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ABSTRACT
Radiative pressure exerted by line interactions is a prominent driver of outflows in astrophysi-
cal systems, being at work in the outflows emerging from hot stars or from the accretion discs
of cataclysmic variables, massive young stars and active galactic nuclei. In this work, a new
radiation hydrodynamical approach to model line-driven hot-star winds is presented. By cou-
pling a Monte Carlo radiative transfer scheme with a finite-volume fluid dynamical method,
line-driven mass outflows may be modelled self-consistently, benefiting from the advantages
of Monte Carlo techniques in treating multi-line effects, such as multiple scatterings, and
in dealing with arbitrary multidimensional configurations. In this work, we introduce our ap-
proach in detail by highlighting the key numerical techniques and verifying their operation in a
number of simplified applications, specifically in a series of self-consistent, one-dimensional,
Sobolev-type, hot-star wind calculations. The utility and accuracy of our approach is demon-
strated by comparing the obtained results with the predictions of various formulations of the
so-called CAK theory and by confronting the calculations with modern sophisticated tech-
niques of predicting the wind structure. Using these calculations, we also point out some
useful diagnostic capabilities our approach provides. Finally we discuss some of the current
limitations of our method, some possible extensions and potential future applications.
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1 INTRODUCTION

Predicting massive star evolution is dramatically complicated by
the presence of powerful winds, constituting an important mass-
loss mechanism (see, for example, overview in Kudritzki & Puls
2000). The evolutionary timescales of the star and its luminosity
are, for example, significantly affected by this continuous mass
loss. In addition to influencing the stars themselves, these winds
also affect their environments by injecting energy and momentum
into the interstellar medium and supplying chemically enriched ma-
terial. For a detailed study of all these processes and effects a firm
understanding of the mechanisms driving stellar winds is required.

In the case of hot O and B stars, the main driver for the mass
outflow has been identified as the momentum transfer mediated
by a multitude of atomic line interactions of the radiation field
in the wind material (Lucy & Solomon 1970; Castor et al. 1975).
Over the years, this picture has been significantly refined and a
“standard model” (see, for example, review by Puls et al. 2008)
for line-driven winds has emerged, with important contributions
from Castor et al. (1975); Pauldrach et al. (1986); Kudritzki et al.
(1989). With the inclusion of multi-line effects, in particular by
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Vink et al. (2000), this model has become very successful in de-
scribing hot-star winds and predicting their properties. However,
observational diagnostics have identified a number of puzzles
that challenge this “standard model” (see again Puls et al. 2008).
Among these, the so-called clumping problem takes a prominent
role. Contrary to the assumptions of the “standard model”, hot-
star winds seem to exhibit strong temporal and spatial variabil-
ity. Intense effort has been invested into understanding the prop-
erties and the nature of these clumpy outflows, both from an ob-
servational and theoretical viewpoint. In light of these efforts, we
have developed a new radiation hydrodynamical approach to nu-
merically model line-driven mass outflows self-consistently. Due
to its reliance on Monte Carlo radiative transfer techniques, this ap-
proach should be well-suited for time-dependent and multidimen-
sional self-consistent studies of hot-star winds. In previous works,
a Monte Carlo radiative transfer scheme has already been suc-
cessfully coupled with a fluid dynamical method, resulting in the
radiation hydrodynamical approach MCRH (Noebauer et al. 2012;
Noebauer 2014). In this study we present extensions to MCRH and
demonstrate the utility of this method for the investigation of line-
driven winds. This work has been partially carried out during the
PhD project of Noebauer (2014).

The presentation of our approach is structured as follows: in
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2 Noebauer et al.

Section 2, we briefly recapitulate some basic concepts of hot-star
winds and outline different solution strategies to address this prob-
lem. We also highlight the advantages of Monte Carlo radiative
transfer techniques for the study of line-driven mass outflows. We
continue with a detailed description of the numerical techniques
relevant for our approach in Section 3. In Section 4, we present a
series of simple wind simulations to test our approach and in Sec-
tion 5, we confront our method with an alternative, modern and
sophisticated technique of predicting the wind structure. The ob-
tained results and potential future improvements of our method are
discussed in detail in Section 6.

2 THEORY

2.1 Solving the stationary hot-star wind problem

Numerous techniques and approaches have been used to solve for
the structure of hot-star line-driven winds and derive their prin-
ciple properties. Many of these share the common feature of ad-
dressing the problem in a “radiation-hydrostatics” fashion. By as-
suming that the mass outflow is smooth, spherically-symmetric
and in a stationary state, the wind structure may be derived from
global energy conservation considerations (e.g. Abbott & Lucy
1985, Lucy & Abbott 1993, Sim 2004) or by solving the mo-
mentum equation alone (e.g. Castor et al. 1975, Pauldrach et al.
1986, Kudritzki et al. 1989). If included, inhomogeneities in the
mass outflow, i.e. clumps, are typically incorporated in a parame-
terised fashion, for example, by introducing a clumping factor (e.g.
Schmutz 1997; Hamann & Koesterke 1998). In the simplified, sta-
tionary situation, the momentum equation reduces to

u
du
dr

+
1
ρ
dP
dr

+
GM⋆

r2
= grad, (1)

after introducing the wind velocity u, its density ρ, the thermo-
dynamic pressure P , the stellar mass M⋆ and the radiative accel-
eration grad. Solving this equation is still very challenging, since
the bulk of the radiative acceleration derives from the momentum
transfer mediated by interactions of the radiation field emitted by
the central star with a large number of atomic line transitions. The
contribution due to Thomson scattering may be taken into account
by reducing the stellar mass in the gravity term by a factor (1−Γe),
using the Eddington factor with respect to electron scattering, Γe.

Various approaches have been used to calculate the line-
driving force. We briefly sketch the basic principle of the so-called
Castor–Abbott–Klein (CAK) theory (after Castor et al. 1975; see in
particular Abbott 1982, Pauldrach et al. 1986, Kudritzki et al. 1989
for improvements of the original approach) since it will be used for
comparison in this work. Castor et al. (1975) found an approximate
analytic expression for the line-driving force. In particular, the line-
driving force is expressed as a multiple of the electron-scattering
contribution and this so-called force-multiplier is approximated by
a power-law parameterisation. Given this form of the radiative ac-
celeration, an analytic solution to the momentum equation may be
identified. By performing a critical point analysis, the wind velocity
is found to follow a β-type law

u(r) = u∞

(

1−
R⋆

r

)β

(2)

with β = 0.5 in the original CAK case of Castor et al. (1975), in
which the central star is assumed to radiate like a point source and
with β ≈ 0.8 if the finite extent of the star is taken into account
(see Pauldrach et al. 1986; Kudritzki et al. 1989). Throughout this

work, we reference this improved formulation of the CAK approach
as MCAK (“Modified-CAK”). The mass-loss rate of the wind scales
as

Ṁ ∝ C(α)(kL⋆)
1

α [M⋆(1− Γe)]
1− 1

α . (3)

In addition to the stellar parameters (luminosity L⋆, photospheric
radius R⋆ and central mass M⋆), the parameters of the power-law
fit, k and α, appear. The functional form of the coefficient C(α) dif-
fers slightly between the CAK and MCAK approaches. More details
about C(α) and the CAK/MCAK methods, as used in this work, are
provided in Appendix A.

A significant advantage of these radiation-hydrostatic tech-
niques lies in the analytic expressions for the wind structure they
either provide or in the possibility to efficiently solve the prob-
lem numerically (see, e.g., Abbott & Lucy 1985; Pauldrach et al.
1994; Vink et al. 1999; Puls et al. 2005), even if more sophisticated
treatments of the line-driving force are included. In both cases,
wind models may be constructed for entire grids of different stel-
lar parameters (e.g. Abbott 1982; Vink et al. 2000; Puls et al. 2005;
Muijres et al. 2012). A drawback lies in the omission of a self-
consistent treatment of temporal and spatial variations in the wind
flow.

2.2 A dynamical approach

To account for, follow and solve the temporal and spatial vari-
ability of stellar winds, the full radiation hydrodynamical problem
the radiatively-driven mass outflow constitutes has to be addressed
(e.g. Owocki et al. 1988; Feldmeier 1995; Feldmeier et al. 1997;
Dessart & Owocki 2003; Dessart 2004; Dessart & Owocki 2005).
In such an approach, a numerical solution to the full radiation hy-
drodynamical equations describing the conservation of mass, mo-
mentum and energy has to be formulated. In contrast to a pure
hydrodynamical problem, the energy and momentum transfer be-
tween the radiation field and the fluid material are included. These
terms are found by solving the co-evolution of the radiation field
in parallel. However, due to the complexity of the full radiation hy-
drodynamical problem, a simplified treatment of the radiation field
and radiative transfer is typically adopted (c.f. Owocki et al. 1988;
Feldmeier 1995; Dessart & Owocki 2003). The radiation hydrody-
namical equations are given in Appendix B in the form in which
they are used in this study.

