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Summary. A procedure for the solution of non-LTE, multi-level,
radiative transfer problems using the Monte Carlo method is
developed and shown to be useful. This procedure allows the
inclusion of velocity fields, inhomogeneities and complex ge-
ometries. It is applied to a study of the transfer of CO line radi-
ation in a model of a spherical, collapsing dark cloud. A technique
for reducing the random fluctuations inherent in the Monte Carlo
method is introduced. This technique typically cuts down com-
puting times by an order of magnitude in the investigated case.
Line profiles accurate to 19, or better were obtained with a very
reasonable amount of computing time.
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1. Introduction

Conventional numerical methods for solution of multi-level, non-
LTE, radiative transfer problems have been developed to a high
degree of efficiency and versatility during the past decade, and
have to some extent become able to deal with complications like
velocity fields and inhomogeneous media. However, this has also
brought increased complexity — the sheer size of the computer
programs is close to the limits of what both program developers
and available computers can manage.

The Monte Carlo method presents a radically different way
of approaching the whole problem. Using this method, one can
simulate a complex physical situation with a program a fraction
of the size of a conventional one. When writing such a program,
one is rarely forced away from the physics of the investigated
system into intricate numerical considerations. Furthermore, there
is virtually no limit to the amount of complications that can be
successfully introduced — these include redistribution functions
of any kind, velocity gradients of any size, and geometries and
inhomogeneities of any degree of complexity. Except possibly
for the last one mentioned, none of these complications increases
program size or computing time by much, and in neither case is
the programming made significantly more difficult.

The main drawback of the method described below is the
square-root convergence typical for, all Monte Carlo procedures.
In general, however, the simplicity of the programs and the modest
requirements of memory space make possible the use of an in-

expensive minicomputer.

The Monte Carlo method has already been used to solve
several radiative transfer problems, and general introductions to
the technique are given by Fleck (1963) and House and Avery
(1969). Many of the applications deal with scattering in resonance

lines (cf. Auer, 1968; Avery and House, 1968; Avery et al., 1969;
Caroff et al., 1972; Magnan, 1970 and 1972; Modali et al., 1972
and 1975), but none of these works contains a self-consistent
non-LTE analysis or a study of a multi-level system. Fleck (1963)
has described a general Monte Carlo procedure for the calcula-
tion of non-linear radiative transfer that is well adapted to studies
of time-dependent systems. It is similar in some basic respects
to the method developed here, but requires more memory space.
Fleck did not apply the procedure specifically to line radiation,
but noted that this could be done. Price (1969) made an elaborate
non-LTE analysis of a pure hydrogen stellar atmosphere, and
included continuous opacity sources, but treated the radiation in
the lines in a crude way.

The aims of this paper are to demonstrate the simplicity of
the Monte Carlo approach to non-LTE, multi-level, radiative
transfer problems, and to show that the method is worthy of
consideration in studies of line radiation in such regions as ex-
tended stellar envelopes and interstellar clouds. The procedure
is described in detail in Sect. 2. A technique for variance-reduction
is discussed in Sect. 3, and the performance of the Monte Carlo
procedure in a simple test case — a study of CO line profiles in a
spherical, homogeneous, collapsing dark cloud - is evaluated in
Sect. 4. An appendix describes the pseudo-random number gen-

_ erator and how it has been applied. A listing of the computer

program has been published separately (Bernes, 1978).

2. The Basic Monte Carlo_ Procedure

We study the transfer of radiation in a spectral line caused by
transitions in two-level atoms (the treatment will, of course, be
valid for molecular transitions as well), and the corresponding
effects on the populations », and n, per unit volume in the lower
and upper energy levels. The scatteringin this transitionis assumed
to be incoherent in direction and frequency, i.e. we assume com-
plete redistribution. Our principal goal is to derive the steady-
state values of », and n,,.

