering in the
introductory part of this section. But one has to bear in mind that in
the CAK/MCAK description of the line-driving problem, in each in-
teraction the full photon/packet momentum is transferred onto the
wind material. This is comparable to a purely absorbing medium,
with the important difference that the photon trajectory is not termi-
nated in the CAK/MCAK description. Instead, the same photon may
still contribute to the acceleration in regions of the wind located at
larger radii. In the full scattering case, in which the re-emission of
the line-interaction is taken into account, no momentum is trans-
ferred onto the wind on a CAK/MCAK like trajectory since it in-
volves forward-scatterings only. Thus, the momentum transfer in
the CAK/MCAK case may generally be overestimated and only the
photons that are on trajectories that have been significantly length-
ened due to many successive scatterings may contribute compara-
bly to the CAK/MCAK description. This phenomenon is illustrated
in Figure 5. A general reduction of the line-driving force once the
unattenuation assumption is dropped has already been found in pre-
vious studies, e.g. Abbott & Lucy (1985).

4.7.4 Additional diagnostics

By recording the details of all interaction events performed by the
Monte Carlo packets in the final calculation of the simulation se-
ries, the origin of the radiative acceleration can be studied. The
contributions of the different elements and ionisation stages, aver-
aged over the entire computational domain, are illustrated in Figure
6. This highlights that the line-driving force mainly derives from
interactions with lines of iron, nickel some intermediate mass ele-
ments and the CNO group. The relative importance of the differ-
ent contributions, however, changes throughout the wind, as shown
in the right panel of the same figure. In our simulation, lines of
iron group elements mostly contribute in the inner part of the wind,
close to the photosphere. Further out, the intermediate mass ele-
ments grow in importance. This finding is compatible with the in-
vestigation of Vink et al. (1999), in which the importance of iron
for the radiative acceleration in the lower parts of the wind has been
highlighted in the context of the bi-stability jump. We stress, how-
ever, that due to the simplified treatment of ionisation and excita-
tion in our simulations, the results presented in Figure 6 should not
be over-interpreted, but viewed as an illustration of the diagnostic
possibilities of our approach.

By recording the interaction histories of all packets we can
also investigate the importance of multiple scattering in our simu-
lation. Figure 7 shows the number of interactions performed by the
packets that escaped through the outer edge of the computational
domain. In our particular simulation, most packets never explic-
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Figure 5. Illustration of the total radiation momentum transfer rate exerted
by the Monte Carlo packets along their propagation paths in terms of a two-
dimensional histogram. The length of the trajectories, l, is normalised to
the radial extent of the domain, lr . The upper two panels show the accumu-
lated momentum in the point-source (left) and the finite-cone (right) MCRH
calculation respectively. The lower panels correspond to the MCRH wind
simulation with the full scattering procedure. The left panel only includes
packets that are ultimately backscattered onto the central star. Thus, trajec-
tories shorter than lr are encountered. In the lower right panel only packets
which ultimately escape through the outer boundary of the computational
domain are shown.
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Figure 7. Histogram of the number of interactions which Monte Carlo pack-
ets that ultimately escaping through the outer edge of the simulation box
perform. As displayed in the inset, the majority of the escaping packets
never experience an interaction. However, most of the interacting packets
perform multiple scatterings.

itly interacted on their way out. They may have still contributed to
the line-driving force as long as they came into resonance with at
least one line transition (see discussion in Section 3.6). The major-
ity of those that interacted, however, performed multiple scattering
events.

5 COMPARISON WITH DETAILED CALCULATIONS

Having established the basic performance of our method under sim-
plified conditions, we now compare our approach with modern,

c� 0000 RAS, MNRAS 000, 000–000
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Figure 6. Detailed summary of the contribution of the different elements to the line-driving force in the full-scattering simulation. In the left panel, the
composition of the line-driving force averaged over the entire simulation box is displayed. Here, also the contributions of the different ionisation stages are
shown. The right panel shows how this composition varies throughout the wind. For this illustration, the contributions to the line-driving for of all ions of one
element are combined and then colour-coded. Moreover, a binning with a width of ten grid cells has been used.

Table 4. Simulation parameters for the calculation of the wind from the
O5-V main sequence star (c.f. Müller & Vink 2008).