In this work we propose a new numerical approach to per-
form such dynamical self-consistent simulations of hot-star winds.
The distinguishing feature of our method is the incorporation of
Monte Carlo radiative transfer techniques. In particular, we build
upon the general-purpose Monte Carlo radiation hydrodynamics
scheme MCRH, developed by Noebauer et al. (2012); Noebauer
(2014) and adapt it to the line-driven wind environment. Other
Monte Carlo-based radiation hydrodynamical techniques have
been developed by Nayakshin et al. (2009), Acreman et al. (2010),
Haworth & Harries (2012) and most recently by Roth & Kasen
(2015), who place a particular emphasis on the incorporation of
implicit Monte Carlo methods (see Fleck & Cummings 1971), and
by Harries (2015).

2.3 Advantages of Monte Carlo techniques

Monte Carlo techniques have become established as a competitive
and successful numerical approach to solve radiative transfer prob-
lems due to the increasing availability of computational resources
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and the more and more levels of sophistication added to the for-
malism (see specifically, Abbott & Lucy 1985, Lucy 1999a, Lucy
2002, Lucy 2003, Carciofi & Bjorkman 2006). The appeal of us-
ing Monte Carlo techniques derives from their advantages in treat-
ing interaction physics (see, for example, Pozdnyakov et al. 1983
for Monte Carlo calculations of comptonisation or Kasen et al.
2006 and Kromer & Sim 2009, for presentations of fully-fledged
three-dimensional Monte Carlo codes to solve multi-frequency ra-
diative transfer in Type Ia supernova ejecta) and from the ease
with which arbitrary geometrical configurations are treated (see,
for example, Camps et al. 2013, describing a Monte Carlo radia-
tive transfer scheme on a Voronoi mesh). These advantages all de-
rive from the microscopic viewpoint that Monte Carlo techniques
take by solving the propagation history of a large number of rep-
resentative photons probabilistically. They are very relevant for the
study of hot-star winds, in which a multitude of atomic line inter-
actions are the main driver, multiple scatterings frequently occur
and a clumpy irregular structure of the mass outflow is expected.
Thus, Monte Carlo techniques have been frequently used to ad-
dress the radiative transfer problem in hot-star winds, for example
by Abbott & Lucy (1985), Lucy & Abbott (1993), Schmutz (1997)
Vink et al. (1999), Vink et al. (2000), Sim (2004), Müller & Vink
(2008), Muijres et al. (2012), Šurlan et al. (2012).

In this work, we aim at exploiting the advantages of Monte
Carlo techniques for solving the line-driving problem in a dynam-
ical and self-consistent approach by using a Monte Carlo radiation
hydrodynamical technique. This strategy distinguishes itself form
previous Monte Carlo-based investigations by its treatment of the
coupled co-evolution of the radiation–wind state. Moreover, the ra-
diative acceleration is determined locally, which sets us apart from
some earlier Monte Carlo-based studies, such as Abbott & Lucy
(1985), Lucy & Abbott (1993), Vink et al. (1999) and Sim (2004),
in which the momentum transfer onto the wind material was de-
rived from global considerations without insisting on local con-
sistency (however, see Müller & Vink 2008, for developments to-
wards a consistent local force balance in Monte Carlo-based ap-
proaches).

3 NUMERICAL METHODS

In order to adequately address the radiation–matter coupling prob-
lem in the stellar wind environment, we have extended our numeri-
cal framework whose underlying methodology and first implemen-
tation has been described in Noebauer et al. (2012). In the follow-
ing, the basic principles of our approach are briefly recalled and the
new extensions described in detail.

3.1 Basic operator-split approach

In our approach, a simple operator-splitting scheme is employed,
coupling a time-dependent Monte Carlo radiative transfer simula-
tion with a finite-volume fluid dynamical calculation. In the latter,
the piecewise parabolic method (PPM, Colella & Woodward 1984)
is used to construct a series of Riemann problems at the interfaces
of the computational domain, which are solved with a standard Rie-
mann solver (HLLC, see Toro et al. 1994; Batten et al. 1997) to de-
termine the mass, energy and momentum flux through the inter-
faces and eventually the evolution of these conserved quantities in
the cells. In the following radiative transfer step, a Monte Carlo
simulation is performed to determine the evolution of the radiation
field and reconstruct the energy and momentum transfer between

the radiation field and the fluid material. In the final step of the
splitting approach, the momentum and energy of the fluid are al-
tered in accordance with these transfer terms.

This basic outline of the numerical scheme remains valid for
the stellar wind applications. Alterations and extensions of the
scheme only concern the inclusion of additional physical effects or
adopted simplifications that are relevant for an adequate treatment
of the stellar wind environment. In particular, the gravitational field
originating from the central star is taken into account, an isother-
mal treatment of fluid dynamics is adopted and the radiative trans-
fer scheme is generalised to incorporate frequency-dependent res-
onant line interactions. These alterations are systematically intro-
duced and presented in detail in the following sections.

3.2 Isothermal hydrodynamics and gravity

In this work, we reduce the complexity of the hydrodynamical cal-
culations in our modelling approach of hot-star winds by adopting
an isothermal approximation. This simplification, which has been
used in numerous investigations of line-driven hot-star winds (e.g.
Abbott 1982; Abbott & Lucy 1985; Owocki et al. 1988; Vink et al.
1999, 2000; Sim 2004), is justified by the continuous irradiation of
the wind material by the central star, which together with a char-
acteristic cooling time scale that is faster than the flow time scale
sustains the wind material roughly at the effective temperature of
the star (Klein & Castor 1978). In the isothermal approximation,
only the mass and momentum conservation equations have to be
addressed in the fluid dynamical calculation. With the equation of
state of an isothermal flow directly connecting the fluid density and
pressure

P = a2
isoρ, (4)

a solution of the energy conservation equation is not required. In
the case of an ideal gas with constant temperature Tiso and mean
molecular weight µ, the isothermal sound speed aiso is

aiso =

√

kBTiso

µ
. (5)

We modify the fluid dynamical solution procedure in the
isothermal version of MCRH by reconstructing only the primitive
variables density and the velocity. Using the isothermal equation
of state, the pressure may be directly determined and the Riemann
problems at the cell interfaces solved. Here, we use a particular
version of the HLLC Riemann solver, adopted from the ATHENA
code1 (Stone et al. 2008), which is tailored to the particular form
of the simple waves in isothermal flows.

An important contribution to the momentum balance in hot-
star winds derives from the gravitational pull exerted by the central
object

g = −
GM⋆

r2
. (6)

Following Colella & Woodward (1984), we incorporate the effect
of the star’s gravitational pull into the isothermal fluid dynami-
cal calculation by accounting for the additional momentum density
contribution

∆pn =
1
2
∆t(ρngn + ρn+1gn+1), (7)

1 The source code of this finite-volume magneto-hydrodynamical code
may be obtained from https://trac.princeton.edu/Athena/.
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in the final determination of the new fluid dynamical state at the
end of the splitting step. Here, the superscripts n and n + 1 mark
quantities at the beginning and the end of a time step with length
∆t = tn+1 − tn.

3.3 Monte Carlo principles

At the heart of the Monte Carlo radiative transfer machinery lies the
discretization of the radiation field into a large number of quanta,
so called packets, which are launched into the computational do-
main. In a series of random number experiments, the packets de-
scribe radiation–matter interactions and the temporal evolution of
the radiation field. The basic layout of our Monte Carlo method has
already been presented in detail in Noebauer et al. (2012). Here, we
only recall some important aspects and dedicate the bulk of the pre-
sentation to the additions related to the frequency-dependent calcu-
lation.

3.4 Discretization, initialization and propagation

We adopt the indivisible energy packet scheme of Abbott & Lucy
(1985) and Lucy (1999a). Thus, Monte Carlo packets are inter-
preted primarily as parcels of radiative energy. To model the con-
tinuous illumination of the outflowing material by the central star,
a number of packets are injected into the computational domain
through the lower boundary in each radiative transfer step, Assum-
ing that the star radiates as a black body with effective temperature
Teff ,

Ninject =
4πR2

⋆σRT
4
eff∆t

ε
(8)

new packets, each with energy ε, are launched from the inner
boundary (located at R⋆) during a time step of length ∆t. Neglect-
ing any limb-darkening effect, the initial propagation direction of
these packets follows

µ =
√
z. (9)

Here and in the following, µ denotes the cosine of the directional
angle between the trajectory and the symmetry axis and z repre-
sents a random number, uniformly drawn from the interval [0, 1].
The frequency assignment of the packets is chosen to reflect the
Planck function2

B(ν, T ) =
2hν3

c2
1

ehν/kBT − 1
. (10)

This frequency assignment is adopted for this current study for sim-
plicity and convenience. Sampling a realistic atmosphere model,
however, does not pose a conceptual or implementation challenge
(see, e.g., Abbott & Lucy 1985).