The fundamentals of the Monte Carlo procedure are as fol-
lows: All line photons that are emitted during one second are.
simulated by a number of model photons, each of which represents
a large quantity of ‘“real”” photons. These model photons are
followed through the region that contains the atoms under study
(hereafter simply referred to as “‘the region”). The number of
absorption events caused by the radiation that is represented by
a model photon is calculated and stored. As the model photon
travels in the region, its weight is continuously modified in order
to account for these absorptions and for the stimulated emissions
that also may take place. The total number of absorption events
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caused by all model photons is used to derive new level popula-
tions, and the whole process can then be repeated.

Photons are emitted through excitations to the upper level
followed by spontaneous radiative deexcitations. The number N,
of such emissions per unit volume during one second is
N, r= nuAul > (1)
where A4, is the Einstein probability for spontaneous emission.

The region is thought of as consisting of an ensemble of boxes
or shells, each with a given kinetic temperature and density. The
model photons are emitted at random locations within the boxes.
The number of real photons emitted during one second in each
box can be derived from the local value of N,, with some initial
estimate of n,. This determines the relative numbers of model
photon emissions in the different boxes. These numbers are not
necessarily integers — the fractional parts correspond to emissions
of model photons with reduced weights. The total number of
real photons emitted within one second also gives the number
W, of real photons that each model photon represents.

In addition, an exterior radiation field may be dealt with by
allowing an appropriate number of model photons to enter the
region from the outside. If this radiation field is continuous, the
frequency v,;. We have assumed complete angular redistribution,
in a frequency band that covers the line completely.

Each model photon created within the region is emitted in a
random direction, represented by the unit vector n, and given a
random frequency deviation Av from the laboratory line centre
frequency v,;. We have assumed complete angular redistribution
and the distribution of emission directions is therefore isotropic.
The distribution of frequency deviations is defined by a normalized
emission profile function ¢ (v), e.g. the Doppler profile

¢(v)=_§;exp{—(v—vﬂ—v n 7)/0}

The Doppler width ¢ is determined by the local kinetic temper-
ature and microturbulence, and the frequency of the actual line
centre may be shifted from v,, by a velocity field, specified by the
vector v. This velocity field may vary continuously (or, of course,
discontinuously) in the whole region.

An emitted model photon is allowed to travel a short distance
s, in the selected direction, and the coordinates of the new posi-
tion are calculated. The optical depth 7, along the path can be
approximated by

@

=24 4.63) 1, B Bt )
where n, ,, and n, ,, are the level populations in the box (denoted
by m) that contains the new position. B,, and B,, are the Einstein
probabilities for absorption and stimulated emission (i.e. radi-
ation-induced excitation and deexcitation, respectively). The sim-
plicity of Eq. (3) is partly due to the assumption of complete
frequency redistribution, which means that the absorption pro-
file is equal to the emission profile. ¢ (v) is evaluated at the new
position, or taken as a mean of the values at the original and
new positions.

The weight W (x) (as a function of the covered distance x) of
the model photon, originally taken to be W,, varies.as W, exp
(—1yx/s,) along the path, and is thus W, exp (—7,) when the
distance s, is covered.

The model photon induces radiative excitations and deexci-
tations as it travels from x=0 to x=s,. The total number N,, of

radiative excitations along this path is

hv, ]
Nlu=zll ¢(v)nl,mBlu j W(x) dx‘ (4)
n 0
Since the total number of atoms in the lower state in box m is
Ny, mVm> Where V,, is the volume of the box, the number S, of
radiative excitations per atom in the lower state in box m caused