Parameter Value
M? 40M�

logL?/L� 5.5
Te↵ 4⇥ 10

4
K

⇢0 10

�11
g cm

�3

Ne/W 10

�14
cm

�3

sophisticated techniques for determining the structure of hot-star
winds, in particular with the approach developed by Müller & Vink
(2008, MV08 hereafter). This method constitutes an advancement
of the original approach of Vink et al. (1999) and Vink et al. (2000).
A Monte Carlo radiative transfer calculation is used to determine
the local line-driving force for a given static wind structure. Here a
velocity structure that is more general and flexible than the �-type
law is used. According to the reconstructed line acceleration, the
mass-loss rate and the parameters of the wind velocity law are iter-
atively updated until a converged wind structure has been found.

5.1 Parameters

MV08 test their approach by predicting the wind structure of an
O5-V main sequence star. For direct comparison, we adopt param-
eters in our simulation to match their calculation. In Table 4, all
quantities which have been changed with respect to the calculations
presented in Section 4 are listed. These choices imply an Eddington
of �e = 0.210, which is very close to the value quoted by MV08.

The comparison with the Müller & Vink (2008) technique will
be based on MCRH calculations that incorporate all techniques de-
scribed in Section 3. Since no CAK or MCAK-like simulations are
performed in this context, the CAK fitting procedure of Section 4.3
does not have to be repeated for the current stellar parameters.

5.2 Results

With the stellar parameters listed in Table 4 a full scattering MCRH
simulation, similar to the calculation presented in Section 4.7.3,
is performed to determine the structure of the wind of the O5-V
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Figure 8. Stationary wind structure for the O5-V main sequence star deter-
mined with MCRH (green). The predictions according to the MV08 tech-
nique are shown as a comparison (grey).

main sequence star. The result is shown in Figure 8 in terms of the
stationary velocity and mass-loss rate and compared to the structure
found by MV08. To obtain the comparison MV08 wind velocity,
we use the approximate expression, Equation 39 in MV08, which
is only strictly valid in the supersonic wind regime.

As seen in Figure 8, both approaches predict winds that are
quite similar in shape. However, the velocity structure found by
MCRH accelerates quite quickly towards the terminal wind speed,
whereas the wind velocity law predicted by MV08 approaches its
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Ṁ
[M

⊙
y
r−

1
]

Figure 3. Results of the stellar wind simulation series in terms of the final stationary wind velocity (left panel), density (central panel) and mass-loss rate (right
panel). The colour-coding reflects the different stages of the simulation series. The calculations which are based on the point-source approximation and use
the unattenuation of the radiation field are shown in blue. Red lines corresponds to calculations, in which the finite-cone effect is included and green to those
which also include the full scattering procedure. All MCRH results are presented by solid lines. Where applicable, the analytic predictions according to the
CAK and the MCAK theory are included as dotted lines. In these cases, also the results obtained with CAK-RH/MCAK-RH are given as an additional reference.

scheme to address the line-driving problem in hot-star winds self-
consistently.

4.7.2 Including the finite-cone effect

During the second stage of the wind simulation series, the point-
source approximation is dropped and the finite extent of the central
star is taken into account, analogously to the MCAK approach of
Pauldrach et al. (1986) and Kudritzki et al. (1989). In the MCRH
calculations during this stage, we allow Monte Carlo packets to
propagate on non-radial rays as well by sampling the initial direc-
tion according to Equation (9).

As in the point-source calculations, the stationary wind struc-
ture obtained with MCRH is compared with the analytic predic-
tions, now according to the MCAK theory as outlined in Appendix
A. Again, we include the numerical results calculated with the
MCAK-RH version of our scheme. When accounting for non-radial
photon propagation paths, the Monte Carlo-based results agree
again very well with the analytic predictions and the MCAK-RH
calculation, as illustrated by Figure 3.

As expected from numerous previous studies, most notably
from Friend & Abbott (1986), Pauldrach et al. (1986) and Kudritzki
et al. (1989), the inclusion of the finite-cone effect leads to higher
wind velocities, in our case by a factor of 2.5 in terms of the veloc-
ity at r = 10R? compared to the point-source case. At the same
time, the mass-loss rate drops by a factor of 0.5. Figure 4 illustrates
the difference in the radial dependence of the radiative acceleration,
which is responsible for the change in the structure of the wind flow.