After determining the initial properties of the packets, they
are launched and initiate the propagation process. As detailed in
Noebauer et al. (2012), we follow a mixed-frame approach and
perform the packet propagation procedure in the lab frame (LF)
in which the computational grid is defined. However, all interac-
tion processes are treated in the local co-moving frame (CMF),
in which the fluid is at rest and where the material functions

2 See for example Carter & Cashwell (1975), for an efficient algorithm to
sample this function.

take convenient forms. Transformation rules relate quantities be-
tween these two frames. These are derived in detail, for ex-
ample, in Mihalas & Mihalas (1984) and are listed partially in
Noebauer et al. (2012).

During their propagation, packets interact whenever they have
covered a pathlength equivalent to the optical depth

τ = − ln z, (11)

which is determined for every packet in a random number experi-
ment. The procedure with which the nature of the interaction event
is determined is presented in the next section. Once the details of
the interaction process are established, the packet properties are up-
dated accordingly. We highlight the case of line interactions, which
we treat as resonant scatterings in the Sobolev approximation (af-
ter Sobolev 1960; see also, for example, Lamers & Cassinelli 1999
for a summary of this approximation and Pauldrach et al. 1986 for
a discussion of its applicability to hot-star winds). In this case, the
packet is assigned a new propagation direction in the CMF accord-
ing to the Sobolev escape probability

p(µ) ∝
1− exp(−τs)

τs
. (12)

Here, τs denotes the Sobolev optical depth, which will be explicitly
introduced in Section 3.7 and which depends on the direction of the
photon trajectory. The changes in the LF frequency and energy of
the packet follow from the Doppler effect and from energy con-
servation in the CMF. Assuming that the process of sampling the
Sobolev escape probability returned the CMF propagation direc-
tion µa

0 and accounting for the appropriate transformation laws, the
resonant line scattering process results in the new packet quantities:

µa =
µa
0 + β

1 + βµa
0

, (13)

εa = γ2(1− βµb)(1 + βµa
0)ε

b, (14)

νa = γ2(1− βµb)(1 + βµa
0)ν

b. (15)

Here and in the following, a subscribed “0” denotes CMF quanti-
ties and the superscripts b and a distinguish packet properties be-
fore and after the interaction process. Moreover, the standard no-
tation of special relativity is adopted, introducing β = u/c and
γ = 1/

√

1− β2. Above and in the following we keep full account
of the relativistic terms and only in the final expression reduce the
accuracy to O(u/c), which is appropriate for modelling hot-star
winds.

In addition to the physical radiation–matter interactions, pack-
ets also experience so-called numerical events due to the spatial
and temporal discretization of the computational domain. When a
packet intercepts a grid cell boundary, some packet properties, such
as the optical depth distance to the next interaction, have to be re-
determined to be compatible with the physical conditions in the
target cell. At the end of the time step, the trajectories of all re-
maining packets are interrupted and their properties stored to allow
them to resume their propagation during the next simulation cycle.

3.5 Optical depth summation

The sole purpose of the packet propagation process lies in the de-
termination of packet interaction histories from which the radiation
field characteristics can be reconstructed. For the stellar wind ap-
plication, this concerns primarily the line-driving force. Crucial for
the determination of the packet trajectories is the decision about
where and how the packets interact. As already mentioned, pack-
ets experience physical radiation–matter interactions after having
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accumulated an integrated optical depth equal to the random num-
ber experiment outcome (11). For the current work, the wealth of
possible interaction processes has been restricted to include only
frequency-dependent bound-bound processes, which we treat as
resonant scatterings in the Sobolev limit (see previous section). All
continuum processes are neglected, apart from Thomson scatter-
ing, which is incorporated approximately by reducing the mass of
the central star as outlined in Section 2.1.

Once a packet interacts, the location of this event in optical
depth space has to be translated into a physical position within the
computational domain. This procedure is trivial in the grey case,
since optical depth and pathlength only differ by the opacity, a
constant multiplicative factor in the CMF, but complicated in the
presence of frequency-dependent processes. We adopt a simplified
version of the technique of Mazzali & Lucy (1993) to locate the
line-interaction events packets perform. On its trajectory, a packet
propagates freely to the Sobolev point of the next line with which it
comes into resonance. Each time such a resonance point is reached,
the optical depth is incremented by the full line optical depth of
the corresponding transition. The packet undergoes an interaction
once the value drawn in (11) is surpassed by the optical depth ac-
cumulated. If this occurs during the instantaneous increases at one
of the Sobolev points, the packet undergoes a resonant line inter-
action, otherwise it may leave the current grid cell uninterrupted.
This procedure may be easily extended to include additional inter-
action types, in particular frequency-independent processes, such
as Thomson scatterings (see Mazzali & Lucy 1993), but for the cur-
rent work we have omitted to do so.

3.6 Monte Carlo estimators

In reconstructing the radiation field characteristics from the ensem-
ble of packet interaction histories, we follow the volume-averaged
estimator approach proposed by Lucy (1999a) and refined by Lucy
(2003, 2005). This formalism aims at reducing the statistical fluc-
tuations inherent to the Monte Carlo approach by increasing the
number of contributions to the packet census. For the case of
frequency-independent processes being the only interaction chan-
nel, adequate estimators have already been derived and presented
by Noebauer et al. (2012) and similarly by Roth & Kasen (2015).

To determine the radiative acceleration due to spectral line in-
teractions, we consider the momentum transferred in such an event.
Assuming that these interactions occur as resonant scatterings, a
packet transfers

∆p =
εb

c

[

µb − γ2(µa
0 + β)(1− βµb)

]

(16)

momentum onto the material. Estimators for the radiation force can
be obtained by summing over the transfer terms of all interacting
packets. To reduce the statistical fluctuations in these estimators
we follow the suggestion of Lucy (1999b) and include all packets
that come into resonance with a line and weight their contributions
with the corresponding interaction probability given by (1−e−τs ).
Taking the forward-backward symmetry of the re-emission into ac-
count, thus cancelling all terms that are of odd power in µa

0, the
following estimator for the radiation force [c.f. Equation (B5)] due
to line interactions are obtained:

G1
line =

1
∆V c∆t

∑

(1− e−τs)ε(µ− β). (17)

Here, the volume of a grid cell, ∆V appears. The superscript b

has been dropped and only terms of O(u/c) have been retained.

Using this estimator, the radiation force is calculated and the fluid
momentum updated in the final splitting step.

3.7 Ionization and level population

The strength of the different line transitions, as encoded in the
corresponding values for the Sobolev optical depth, τs, depends
on the excitation and ionisation balance in the wind. Thus, the
Monte Carlo radiative transfer routine requires a separate calcula-
tion step which determines the ionisation and the level population
in each cell of the computational grid. In this first study, we fol-
low Abbott & Lucy (1985), Vink et al. (1999) and Sim (2004) and
adopt an approximate non-LTE treatment. We stress, however, that
nothing in our radiative transfer or hydrodynamics formalism re-
quires these approximations. A full, non-LTE scheme for calculat-
ing ionisation and excitation states could be incorporated following
the methods described by Lucy (2003, see Section 6.3).

Following our simplified strategy, we determine the ionisation
balance by applying the modified nebular approximation (see, e.g.
Mazzali & Lucy 1993),

Nj+1

Nj
=

(

Ne

W

)−1

× [ζj +W (1− ζj)]

√

Te

TR

(

Nj+1Ne

Nj

)∗

TR

. (18)

This expression relates the number densities of two successive ion
stages, Nj , Nj+1 with the electron number density Ne. Compared
to a pure LTE calculation based on the Saha equation, whose results
are denoted by the asterisks, modifications due to the dilution of
the radiation field and due to recombination effects are taken into
account. As a consequence, the dilution factor W , the ratio of the
electron and radiation temperatures, Te and TR, and the fraction
ζj of recombination processes going directly to the ground state
appear in the above formulation.