' by this first step of the model photon becomes

Nlu
lme 4

This quantity is added to a counter, denoted by Z Sy, ,, -

A new step is now taken in the same direction, and the above
calculations are repeated. The generalized version of Eq. (5), to
be used after step k, is

k-1
> Ti)
i=1

s Wyexp (—
Vo Tk
The model photon may now be in another box, and this is re-
flected by the change from index m to index m’. In general, it is
advantageous to choose the step lengths so that the steps are
taken between those points where the model photon crosses
boundaries between different boxes. However, the step length
should never be allowed to exceed the distance over which the
absorption coefficient at any given frequency changes significantly
due to physical density variations or the velocity gradient. The
model photon is followed until it escapes from the region or until
its weight is small enough to be insignificant. A new model photon
is then emitted.
When all model photons have been emitted and followed,
we can adjust the level populations in the different boxes, using
the common equation of statistical equilibrium:

Slu,m ul ¢( )Blu 0 {1 —€Xp (_Tl)}'

®)

Stu,m' =

B 4 (1) B, {l-ep(-w)}.  ©

{B'" § 7 10v,m) ¢ () dvdeo + c,,,}

=nu{ ,,,+ §j' I(v,n) ¢ (v)dvdow + C } @)
C,,and C,, are the rates of collisional excitations and deexcitations
per atom, respectively, and I(v,n) is the specific intensity at fre-
quency v in the direction n.

The first term within the brackets on the left-hand side of
Eq. (7) is the rate of radiation-induced excitations (absorptions)
per atom in the lower state. But this is the quantity that has been
accumulated in the counters ~ S, ,, for each box m —these counters
measure the number of absorptions per atom in the lower state
that have been caused by photons emitted during one second of time.
Similarly, the second term within the brackets on the right-hand
side is the rate of radiation-induced deexcitations (stimulated
emissions). Since
®

u

B l=& B,,
8u .
where g; and g, are the statistical weights of the two levels, this
second term can be replaced by (g;/g,) Z Sy, m-
The modified version of Eq. (7) then is

(€)

m {2 Slu,m + Clu} =n, {Aul +? z Slu,m + Cul} s

which can be solved using the additional condition that n,+n,
=constant.
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The new values of n, are used to revise N, in Eq. (1) for each
box. A new series of model photon emissions can now be started.
The XS, ,, counters can be emptied after each such iteration, but
it may be more advantageous to continue the accumulation in
these counters, since this will bring down the random noise.
Z Sy, m in Eq. (9) should in that case be replaced by X Sy, /A iters
where A, is the number of completed iterations. However, if
the initial estimates of the level populations were far off the mark,
the radiation field measured by the counters during the first
iterations was also far from being correct. It may in such cases
be advisable to empty the counters when the level populations
after a few iterations have been approximately stabilized, and
start over again with the new population values.

The expansion of this procedure to a multi-level case is
straightforward. Each radiative transition can be simulated sep-
arately by a number of model photon emissions. Alternatively,
some computing time may be saved by letting the model photons
represent the radiation in all of the transitions simultaneously —
only their weights and the contributions to the counters are then
calculated separately for each transition. Tests have shown that
this alternative can also give a lower random noise than the first
one mentioned. When all radiative transitions have been dealt
with in one way or the other, the level populations can be adjusted
with the use of a generalized form of Eq. (9), and the calculations
are then repeated through a number of iterations.

The computing time spent on solving the equations of statis-
tical equilibrium after each iteration is small compared to the
total time, as long as the number of involved energy levels is
reasonably limited. Hence, the increase with the number of radi-
ative transitions of the computing time necessary to achieve a
certain accuracy is approximately linear, or even slower if the
alternative procedure described in the previous paragraph is used.