4.7.3 Full inclusion of scatterings

After having established the basic applicability of our approach to
the line-driving problem in the first stages of the simulation series,
we take another step towards a realistic description of the radiation
field in hot-star winds by dropping the unattenuation approxima-
tion and accounting for the full scattering process in interactions.
Now the entire procedure described in Section 3.4 is performed: in
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Figure 4. The radial dependence of the line-driving force in the MCRH
calculations after a stationary state has established. The colour-coding is
the same as in Figure 3. For the results shown by the weak solid lines,
5 ⇥ 10

4 packets where used to discretise the radiation field emitted by the
central star in each simulation cycle. For comparison, the full solid lines
show the corresponding acceleration, when the 106 packets are used once a
stationary state has emerged. Notice the clear decrease in the Monte Carlo
noise but the same radial dependence of the radiative acceleration as in the
case with fewer packets.

particular, the emergent propagation directions in atomic line inter-
actions are drawn according to Equation (12). Accounting fully for
the multiple scattering phenomenon, these calculations reach be-
yond the capabilities of the basic CAK and MCAK approaches (as
outlined in Appendix A). We emphasise, that the key consequence
of multiple scattering lies in the capability of line interactions to
lengthen the photon propagation trajectory. By this process, pho-
tons may potentially exert a stronger acceleration onto the wind ma-
terial, compared to the unattenuated case in which they may also in-
teract multiple times but their trajectories are always straight lines.
Once the unattenuation of the radiation is dropped in the MCRH
simulations, some packets may potentially be back-scattered onto
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Figure 6. Detailed summary of the contribution of the different elements to the line-driving force in the full-scattering simulation. In the left panel, the
composition of the line-driving force averaged over the entire simulation box is displayed. Here, also the contributions of the different ionisation stages are
shown. The right panel shows how this composition varies throughout the wind. For this illustration, the contributions to the line-driving for of all ions of one
element are combined and then colour-coded. Moreover, a binning with a width of ten grid cells has been used.

Table 4. Simulation parameters for the calculation of the wind from the
O5-V main sequence star (c.f. Müller & Vink 2008).

Parameter Value
M? 40M�

logL?/L� 5.5
Te↵ 4⇥ 10

4
K

⇢0 10

�11
g cm

�3

Ne/W 10

�14
cm

�3

sophisticated techniques for determining the structure of hot-star
winds, in particular with the approach developed by Müller & Vink
(2008, MV08 hereafter). This method constitutes an advancement
of the original approach of Vink et al. (1999) and Vink et al. (2000).
A Monte Carlo radiative transfer calculation is used to determine
the local line-driving force for a given static wind structure. Here a
velocity structure that is more general and flexible than the �-type
law is used. According to the reconstructed line acceleration, the
mass-loss rate and the parameters of the wind velocity law are iter-
atively updated until a converged wind structure has been found.

5.1 Parameters

MV08 test their approach by predicting the wind structure of an
O5-V main sequence star. For direct comparison, we adopt param-
eters in our simulation to match their calculation. In Table 4, all
quantities which have been changed with respect to the calculations
presented in Section 4 are listed. These choices imply an Eddington
of �e = 0.210, which is very close to the value quoted by MV08.

The comparison with the Müller & Vink (2008) technique will
be based on MCRH calculations that incorporate all techniques de-
scribed in Section 3. Since no CAK or MCAK-like simulations are
performed in this context, the CAK fitting procedure of Section 4.3
does not have to be repeated for the current stellar parameters.

5.2 Results

With the stellar parameters listed in Table 4 a full scattering MCRH
simulation, similar to the calculation presented in Section 4.7.3,
is performed to determine the structure of the wind of the O5-V
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Figure 8. Stationary wind structure for the O5-V main sequence star deter-
mined with MCRH (green). The predictions according to the MV08 tech-
nique are shown as a comparison (grey).

main sequence star. The result is shown in Figure 8 in terms of the
stationary velocity and mass-loss rate and compared to the structure
found by MV08. To obtain the comparison MV08 wind velocity,
we use the approximate expression, Equation 39 in MV08, which
is only strictly valid in the supersonic wind regime.

As seen in Figure 8, both approaches predict winds that are
quite similar in shape. However, the velocity structure found by
MCRH accelerates quite quickly towards the terminal wind speed,
whereas the wind velocity law predicted by MV08 approaches its
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Conclusions	
  
Using	
  MCRH	
  to	
  simulate	
  line-­‐driven	
  flows	
  looks	
  promising:	
  
	
  
	
  
•  Easy	
  to	
  formulate	
  es*mator	
  for	
  Sobolev	
  limit	
  that	
  captures	
  weak	
  line	
  

contribu*ons	
  

•  Noise	
  is	
  an	
  issue	
  but	
  overall	
  results	
  are	
  promising	
  
	
  
•  Comparisons	
  to	
  other	
  methods	
  suggests	
  that	
  results	
  are	
  reasonable	
  