In the determination of the level population, we again follow
Abbott & Lucy (1985) and identify levels with no permitted elec-
tromagnetic dipole transitions to lower energy levels as metastable;
these levels are assumed to obey Boltzmann statistics

(

ni

n1

)

=

(

ni

n1

)∗

TR

, (19)

with “1” denoting the ground state. For all other levels, the effect
of radiative processes on the level population is crudely taken into
account by including a dilution factor (see Vink et al. 1999; Sim
2004)

(

ni

n1

)

= W

(

ni

n1

)∗

TR

. (20)

For the current work, we do not solve Equation (18) iteratively
to determine the ionisation state. Instead, we use a predefined char-
acteristic electron density Ne/W and calculate the ionisation ac-
cordingly (see, e.g. Abbott 1982, for a comparable strategy) in all
our wind simulations. Also, the radiation temperature is treated in
a simple fashion according to the prescription

TR = Te = Teff (21)

rather than relying on predictions of realistic atmosphere models.
With the excitation and ionisation balance accessible through

Equations (18), (19) and (20) in each cell of the computational
grid, the Sobolev optical depth of a line transition encountered on a
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u

i− 2 i− 1 i i+ 1 i+ 2

Figure 1. Illustration of the linear interpolation scheme to ensure continuity
in the CMF packet frequency. The grid cell boundaries are treated as loca-
tions where the fluid velocity and thus the CMF frequency is known at all
times. The fluid flow speed there is obtained by linear interpolation (dashed
line) between the volume-averaged values of the finite-volume scheme. The
velocity in the grid cells is then obtained by another linear interpolation step
between the boundary values (solid blue line).

packet trajectory along the direction µ may be calculated according
to

τs =
c
ν0

(κlρ)rs
[

(1− µ2)ur + µ2 du
dr

]

rs

, (22)

κlρ =
πe2

mec
flnl

(

1−
nu

nl

gl
gu

)

. (23)

Here, ν0 denotes the rest frame frequency of the transition and fl
its oscillator strength. Also, the statistical weights gl,u associated
with the lower and upper energy levels connected by the transition
and the electron charge and mass, e and me, appear. Finally, we
stress again that the above expressions only depend on the phys-
ical conditions at the Sobolev point, an essential feature which is
highlighted by the subscribed rs.

3.8 Velocity interpolation

As photons propagate through the wind material, their CMF fre-
quency is continuously Doppler-shifted by the varying wind veloc-
ity. To reproduce this behaviour in the Monte Carlo simulation, an
interpolation scheme is required to reconstruct the evolution of the
wind velocity within the computational grid cells. For the current
work, we do not expect the formation of shocks but the presence of
a smoothly varying velocity field. Thus, in constructing the algo-
rithm, an artificial introduction of discontinuous jumps in the inter-
polated wind velocity should be avoided: otherwise, packets may
skip frequency regions which may be populated by line transitions.
We prevent this by devising an interpolation scheme that insists on
continuity in the reconstructed wind velocity at the interfaces be-
tween grid cells. First, the velocity at the interfaces are determined
by linear interpolation between the cell-averaged values provided
by the finite-volume fluid dynamical calculation. The interface val-
ues are then used in a second linear interpolation step to determine
the evolution of the wind velocity within the cell. Figure 1 graphi-
cally illustrates this procedure.

Similarly to the spatial considerations, care has be taken when
packets reach the end of the time step. In order to ensure consis-
tency in the CMF frequency between successive time steps, the ve-
locity is also interpolated linearly in time between the results of two

preceding fluid dynamical splitting steps. Otherwise the changes of
the fluid velocity due to fluid dynamics and the radiation–matter
coupling could introduce discontinuous jumps in the CMF fre-
quency.

3.9 Boundary conditions

In the hot-star wind calculations, the inner boundary of the compu-
tational domain is set to the stellar surface, R⋆. So-called ghost
cells, which are required for the fluid dynamical reconstruction
step at the domain boundaries, are inserted below this radius. The
fluid state in these inner ghost cells is found by using a tempo-
rally constant hydrostatic density stratification and by extrapolat-
ing the velocity field from the innermost region of the domain into
the ghost cells using a low-order polynomial. For most wind cal-
culations presented in this work, the hydrostatic profile has been
normalised (arbitrarily) to ρ0 = 10−11 g cm−3. However, no sig-
nificant changes in the calculated wind structure was found if this
value was modestly varied. In the future, predictions from atmo-
spheric models may be used for this process instead. With the wind
density fixed but the possibility of the velocity in the ghost cells
to float, the mass flow through the boundary may quickly adjust it-
self to the conditions in the wind. This situation closely resembles
the boundary conditions presented by Owocki et al. (1988) for their
time-dependent studies.

As detailed in Section 3.4, the inner edge of the domain con-
stitutes an inflow boundary for the radiation field. Any Monte Carlo
packet that is back-scattered through the inner boundary is dis-
carded from the ensuing propagation process.

The outer edge of the computational domain is transparent to
the radiation field. All escaping packets are recorded to construct
spectra or other diagnostics during the postprocessing steps. Re-
garding the fluid state, the outer boundary simulates the outflow of
wind material. To this end, the values for the fluid variables in the
ghost cells are found by extrapolating the wind flow. To minimise
the effect of stochastic fluctuations introduced by the Monte Carlo
radiative transfer step, a linear regression scheme is used.

This outline of the boundary treatment concludes the descrip-
tion of the numerical techniques which are relevant for this study
and which have been added to MCRH. The performance of all these
extensions has been verified in a series of test calculations. A de-
tailed description of this procedure and the different test problems
used during this process may be found in Noebauer (2014).

4 HOT-STARWIND TEST CALCULATIONS

We now aim at demonstrating the capability of our approach to
self-consistently solve the line-driving problem in hot-star winds
by considering an idealised representation of the problem. Specif-
ically, we test the basic accuracy of our method by exploring
whether it produces results compatible with the CAK and MCAK
theory when comparable assumptions about the physical effects at
work are adopted (smooth flow, Sobolev approximation, etc.). At
the same time, we investigate how these simple calculations com-
pare with simulations in which the full details as outlined in Section
3 are incorporated. Consequently, this series of wind simulations,
constitutes the basic testing and validation step before we confront
our method with the technique of Müller & Vink (2008) in Section
5. Finally, in Section 6, we discuss how some of the simplifications
and approximations adopted in the current work may be relaxed and
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Table 1. Overview of all chemical elements, that are taken into account in
our wind calculations. For each species, the included ionisation stages are
listed as well.

Element Ions Element Ions
H I,II He I-III
C I-IV N I-VI
O I-VI F I-VI
Ne I-VI Na I-VI
Mg I-VI Al I-VI
Si I-VI P I-VI
S I-VI Cl I-V

Ar I-V K I-V
Ca I-VI Ti I-VI
Cr I-VI Mn I-VI
Fe I-VI Co I-VI
Ni I-VI

Table 2. Properties of ζ-Puppis according to Puls et al. (1996). We adopt
these stellar parameters in our wind test calculations.

Parameter Value
M⋆ 52.5M⊙

L⋆ 106L⊙

Teff 4.2× 104 K

a more realistic description of the line-driving problem be achieved
within our numerical framework in the future.

4.1 Atomic data

In all wind calculations, we assume that the material has solar com-
position. We include the elements listed in Table 1 and adopt the
corresponding abundances of Asplund et al. (2009). Table 1 also
identifies the ionisation stages that are taken into account for each
element. Information about the atomic structure and the line tran-
sitions in these ions are taken from the same database used in the
study of colliding winds by Parkin & Sim (2013), which is based
on the Kurucz & Bell (1995) atomic data set. To reduce the com-
putational effort in the Monte Carlo radiative transfer steps, we do
not account for all line transitions recorded in the data set, but only
those with log gf > −6. We have explicitly verified that the inclu-
sion of more weak lines does not affect the outcome of our simula-
tions. When required, the recombination fractions for the included
ions, ζi, are adopted from the PYTHON code (Long & Knigge
2002).

4.2 Stellar parameters

We perform all wind calculations for fixed sets of stellar parame-
ters. For the simulations series constituting the basic testing pro-
cess, we consider a system that is similar to the well-studied O-star
ζ-Puppis. The basic stellar parameters for these calculations are
listed in Table 2 and are adopted from Puls et al. (1996). These val-
ues imply a stellar radius of R⋆ = 1.317 × 1012 cm. Additionally,
we use Ne/W = 1015 cm−3 in the ζ-Puppis calculations. Per-
forming an ionisation and excitation calculation as outlined in the
previous section, we find a mean electron scattering cross section
of σe = 0.34 cm2 g−1 throughout the wind, which corresponds
to the Eddington factor Γe = 0.5. In all MCRH wind simulations
presented in the following, we account for the effect of electron
scattering by reducing the stellar mass by the factor (1 − Γe), as
described in Sections 2.1 and 3.5.