The rate of convergence depends on two factors — (1) the
random noise inherent in the Monte Carlo technique and (2) the
iterative procedure. The iterations will rapidly bring the mean
values of the randomly fluctuating level populations near the
correct ones if the region is optically thin in all transitions, but
the convergence will be slower if the optical depth is great in any
transition. The minimum number of iterations that is necessary
for convergence is of the same order as the maximum optical
depth. This is due to the fact that the model photons cannot
carry information about the radiation field and excitation tem-
perature in any part of the region much farther than one optical
depth unit per iteration. It should be kept in mind, though, that
in typical cases most of the computing time is spent on following
the model photons. Thus, 100 iterations consisting of 100 model
photon emissions do not take much more time than 10 iterations
consisting of 1000 emissions, and the average result of a large
number of similar runs with different sets of random numbers
will be more correct in the former case than in the latter. On the
other hand, while the random noise is proportional to 1/)/ # pyer5
where Ay, is the number of model photon emissions during
each iteration, it decreases slower than 1/)/ A", even if the accu-
mulation in the counters is continued, since the results of con-
secutive iterations are not independent of each other. This means
that the noise will be greater in the former case as compared to
the latter. The noise may, however, in some cases be considerably
reduced, as described in Sect. 3.

- When one is satisfied with the convergence of the level popu-
lations, the spectrum of the radiation that leaves the region in
various directions can easily be calculated, since the source func-
tion is now considered to be known. The intensity Z,,,(v) of the

emitted radiation simply is
X

L, =L, exp { —t(X)} + [j(v,x) exp { —7(x)}dx. 10)
0o

Here, I,,(v) is the specific intensity of the background radiation,
7(x) is the optical depth from the near surface of the region to

. the position x along the ray under study, and X is the position

where the ray leaves the region on the far side. The emissivity
Jj(v,x) at x can be expressed as

JO0) =28 6 4)1, A n

where the index m(x) denotes the box containing position x.

3. A Variance-reducing Technique

There are several techniques for reducing the variance in Monte
Carlo calculations (see e. g. Hammersley and Handscomb, 1964),
and at least one of these, the method of control variates, can be
useful in the applications we study. (The variance is here defined
as a measure of the statistical fluctuations, or, to be more precise,
as the squared standard deviation of the results of similar calcu-
lations with different sets of random numbers.)

It is always desirable to minimize the importance of the
randomly fluctuating variables in a system simulated with a
Monte Carlo technique, and this is the essence of the control
variates method. It may thus be advantageous not to let the model
photons represent the radiation field itself, but rather the differ-
ence between the true field and a continuous radiation field. This
is the case for instance if the excitation temperature in an optically
thick transition varies only moderately throughout the region.
The radiation temperature T, of the “reference” field may then
be chosen as an approximate mean of the excitation temperature
in the region. Alternatively, one might use the excitation temper-
ature in those parts where the optical depth from the surface is '
near unity, i.e. where the line core is formed.

If a reference field is included, we must use the following
equation instead of Eq. (1) when determining the number of
model photons to be emitted in the various boxes:

NS = {"u —n, % exp (— hv,,,/kT,ef)}Auz . (12)
1

If T, exceeds the excitation temperature in a box, N3 will be
negative here, as will be the weight of the model photons emitted
within this box. Any difference between the true background radi-
ation field and the reference field must be represented by a number
of model photons entering the region from the outside; their
weight will be negative if 7., exceeds the radiation temperature
of the background radiation.

The weight, here called W, of a model photon must now
be considered as the difference between the weight W™ of a
model photon representing the true radiation field and the weight
W*et of one representing the reference field. The initial result of
an emission within the region is a model photon with weight
W = Wgme — Wyef. Egs. (1) and (12) give the following relation

- between Wg™e and WHf:

true
Ws

’ g |
— T —n,,/{n,,—n 2% exp (—hv,/kT, } 13
Wi 'g i lrer) 43)

Similar reasoning holds for the model photons entering from the
outside.
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Fig. 1. The excitation temperature (7,,) in the J=1—-0andJ=2—-1
CO transitions. The temperatures are plotted at positions (given
by the distance r from the cloud centre) halfway between the
inner and outer radii of the shell in question. The error bars
show the standard deviations of the individual results of the 10
similar runs that were made with different random numbers

During the first step, the weight Wdff(x) varies as W;™°
exp (—1,x/s;) — Wgf exp (—t,x/s,). ¢, is the optical depth along
the first step that would be obtained if the excitation temperature
were equal to T ¢, i.e.

h
tr= 2 G O) By, {1—€xD (—hvu/kT )}y (14)
Hence, we must replace Eq. (5) by the following equation:
By, s, [Wme
st=2 908 31 [ (1 -exp (- )
W:ei
— t° {l—exp(—tl)}]. 15)
1

Eq. (6) is changed in analogy to this.