10−9 10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1 100

t

10−4

10−3

10−2

10−1

100

101

102

103

104

105

M
(t
)

MCRH direct summation

power-law fit

Abbott 1982, Ne/W = 1.8× 108 cm−3

Abbott 1982, Ne/W = 1.8× 1011 cm−3

Abbott 1982, Ne/W = 1.8× 1014 cm−3

Figure 2. Results of the direct determination of the force multiplier as a
function of the optical depth parameter t, performed with MCRH (orange)
according to Equation (24). In the transition region, between the optically
thick and thin regimes, a power-law fit according to Equation (A4) has been
performed (dashed blue). The parameters of this fit are included in Table 3
and the predicted wind state (in terms of t), according to the CAK theory and
the obtained k and α values, is marked by a green cross. For comparison, the
force multiplier values of Abbott (1982), determined for a star with Teff =
4× 104 K and Ne/W = 1.8 × 108, 1.8 × 1011, 1.8× 1014 cm−3 are
included (grey open symbols).

4.3 CAK fitting

In the CAK theory, the wind structure may be readily determined
from the stellar properties and the power-law parameters k and α
of the force multiplier. However, the wind characteristics, mass-
loss rate and terminal wind speed, are sensitive to the exact val-
ues of these parameters. Given our aim at assessing the utility of
our approach for solving the line-driving problem, we refrain from
consulting previous studies, such as Abbott (1982) or Pauldrach
(1987), which provide these parameters for a wide range of stel-
lar conditions. Instead, we use the Monte Carlo routine of MCRH
to determine the values for k and α. This way, we ensure that
the MCRH–CAK/MCAK comparisons are not obscured by differ-
ences in atomic data sets, the ionisation and excitation treatments
or the stellar parameters. In particular, we determine the values for
k and α by carrying out the force-multiplier summation (c.f. Abbott
1982)

M(t) =
∑ Fν0∆νD

F
1
t

[

1− exp

(

−
κlt

∆νDσref
e

)]

(24)

explicitly with the MCRH modules for a large number of different
values of the dimensionless optical depth and by performing the
power-law fit according to Equation (A4) afterwards. The Doppler
width, ∆νD = ν0uth/c, according to the thermal motion uth [see
Equation (A3)], is used together with a reference specific electron
scattering cross section σref

e [see Equation (A1)]. The results of the
direct summation procedure are shown in Figure 2 together with the
fitting curve. As a reference, the results of Abbott (1982), obtained
for comparable physical conditions are included. In general, both
calculations agree, but noticeable differences are present, which
are most likely a consequence of our simplified treatment of ion-
isation and excitation, differences in the atomic data sets and of the
use of realistic stellar atmosphere models instead of a simple black
body by Abbott (1982). Given the purpose of our calculations, these
differences are irrelevant but highlight the need for consistency be-
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Table 3. Overview of the main CAK parameters determined in the fitting
process and used throughout this work. In addition, the wind properties, as
predicted by the CAK theory according to these parameters are listed in the
bottom rows. The adopted values for Ne/W , ρ0 and Γe are included for
completeness.

CAK Parameter/Wind Property Value
k 0.381
α 0.595
t 0.035

M(t) 2.80
Ṁ 4.51× 10−5 M⊙ yr−1

u∞ 881 km s−1

Ne/W 1015 cm−3

ρ0 10−11 g cm−3

Γe 0.502

tween the MCRH and CAK calculations. The final CAK parameters,
which are used throughout this work, are listed in Table 3. Based on
the force multiplier parameters, the CAK predictions for the mass-
loss rate and the terminal wind speed are calculated and also pro-
vided in the table. Including the finite-cone effect according to the
MCAK approach increases the terminal wind speed by a factor of
∼ 2.68 to about u∞ ≈ 2360 km s−1 and reduces the mass-loss
rate to Ṁ ≈ 2×10−5 M⊙ yr−1. With these modifications, the ter-
minal wind speed is compatible with previous investigations of the
wind of ζ-Puppis (e.g. Puls et al. 1996). However, the density in our
wind is too high. Specifically, the mass-loss rate is about a factor
of 3.5 larger than established by Puls et al. (1996). Again, our sim-
plified treatment of the wind ionisation and excitation conditions is
most likely the cause for these discrepancies. We stress once more,
however, that as long as we use the simplified description of the
wind conditions consistently in the CAK/MCAK calculations and
the MCRH simulations, the conclusions drawn from comparing the
corresponding results are unaffected.

4.4 General parameters

In the MCRH simulations, the evolution of the wind material is
followed until a steady-state structure emerges. All calculations
are carried out on a non-uniform spherical mesh with 512 cells,
which span the region between 1R⋆ and 10R⋆. The cell size in-
creases outwards from 1.76 × 10−3 R⋆ at the stellar surface to
1.73× 10−1 R⋆ at the outer edge of the domain. During each time
step, the incident radiation field is discretised by 5 × 104 packets,
which sample the black-body spectrum in the wavelength range be-
tween λmin = 228Å and λmax = 22800Å. The lower edge corre-
sponds to the ionisation edge of He II. Any radiation more energetic
than this threshold is assumed to be rapidly removed by bound-free
absorptions by helium and consequently not included in our consid-
eration (see Sim 2004, for a similar strategy). For the initial wind
state in the MCRH calculations, we adopt a structure that is simi-
lar to the CAK/MCAK solution but scaled up or down. By experi-
menting with other initial wind configurations, we have explicitly
verified that the final stationary wind solution, which is found in
the calculations, is insensitive to the details of the initial state. Fur-
thermore, we have also ensured that enough Monte Carlo packets
are used in the simulations. Increasing the number does not change
the overall shape of the radiative acceleration but only reduces the
strength of the stochastic fluctuations (see Figure 4).

4.5 Simulation series layout

Using the general parameters outlined in the previous sections, we
perform a series of MCRH simulations of a ζ-Puppis-like wind. In
this series we successively increase the level of physical detail (see
Section 4.7). For the first stage, the point-source approximation and
an unattenuated radiation field will be used, similar to Castor et al.
(1975). In the second set of calculations, the finite extent of the
star will be taken into account (similar to Friend & Abbott 1986,
Pauldrach et al. 1986 and Kudritzki et al. 1989). During these two
first steps of the series, the ionisation and excitation calculation is
further simplified by setting all recombination fractions ζi = 1 and
by assuming a Boltzmann excitation formula [i.e. W = 1 in Equa-
tion (20)]. Finally, in the last stage of the series, the assumption
of an unattenuated radiation field will be dropped. In this calcula-
tion, we then use the full ionisation and excitation description as
outlined in Section 3.7, including recombination fractions and the
geometric dilution factor in the excitation balance. This leads to a
mild variation of the degree of ionisation in the wind. When ap-
plicable, the results of the MCRH calculations will be confronted
with the predictions of the CAK and MCAK theory. These compar-
isons are performed on the basis of the stationary wind structure
found in all calculations. With this in mind, we further reduce the
computational complexity in all MCRH simulations by following
all Monte Carlo packets until they escape the wind during each
time step. This is equivalent to assuming a light propagation speed
much larger than the fluid flow and constitutes a common strat-
egy in Monte Carlo radiative transfer approaches, for example in
PYTHON (Long & Knigge 2002) or TARDIS (Kerzendorf & Sim
2014). Adopting this technique absolves us of the need to invest
computational power into the initial build-up of the radiation field.
As long as we are solely interested in the final stationary wind state,
this simplification is justified. For future calculations, which aim at
investigating the dynamical behaviour of the wind structure, this
modification of the Monte Carlo radiative transfer scheme will be
dropped.

4.6 MCRH CAK/MCAK module

To better judge the outcome of the MCRH–CAK/MCAK compar-
ison, we include an additional set of numerical calculations per-
formed with our approach. Instead of relying on the Monte Carlo
radiative transfer procedure to determine the line-driving force, we
incorporate the analytic power-law expressions of the CAK/MCAK
approach. In each simulation cycle, after the fluid dynamical and
central gravity substeps, the instantaneous value of the dimension-
less optical depth parameter t is determined in each cell and the
force multiplier M(t) calculated accordingly. In this procedure, the
central star may be treated either as a point source [see Equation
(A4)], or its finite extent may be taken into account [see Equations
(A8) and (A9)]. To determine the required instantaneous velocity
gradient in each cell, we rely on the algorithm by Fornberg (1988)
to construct finite differences on arbitrarily spaced grids. We will
refer to all numerical radiation hydrodynamical calculations per-
formed with this module as CAK-RH and MCAK-RH respectively.

4.7 Results

4.7.1 Calculation in the point-source limit

In the first set of MCRH calculations, the central star is approxi-
mated by a point source and the radiation field is assumed to be
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unattenuated. Within the Monte Carlo approach, both simplifica-
tions are realised by injecting the packets only on radial trajecto-
ries, i.e. replacing the random number experiment (9) by µ = 1,
and by not changing the propagation direction in interaction events,
i.e. µa

0 = µb
0 .

In Figure 3, the final stationary wind state, which establishes
in the MCRH calculation, is shown in terms of the density, velocity
and mass-loss rate. The comparison with the results of the CAK-
RH simulation and the analytic predictions according to the CAK
theory shows a very good agreement. This positive finding is a first
indication for the accuracy and utility of our Monte Carlo-based
scheme to address the line-driving problem in hot-star winds self-
consistently.

4.7.2 Including the finite-cone effect

During the second stage of the wind simulation series, the point-
source approximation is dropped and the finite extent of the central
star is taken into account, analogously to the MCAK approach of
Pauldrach et al. (1986) and Kudritzki et al. (1989). In the MCRH
calculations during this stage, we allow Monte Carlo packets to
propagate on non-radial rays as well by sampling the initial direc-
tion according to Equation (9).

As in the point-source calculations, the stationary wind struc-
ture obtained with MCRH is compared with the analytic predic-
tions, now according to the MCAK theory as outlined in Appendix
A. Again, we include the numerical results calculated with the
MCAK-RH version of our scheme. When accounting for non-radial
photon propagation paths, the Monte Carlo-based results agree
again very well with the analytic predictions and the MCAK-RH
calculation, as illustrated by Figure 3.

As expected from numerous previous studies, most no-
tably from Friend & Abbott (1986), Pauldrach et al. (1986) and
Kudritzki et al. (1989), the inclusion of the finite-cone effect leads
to higher wind velocities, in our case by a factor of 2.5 in terms of
the velocity at r = 10R⋆ compared to the point-source case. At
the same time, the mass-loss rate drops by a factor of 0.5. Figure
4 illustrates the difference in the radial dependence of the radiative
acceleration, which is responsible for the change in the structure of
the wind flow.

4.7.3 Full inclusion of scatterings

After having established the basic applicability of our approach to
the line-driving problem in the first stages of the simulation series,
we take another step towards a realistic description of the radiation
field in hot-star winds by dropping the unattenuation approxima-
tion and accounting for the full scattering process in interactions.
Now the entire procedure described in Section 3.4 is performed: in
particular, the emergent propagation directions in atomic line inter-
actions are drawn according to Equation (12). Accounting fully for
the multiple scattering phenomenon, these calculations reach be-
yond the capabilities of the basic CAK and MCAK approaches (as
outlined in Appendix A). We emphasise, that the key consequence
of multiple scattering lies in the capability of line interactions to
lengthen the photon propagation trajectory. By this process, pho-
tons may potentially exert a stronger acceleration onto the wind ma-
terial, compared to the unattenuated case in which they may also in-
teract multiple times but their trajectories are always straight lines.
Once the unattenuation of the radiation is dropped in the MCRH
simulations, some packets may potentially be back-scattered onto
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Figure 4. The radial dependence of the line-driving force in the MCRH
calculations after a stationary state has established. The colour-coding is
the same as in Figure 3. For the results shown by the weak solid lines,
5 × 104 packets where used to discretise the radiation field emitted by the
central star in each simulation cycle. For comparison, the full solid lines
show the corresponding acceleration, when the 106 packets are used once a
stationary state has emerged. Notice the clear decrease in the Monte Carlo
noise but the same radial dependence of the radiative acceleration as in the
case with fewer packets.

the stellar disc. To counteract the luminosity loss induced by this
process, we follow Lucy & Abbott (1993) and scale the packet en-
ergies by a constant factor, which ensures that in each time step, net
radiative energy amounting to the luminosity L⋆ is streaming into
the wind. This process may be interpreted as a colour correction of
the stellar spectral energy distribution (see Lucy 1999b, for a sim-
ilar strategy in the context of calculating synthetic observables for
supernovae).

Accounting both for the finite-cone effect and the full scat-
tering procedure, we again determine the stationary wind structure
with MCRH. The resulting wind velocity, the density stratification,
and the mass-loss rate are included in the summary plot of Figure
3. Compared to the unattenuated calculations with the finite-cone
effect, we find a slightly slower wind and, as shown in Figure 4,
a weaker radiative acceleration. At first glance, this seems to con-
tradict the statement about the effect of multiple scattering in the
introductory part of this section. But one has to bear in mind that in
the CAK/MCAK description of the line-driving problem, in each in-
teraction the full photon/packet momentum is transferred onto the
wind material. This is comparable to a purely absorbing medium,
with the important difference that the photon trajectory is not termi-
nated in the CAK/MCAK description. Instead, the same photon may
still contribute to the acceleration in regions of the wind located at
larger radii. In the full scattering case, in which the re-emission of
the line-interaction is taken into account, no momentum is trans-
ferred onto the wind on a CAK/MCAK like trajectory since it in-
volves forward-scatterings only. Thus, the momentum transfer in
the CAK/MCAK case may generally be overestimated and only the
photons that are on trajectories that have been significantly length-
ened due to many successive scatterings may contribute compara-
bly to the CAK/MCAK description. This phenomenon is illustrated
in Figure 5. A general reduction of the line-driving force once the
unattenuation assumption is dropped has already been found in pre-
vious studies, e.g. Abbott & Lucy (1985).
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Figure 3. Results of the stellar wind simulation series in terms of the final stationary wind velocity (left panel), density (central panel) and mass-loss rate (right
panel). The colour-coding reflects the different stages of the simulation series. The calculations which are based on the point-source approximation and use
the unattenuation of the radiation field are shown in blue. Red lines corresponds to calculations, in which the finite-cone effect is included and green to those
which also include the full scattering procedure. All MCRH results are presented by solid lines. Where applicable, the analytic predictions according to the
CAK and the MCAK theory are included as dotted lines. In these cases, also the results obtained with CAK-RH/MCAK-RH are given as an additional reference
(dashed lines).
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Figure 6. Detailed summary of the contribution of the different elements to the line-driving force in the full-scattering simulation. In the left panel, the
composition of the line-driving force averaged over the entire simulation box is displayed. Here, also the contributions of the different ionisation stages are
shown. The right panel shows how this composition varies throughout the wind. For this illustration, the contributions to the line-driving for of all ions of one
element are combined and then colour-coded. Moreover, a binning with a width of ten grid cells has been used.

4.7.4 Additional diagnostics

By recording the details of all interaction events performed by the
Monte Carlo packets in the final calculation of the simulation se-
ries, the origin of the radiative acceleration can be studied. The
contributions of the different elements and ionisation stages, aver-
aged over the entire computational domain, are illustrated in Figure
6. This highlights that the line-driving force mainly derives from
interactions with lines of iron, nickel some intermediate mass ele-
ments and the CNO group. The relative importance of the differ-
ent contributions, however, changes throughout the wind, as shown
in the right panel of the same figure. In our simulation, lines of
iron group elements mostly contribute in the inner part of the wind,
close to the photosphere. Further out, the intermediate mass ele-
ments grow in importance. This finding is compatible with the in-
vestigation of Vink et al. (1999), in which the importance of iron
for the radiative acceleration in the lower parts of the wind has been

highlighted in the context of the bi-stability jump. We stress, how-
ever, that due to the simplified treatment of ionisation and excita-
tion in our simulations, the results presented in Figure 6 should not
be over-interpreted, but viewed as an illustration of the diagnostic
possibilities of our approach.

By recording the interaction histories of all packets we can
also investigate the importance of multiple scattering in our simu-
lation. Figure 7 shows the number of interactions performed by the
packets that escaped through the outer edge of the computational
domain. In our particular simulation, most packets never explic-
itly interacted on their way out. They may have still contributed to
the line-driving force as long as they came into resonance with at
least one line transition (see discussion in Section 3.6). The major-
ity of those that interacted, however, performed multiple scattering
events.
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Figure 5. Illustration of the total radiation momentum transfer rate exerted
by the Monte Carlo packets along their propagation paths in terms of a two-
dimensional histogram. The length of the trajectories, l, is normalised to
the radial extent of the domain, lr . The upper two panels show the accumu-
lated momentum in the point-source (left) and the finite-cone (right) MCRH
calculation respectively. The lower panels correspond to the MCRH wind
simulation with the full scattering procedure. The left panel only includes
packets that are ultimately backscattered onto the central star. Thus, trajec-
tories shorter than lr are encountered. In the lower right panel only packets
which ultimately escape through the outer boundary of the computational
domain are shown.
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Figure 7.Histogram of the number of interactions which Monte Carlo pack-
ets that ultimately escape through the outer edge of the simulation box per-
form. As displayed in the inset, the majority of the escaping packets never
experience an interaction. However, most of the interacting packets perform
multiple scatterings.