The statistical equilibrium equation in the two-level case will be
1 [BB (Vs Trer) +Z St + Cuul

=n, [‘1.41 +§L {BiB(u>Te)+Z SE} + Cul] ) (16)
where B(v, T) is the Planck function.

It should be realized that this is a very simple application of
the control variates method, and thdt it may be possible to achieve
even better results with modifications of this and other variance-
reducing techniques.

4. The Monte Carlo Procedure Applied

Molecular line radiation in interstellar clouds is one obvious
field of study where the Monte Carlo procedure described in the
previous sections may be successfully used. The transfer of carbon
monoxide (CO) line radiation in static dark clouds has been
thoroughly treated by Leung and Liszt (1976), who used “con-
ventional” numerical techniques for a consistent non-LTE, multi-
level analysis. Similar methods were used by Lucas (1976) and
Leung and Brown (1977), who studied the effects of velocity
fields on CO line profiles. '

Here, the performance of the Monte Carlo procedure is in-
vestigated in a test case similar to those studied by Lucas. The
model is a spherical, homogeneous region with more or less
typical dark cloud characteristics: radius 3 10'® cm (~1 pc),
number density of hydrogen molecules 2 10% cm ~3, kinetic tem-
perature 20 K, and microturbulence 1 km s~!. The cloud is col-
lapsing with a velocity proportional to the distance from the
centre, being —1 km s™! at the periphery.

The number density of *2CO relative to the number density
of H, is taken to be 5 1075, The six lowest rotational levels are
included in the analysis. Collisions with H, and He are taken into
account, the number density of the latter being 209, of that of
H, . The collisional transition probabilities used are those calcu-
lated by Green and Thaddeus (1976).

The spherical cloud model is divided into 15 concentric shells,
that correspond to the general concept of boxes used in the pre-
vious sections. Tests have shown that this number of subdivisions
is quite sufficient for accurate calculations of the radiation in the
present model to be possible. The thickness of the shells is grad-
ually decreased towards the surface, in order to cover in detail
any excitation temperature variations in those outer parts of the
cloud where the shapes of the line cores are determined.

The 2.7 K microwave background radiation is represented by
model photons emitted at the cloud surface towards the interior -
and uniformly distributed in frequency over bands whose widths
are 7.5 km s™! in velocity units. Each of the bands covers a CO
line.

The step lengths of the model photons were chosen to bring
them from one shell boundary to the next along the path. How-
ever, the step length was not allowed to exceed 3 10*” cm (10%
of the cloud radius). Hence, the maximum difference of the sys-
tematic gas velocity (along the photon’s direction) between the
start and end points of one step was 0.1 km s~ !, which is about
109 of the Doppler width.

A few short, preliminary runs were used to determine ap-
proximate excitation temperatures (correct to within 1 or 2 K)
in the shells. These temperatures were then taken as initial values
in a run consisting of 40 iterations, each with 200 emissions of
model photons representing the radiation in all five radiative
transitions simultaneously. No reference field was included. The
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Fig. 2. Similar to Fig. 1, except that a reference radiation field
was included in the calculation of the excitation temperatures to
reduce the variance -

Z Sy, m counters were emptied after iteration no. 10, and then
again after iteration no. 20. The convergence achieved with this
procedure was considered to be satisfactory, since the systematic
differences between the results obtained with different choices of
the initial excitation temperatures were smaller than the random
noise. A total of 10 runs with the same initial excitation temper-
atures were made with different sets of random numbers, in order
to get an idea of the scatter in the results. Figure 1 shows the ob-
tained mean excitation temperatures for the transitions J=1—-0
and J=2-1 in the 15 shells, with error bars showing the standard
deviations of the individual values.