5 COMPARISONWITH DETAILED CALCULATIONS

Having established the basic performance of our method under sim-
plified conditions, we now compare our approach with modern,
sophisticated techniques for determining the structure of hot-star
winds, in particular with the approach developed by Müller & Vink
(2008, MV08 hereafter). This method constitutes an advance-
ment of the original approach of Vink et al. (1999) and Vink et al.
(2000). A Monte Carlo radiative transfer calculation is used to de-
termine the local line-driving force for a given static wind structure.
Here a velocity structure that is more general and flexible than the

Table 4. Simulation parameters for the calculation of the wind from the
O5-V main sequence star (c.f. Müller & Vink 2008).

Parameter Value
M⋆ 40M⊙

logL⋆/L⊙ 5.5
Teff 4× 104 K

Ne/W 1014 cm−3

ρ0 10−12 g cm−3

β-type law is used. According to the reconstructed line accelera-
tion, the mass-loss rate and the parameters of the wind velocity law
are iteratively updated until a converged wind structure has been
found.

5.1 Parameters

MV08 test their approach by predicting the wind structure of an
O5-V main sequence star. For direct comparison, we adopt param-
eters in our simulation to match their calculation. In Table 4, all
quantities which have been changed with respect to the calculations
presented in Section 4 are listed. These choices imply an Eddington
factor of Γe = 0.210, which is very close to the value quoted by
MV08.

The comparison with the Müller & Vink (2008) technique will
be based on MCRH calculations that incorporate all techniques de-
scribed in Section 3. Since no CAK or MCAK-like simulations are
performed in this context, the CAK fitting procedure of Section 4.3
does not have to be repeated for the current stellar parameters.

5.2 Results

With the stellar parameters listed in Table 4 a full scattering MCRH
simulation, similar to the calculation presented in Section 4.7.3,
is performed to determine the structure of the wind of the O5-V
main sequence star. The result is shown in Figure 8 in terms of the
stationary velocity and mass-loss rate and compared to the structure
found by MV08. To obtain the comparison MV08 wind velocity,
we use the approximate expression, Equation 39 in MV08, which
is only strictly valid in the supersonic wind regime.

As seen in Figure 8, both approaches predict winds that are
quite similar in shape. However, the velocity structure found by
MCRH accelerates quite quickly towards the terminal wind speed,
whereas the wind velocity law predicted by MV08 approaches its
final value in a gentler fashion. The two winds deviate slightly
in absolute values: the MCRH wind reaches a velocity of u =
3065 km s−1 at r = 10R⋆, while the MV08 solution lies at u =
2719 km s−1. The mass-loss rates of the winds agree on a similar,
namely a ten percent level, with Ṁ = 7.97×10−7 M⊙ yr−1 being
obtained in the MCRH calculation and Ṁ = 8.99×10−7 M⊙ yr−1

found by MV08.
These minor discrepancies may partly be related to the dif-

ferent solution strategies followed in the two approaches. In our
method, a radiation hydrodynamical calculation is relaxed to a
steady state solution without any major restrictions on the shape
of the line acceleration and velocity structure. The MV08 approach
relies on a parameterisation of the line driving force and in turn
of the velocity law, thus allowing only wind structures of a certain
family. Differences between the two calculations will also arise be-
cause of the very simplistic treatment of ionisation and excitation in
our method. Overall, however, the level of agreement between the
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Figure 8. Stationary wind structure for the O5-V main sequence star deter-
mined with MCRH (green). The predictions according to the MV08 tech-
nique are shown as a comparison (grey).

two calculations is good and lends credence to their complementary
use in the study of stellar winds.

6 DISCUSSION

The results of the wind calculations and the diagnostic capabilities
presented in the previous sections, in particular the good agreement
between the MCRH results and the CAK/MCAK predictions and the
comparison to the MV08 technique, clearly demonstrate the utility
and accuracy of our Monte Carlo-based radiation hydrodynamical
approach for solving the line-driving problem in hot-star winds. In
the following, we briefly discuss some particular features to our
approach and also comment on some of its current limitations. We
also sketch possible alterations of our approach aimed at alleviating
these shortcomings and discuss potential future applications.

6.1 Numerical performance

In general, Monte Carlo radiative transfer techniques are rather
computationally demanding, since many Monte Carlo quanta have
to be processed to reach the desired statistical fidelity. This draw-
back is typically balanced by the very favourable parallelisation
properties of such calculations (see discussion in section 6.4). In
our case, the Monte Carlo-based radiation hydrodynamical simu-
lations are indeed costly. In the full scattering simulation, the fi-
nal stationary state established after about 4800 simulation cycles.
On of these takes roughly 14 s on a Intel Xeon E5520 processor
if 5 × 104 packets describe the incident radiation field. This in-
creases to about 210 s once 106 packets are used. In these calcula-
tions about 10GFlops (for 5× 104 packets) and 160GFlops (106

packets) were executed per cycle. By comparison, only 0.015 s are
required and 1.3MFlops executed per cycle if the CAK-RH ver-
sion is used instead. We emphasise, however, that all calculations
presented in this work were carried out serially on a single pro-
cessing core. We stress, that the performance of the Monte Carlo
scheme may be significantly improved by devising a parallelisa-
tion scheme and distributing the workload onto many cores. For all
calculations, the executable was produced with the gcc compiler,
version 4.7.3, using the optimisation level -O3.

6.2 Influence of Monte Carlo noise

The probabilistic nature of Monte Carlo techniques leads to the in-
evitable introduction of stochastic fluctuations (see, for example,
Carter & Cashwell (1975) for a discussion of Monte Carlo errors).
However, Noebauer et al. (2012) and Roth & Kasen (2015) demon-
strated that, with appropriate reconstruction techniques, the fluctu-
ations can be controlled and Monte Carlo-based radiation hydrody-
namical simulations can indeed be performed. The simulations per-
formed in this work and presented in the previous section illustrate
that the Monte Carlo noise, which is clearly visible in the recon-
structed radiative acceleration (c.f. Figure 4), does not prohibit the
use of Monte Carlo methods to study the line-driving problem. In
fact, the obtained velocity and density structure (shown in Figure 3)
is remarkably smooth. Due to their pure stochastic nature the fluc-
tuations cancel in an average sense (but see also remarks in Section
6.4).

6.3 Full non-LTE treatment

The calculations presented here assumed either LTE or relied on
the approximate non-LTE prescription presented in Section 3.7.
Non-LTE effects, however, play an important role in stellar winds
(see, e.g., Pauldrach 1987; Pauldrach et al. 1994; Puls et al. 2005,
for non-LTE calculations of hot-star winds) and should be included
in future calculations.

In the general non-LTE situation, the level populations of ex-
cited states are influenced by the radiation field. Lucy (2002) and
Lucy (2003) describes a simple and elegant procedure to recon-
struct these radiative rates from a Monte Carlo simulation. In a first
step of refining the physical detail in the interaction treatment of our
approach, this procedure could be adopted to determine a non-LTE
excitation and ionisation balance during the Monte Carlo radiative
transfer step. This strategy has already been followed in previous
Monte Carlo-based studies, for example by Sim et al. (2005), using
the PYTHON code (Long & Knigge 2002) and in non-LTE radiative
transfer calculations in Keplerian discs by Carciofi & Bjorkman
(2006).

To go beyond the pure resonant scattering approximation in
the line-interaction treatment, either the simple branching scheme
of Lucy (1999b) (see Mazzali 2000, for Monte Carlo-based radia-
tive transfer calculations in Type Ia ejecta using this scheme) may
be incorporated or the so-called Macro-Atom formalism introduced
by Lucy (2002, 2003) may be used. The latter fully accounts for
all processes that may excite or de-excite line-transitions, includ-
ing collisional processes. We emphasise, that the utility and ac-
curacy of these techniques has been carefully examined and es-
tablished (Lucy 2002, 2003, 2005). Moreover, they have already
been incorporated into a number of Monte Carlo radiative trans-
fer frameworks, including ARTIS (Kromer & Sim 2009), PYTHON
(Sim et al. 2005) and TARDIS (Kerzendorf & Sim 2014).
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6.4 Multidimensionality and non-Sobolev treatment

Observations and also theoretical investigations indicate that line-
driven winds are neither stationary nor smooth, but feature a vari-
able and inhomogeneous structure (see, e.g., overview by Puls et al.
2008). These findings advocate a dynamical and fully multidimen-
sional treatment of the problem. Monte Carlo techniques are suited
for this task since the formalism readily generalises (conceptually)
to arbitrary geometrical configurations and also exhibits excellent
scaling properties on parallel processors – a desirable feature when
facing the increased numerical workload of multidimensional cal-
culations (see, for example, comments by Kasen et al. 2006 and
Baes et al. 2011, as well as the scaling tests by Roth & Kasen 2015
and Harries 2015). With this in mind an obvious extension of our
method comprises a generalisation to multidimensional geometries
to address inhomogeneous line-driven outflows. In this context,
some work should be invested into devising an efficient interfac-
ing of the standard parallelisation strategies of Monte Carlo and
fluid dynamical techniques (see e.g. discussion in Baes et al. 2011
and developments by Harries 2015.).

When investigating multidimensional line-driven mass out-
flows, a generalisation of the line interaction treatment that goes
beyond the Sobolev approximation used here should also be con-
sidered: this would be necessary to study the line-driving instability
(Lucy & Solomon 1970; Owocki 1994) which should occur in line-
driven outflows and may play a part in understanding the clump-
ing mechanism (see discussion in Puls et al. 2008 and Vink 2015).
Non-Sobolev Monte Carlo radiative transfer schemes have already
been developed and used, for example by Knigge et al. (1995) and
Kusterer et al. (2014) in the context of winds of cataclysmic vari-
ables. However, the computational costs of such schemes are sig-
nificantly higher than their Sobolev counterparts. Moreover, the in-
herent Monte Carlo noise could potentially be more problematic
than described in 6.2, since small perturbations in the line-driven
wind may, in principle, self amplify in non-Sobolev calculations.
Further investigation is required to asses the relevance of this po-
tential caveat.

7 CONCLUSIONS

In this work we have introduced a new approach to solve line-
driven stellar winds self-consistently by using a Monte Carlo-based
radiation hydrodynamical approach. The key feature of this tech-
nique lies in the reliance on a Monte Carlo radiative scheme. This
technique offers a number of advantages when dealing with com-
plex interaction physics, in particular when multi-line effects play
a role. Moreover, this Monte Carlo-based technique readily gener-
alises to multidimensional geometries, a very advantageous feature
for potential studies of inhomogeneous outflows.

Establishing the utility and accuracy of the introduced ap-
proach in solving the line-driving problem was the main focus of
this work. Consequently, we designed the calculations to capture
the essence of the line-driving problem, but adopted a number of
simplifications. These do not interfere with the general applicabil-
ity of our method to solve the local line-driving problem, but re-
duce the computational complexity. Most importantly, we adopted
the Sobolev approximation and a simple and approximate non-LTE
treatment to determine the excitation and ionisation balance.

Using our scheme, we successfully solved for the stationary
structure of one-dimensional, spherically symmetric hot-star winds
achieving good agreement with the predictions of the CAK and

MCAK theory. We demonstrated that our method can also go be-
yond the capabilities of CAK and MCAK by dealing with an atten-
uated radiation field and the effects of multiple scattering. For the
particular physical conditions investigated in Section 4, these ef-
fects lead to a reduction of the line-driving force and thus a slower
wind velocity structure compared to the MCAK predictions. Finally,
we compared results obtained with our approach to those computed
by MV08 for an O5-V main sequence star and found good agree-
ment, given the difference in approach and simplifications made
here.

The successful outcome of our wind simulations demonstrates
the possibility to use a Monte Carlo-based radiation hydrody-
namical approach to model line-driven mass outflows. Thus, this
approach holds promise for detailed multidimensional and self-
consistent studies of inhomogeneous winds, including multi-line
effects. With a fully multidimensional version of our approach,
line-driven outflows in systems other than hot-star winds may
be addressed as well. In particular, the winds emanating from
accretion discs in cataclysmic variables (e.g. Proga et al. 1998;
Noebauer et al. 2010) or active galactic nuclei (e.g. Proga et al.
2000; Proga & Kallman 2004; Higginbottom et al. 2013) may be
investigated self-consistently and in great detail with such a Monte
Carlo-based approach.
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APPENDIX A: CAK AND MCAK APPROACHES

In the following, the relevant expressions of the CAK theory are
listed in the form in which they are used in the current study. In
general, the line-driving force is expressed as a multiple of the ac-
celeration due to electron scattering

gline = M(t)
σref
e L⋆

4πr2c
, (A1)

assuming a reference specific interaction cross section σref
e .

Throughout this work, σref
e = 0.3 cm2 g−1 is used. The force mul-

tiplier depends on the dimensionless optical-depth t

t = σref
e ρuth

(

du
dr

)−1

, (A2)

which involves the thermal velocity of the wind material (c.f.
Abbott 1982)

uth =

√

2kBTeff

mH
, (A3)

and is approximated by the power-law

M(t) = kt−α (A4)
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if the central star is assumed to radiate as a point-source (again fol-
lowing Castor et al. 1975). It should be noted that, throughout this
work, we neglect any influence of changes in the ionisation, which
is equivalent to setting δ = 0 in the force multiplier formulation
proposed by Abbott (1982).

In the point-source limit, the solution to the momentum equa-
tion (1), with the CAK line-driving force, results in the wind veloc-
ity law

u(r) = u∞

√

1−
R⋆

r
, (A5)

with the terminal speed being a multiple of the local escape speed
from the photosphere, uesc:

u∞ =

√

α
1− α

uesc. (A6)

The constant mass-loss rate of the wind is given by

ṀCAK =
1
uth

(

4π
σeref

GM⋆(1− Γe

)1− 1

α

(

k
c
L⋆

) 1

α

× α(1− α)
1

α
−1. (A7)

Once the finite extent of the star is taken into account, the force
multiplier is modified by a finite-cone correction factor

MFC(t) = DFC(t)MCAK(t), (A8)

DFC(t) =
(1 + σ)α+1 − (1 + σµ2

⋆)
α+1

(1− µ2
⋆)(α+ 1)σ(1 + σ)α

, (A9)

which involves

σ =
r
u
du
dr

− 1, (A10)

µ⋆ =

√

1−
(

R⋆

r

)2

. (A11)

We follow Kudritzki et al. (1989) and predict the wind structure ac-
cording to their approximate analytic solution technique. In partic-
ular, we adopt their proposed approach for the case of a “frozen-in”
ionisation state (δ = 0, c.f. Kudritzki et al. 1989, section 4.1). The
wind velocity is assumed to be very close to a β-type law and the
mass-loss rate decreases with respect to the original CAK case ac-
cording to

Ṁ =

(

1
1 + α

) 1

α

ṀCAK. (A12)

The wind velocity in this approach follows from performing the
integration

u(v) =

√

α
1− α

u2
esc

∫ 1

v

dv′Z(v′,α,β), (A13)

with

Z(v,α,β) = fN (v,α,β)
1

1−α

×

⎡

⎣1 +

√

√

√

√

2
α

(

1−
(

1
fN (v,α, β)

) 1

1−α

)

⎤

⎦ ,

(A14)

fN (v,α,β) =
β
v

1
v(β + 1)− 1

×

[

1−
(

1− v2 + v
1− v
β

)α+1
]

. (A15)

In these expressions, the inverse of the radial distance relative to
the photosphere, v = R⋆/r, is used. Throughout this work, the
MCAK equations are solved for β = 0.8 (see Pauldrach et al. 1986;
Kudritzki et al. 1989, for a motivation of this value).

APPENDIX B: RADIATION HYDRODYNAMICS
EQUATIONS

We briefly review the radiation hydrodynamical equations on which
our numerical scheme is based (c.f. Mihalas & Mihalas 1984). In
general, these equations describe the conservation of mass, momen-
tum and energy. Since we assume in this work, that the wind out-
flow remains isothermal at all times, we only consider the first two
of these equations and use the isothermal equation of state to re-
late fluid density and thermodynamic pressure. Cast into a pseudo-
Lagrangian form by using the substantial derivative

D
Dt

=
d
dt

+ u
d
dr

, (B1)

this radiation hydrodynamical problem in one-dimensional spheri-
cal symmetry is described by (c.f. Mihalas & Mihalas 1984)

D
Dt

ρ+ ρ
1
r2

d
dr

(r2u) = 0, (B2)

ρ
D
Dt

u+
d
dr

P = ρg +G1, (B3)

P = a2
isoρ. (B4)

The fluid density ρ and its velocity u appear together with the
thermodynamic pressure P , the isothermal sound speed aiso and
a static external gravitational field g. The transfer of momentum
between the fluid and the radiation field is captured by the radia-
tion force, which may be determined from the first moment of the
transfer equation (c.f. Mihalas & Mihalas 1984):

G1 =
2π
c

∫

∞

0

dν

∫ 1

−1

dµ(χI − η)µ. (B5)

Here, the description of the radiation field by the specific intensity
I is used and the material functions opacity χ and emissivity η,
describing the absorption and emission of radiative energy, appear.
The integration is performed with respect to the entire frequency
spectrum and to all possible values for the cosine of the propagation
direction, µ.
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