The whole procedure was then repeated with the variance-
reducing method applied. The radiation temperature of the refer-
ence field (17 K at the J=1-0 and J=2-1 transitions) was
chosen to minimize the energy carried by the model photons.
Mean excitation temperatures with standard deviations obtained
with 10 runs using the same initial excitation temperatures but
different random numbers are shown in Fig. 2. Figure 3 shows
the corresponding line profiles towards the cloud centre. These

Fig. 3. Profiles of the J=1—-0 and J=2-1 lines, based on the
excitation temperatures shown in Fig. 2. The radiation temper-
ature T,,4 is given as a function of the radial velocity v, relative
to the velocity of the cloud centre, as seen by an observer outside
the cloud. The error bars give the standard deviations of the
individual results of the 10 runs

profiles were calculated for each of the runs separately, and the
values in the figure are averages, with the standard deviations of
the individual results shown in those parts of the profiles where
they are large enough to be seen.

The line centre optical depth to the cloud centre is 6.0 and
15.5 in the J=1-0 and J=2-1 transitions respectively. Self-
reversals are visible in both of the line profiles. These are caused
by excitation temperature drops towards the cloud edges, where
the optical depths from the surface are of the order 1 and less.
However, the excitation temperature in the J=1—0 transition
does not fall very far below the kinetic temperature (20 K) where
the optical depth from the cloud surface is small, and it even rises
slightly in the outermost parts of the cloud. Hence, the self-re-
versal in the J=1-0 line profile is quite insignificant compared
to that in the J=2—1 profile. The reasons for these conditions
are the strong collisional coupling between the levels /=0 and
J=2 and the rapid spontaneous deexcitation from J=2 to J=1.
Near the boundary of the region, where the photons emitted in
the J=2-1 transition can escape from the cloud, this can lead
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to an increased J=1—0 excitation temperature (that may even
under some circumstances exceed the kinetic temperature). Leung
and Liszt (1976) describe this effect extensively.

As can be seen from Figs. 1 and 2, the standard deviations of
the excitation temperatures become quite significantly smaller
when the variance-reducing technique is included. In most parts
of the cloud, the deviations are reduced typically by a factor of
2.5 in the J=1-0 transition and a factor of 4 in the J=2-1
transition, corresponding to a reduction of the computing time
necessary to achieve a certain level of accuracy by factors of about
6 and 16, respectively. The better result in the latter case is due
to the higher optical depth in the J=2—1 transition — the con-
tinuous reference field is a better approximation to the true radi-
ation field in this case.

As might be expected, the reduction is smaller in the outer
parts of the cloud model, where the difference between the refer-
ence field and the true field is greater than in the interior. The
higher noise in those outer shells where the core of the J=2—-1
line is formed is reflected by the relatively high standard devia-
tions that can be found around frequencies corresponding to the
radial velocity +1 km s™! in the profile of this line.

A PDP 11/34 minicomputer with a 32 K memory but lacking
a floating-point processor was used to obtain these results. Each
run, during which 8000 model photons were emitted, took about
2.5 h. Much shorter computing times are possible with a faster
computer — many common computers and minicomputers
equipped with floating-point processors are a factor of 10-100
faster than the one used for these runs. For instance, the com-
puting time was reduced to 5 min when the program was run on
a CDC 6400.

The calculations described above were also carried out with
separate model photon emissions in the various transitions (i.e.
a total of 40,000 emissions during each run). In this case, how-
ever, the computing time was increased by about 759%, and the
random noise was almost doubled.

Lucas (1976) used Rybicki’s modification of the scheme de-
veloped by Feautrier to solve the radiative transfer equations.
In order to get a quantitative comparison with his results, the
Monte Carlo method was also applied to one of his models
(V,=1kms™*, nyg,=10° cm~3). The agreement between the re-
sults obtained with the two methods is very good over most parts
of the line profiles — the difference is 29; or less in the line cores.

If judged solely on the basis of the computing time needed to
achieve an accurate result, the Monte Carlo method cannot com-
pete with the conventional method used by Lucas in the simple
cases studied here. However, the simplicity and flexibility of the
Monte Carlo program, the possibility to use a very small computer
and the fact that an approximate solution can be calculated very
rapidly should also be taken into account. Furthermore, ‘the
relative efficiency of the Monte Carlo approach increases quickly
with the complexity of the investigated system, and this may well
turn out to be its most valuable asset.

5. Conclusions

There are several reasons why the Monte Carlo method applied
to radiative transfer problems should certainly not be disregarded
as being slow and inaccurate. As shown above, the method can
easily be used to solve non-LTE, multi-level problems under very
general conditions — for instance, the inclusion of a velocity field
of almost arbitrary scale and complexity can be accomplished
with little more than an additional statement function in the
program.

Since in general the number of steps that a model photon has
to take depends on the number of subdivisions (boxes or shells)
it crosses, the increase of the computing time necessary for a
given accuracy with the number of subdivisions of the region
under study is approximately linear. This, and the linear or slower
than linear increase of the computing time with the number of
transitions compares quite favourably with the properties of con-
ventional numerical methods. Furthermore, no frequency or
angular discretization is needed.

The Monte Carlo method is especially well suited for studies
of the transfer of line radiation in stellar envelopes and interstellar
clouds, where its ability to treat inhomogeneities and complex
geometries is very useful. Difficulties will arise only if the optical
depth is great — a rough practical upper limit of 7 is 100.

Due to the square-root convergence that is unavoidable with
this procedure, any method for reducing the variance will be of
great value. It is shown that the control variates technique may
be applied with considerable success, cutting down computing
times typically by an order of magnitude in the calculation of CO
line profiles in the dark cloud model that is discussed above. With
this technique it was possible to reach a 19 or better accuracy
in the calculated line profiles with a very reasonable amount of
computing time. ’
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Appendix

Pseudo-random numbers, uniformly distributed between 0 and
1, were obtained with the following algorithm:

S, =16807 S, _, (mod 2147483647), (A1)

(A2)

R, is the n:th random number, and S, is an integer “‘seed”.
This pseudo-random number generator has been thoroughly
tested by Lewis et al. (1969) and Holmlid and Rynefors (1978)
and found to be satisfactory.

A uniform distribution between 0 and 1 of random numbers
can be converted to other distributions with standard techniques
described in any textbook on Monte Carlo methods, such as
Hammersley and Handscomb (1964). With the formulae below
those distributions that were needed for the present problem
were obtained.

R,=S,/2147483647.

Av=0 sin 2nR) (~In RYP+v()n 22,

The following relation was used to select the distances r from
the cloud centre where the model photon emissions took place:

r= {rrsn, inner +R (r?n, outer — 7,3", inner)}1/3' (A3)

Here, and below, R is a random number between 0 and 1 (ob-
viously, a new random number was generated with Egs. (A1) and
(A2) whenever any of the formulae in this appendix was used to as-
sign a value to a parameter). 7,, ;nner a0d 7y ourer are the inner and
outer radii of the shell m where the model photon in question
was emitted.

The isotropic distribution of the directions of those photons
that were emitted within the cloud was achieved by assigning
values to u, the cosine of the angle between the photon direction
and the outward radial direction, with

p=1-2R. (Ad)

The distribution of frequency deviations, i.e. the Doppler
profile ¢ (v), was simulated by means of Eq. (A5) below:

(AS5)

R and R’ are two independent random numbers between 0 and 1,
and v(r) is the velocity in the outward radial direction of the gas
at distance r from the cloud centre.

A correct distribution of u for those model photons that
entered the cloud from the outside was obtained with

w=—VR.

(A6)
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