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ABSTRACT
Cosmic dust is present in many astrophysical objects, and recent observations across the electromag-

netic spectrum have revealed that the dust distribution is often strongly three-dimensional. Dust grains
are effective in absorbing and scattering UV/optical radiation, and re-emit the absorbed energy at infrared
wavelengths. Understanding the intrinsic properties of these objects, including the dust itself, therefore
requires 3D dust radiative transfer calculations. Unfortunately, the 3D dust radiative transfer problem is
non-local and non-linear, which makes it one of the hardest challenges in computational astrophysics.
Nevertheless, significant progress has been made in the last decade, with an increasing number of codes
capable of dealing with the complete 3D dust radiative transfer problem. We discuss the complexity of
this problem, describe the two most successful solution techniques (Ray-Tracing and Monte Carlo), and
discuss the state of the art in modeling observational data using 3D dust radiative transfer codes. We end
with an outlook on the bright future of this field.

Subject headings: scattering – Monte Carlo – ray-tracing – computational astrophysics – numerical algorithms

1. INTRODUCTION

Given the dominant role of radiation in astro-
physics, its transport through a medium is one of the
most fundamental processes to be considered. Ana-
lyzing the radiation received from an object not only
provides us with information about its radiation source

1Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117
Heidelberg, Germany

2Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan
281 S9, B-9000 Gent, Belgium

1This review was the result of a collaboration of equals, the or-
dering of the authorship list is not significant.

but also the medium in between and surrounding the
object and the observer.

Among the numerous ways of producing and pro-
cessing radiation, dust grains mixed in the cosmic gas
play a special role. They are efficient at absorbing
and scattering ultraviolet (UV) through near-infrared
(NIR) photons and then re-radiating the absorbed en-
ergy in the infrared and sub-millimeter (submm) wave-
length range. Cosmic dust can be found in many as-
trophysical objects like the solar system (Hoppe et al.
2010), comets and meteoroids (Küppers et al. 2005),
sub-stellar atmospheres (Harvey et al. 2012), young
stellar objects (Keller et al. 2008), proto-stellar to
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proto-planetary disks (Watson et al. 2009), evolved
stars (Groenewegen et al. 2011), reflection nebulae
(Castellanos et al. 2011), supernova remnants (Rho
et al. 2009), molecular clouds (Martel, Urban & Evans
2012), the interstellar medium (Zhukovska, Gail &
Trieloff 2008), galaxies (Dunne et al. 2011), active
galactic nuclei (Haas et al. 2000), and the high-redshift
universe (Dwek, Galliano & Jones 2007). As dust
grains modify the radiation field in these objects, they
should be taken into account for an unbiased analysis
of their intrinsic properties. Such an analysis requires
radiative transfer (RT) calculations to be performed.

Aside from its importance as a tracer, the physical
and chemical processes related to dust itself are of in-
terest. They cover its formation, its cycle in galaxies,
the variation in opacity with chemical composition, its
growth and destruction processes in cloud cores and
circumstellar disks to act as building blocks for plan-
ets, its interaction with magnetic fields and the chem-
istry on the grain surface. For example, the dust RT is
important for understanding chemistry in the ISM as
photo-dissociation rates are strongly dependent on the
UV radiation field that includes a significant amount of
photons scattered from dust grains. In this review, we
will just address physical properties of the dust where
they enter the RT or the modeling of objects, and refer
the reader to one of the many published works on dust
for the aspects mentioned above (e.g., Draine 2003a;
Henning, Grün & Steinacker 2009; Henning 2010).

Many dusty objects have been observed at in-
creasingly higher spatial resolution in the last ten
years. These observations cover UV/optical/NIR (e.g.,
Hubble, GALEX, ground-based telescopes) and in-
frared/submm wavelengths (e.g., Spitzer, Akari, Her-
schel, Planck, WISE, ALMA, JCMT, APEX, IRAM).
Space telescopes exploring atmospherically absorbed
wavelength windows, high-resolution interferomet-
ric data, polarization data, or all-sky maps are just
a few examples of the rich data set that awaits the
RT modeler. The information determined by compar-
ison of dust RT calculations with global and pixel-
by-pixel resolved spectral energy distributions (SEDs)
of dusty objects include the properties of the illumi-
nating sources (stars, accretion disks, integrated star
formation rate, etc.), the distribution of the dust (disk
structures, cloud geometries, underlying multi-phase
nature, etc.), and properties of the dust grains (size,
shape, and composition). A feature commonly seen
in high spatial resolution images at all wavelengths
is the complex nature of the dust density distribution.

Examples of global 3D geometries include complex
arm structures in spiral galaxies (Patrikeev et al. 2006;
Fritz et al. 2012), large scale filaments in star forming
regions (André et al. 2010; Arzoumanian et al. 2011),
and bow-shocked shells around evolved stars (Cox
et al. 2012). A prominent example of locally complex
3D geometries is the known fractal nature of the in-
terstellar medium (Beech 1987; Falgarone, Phillips &
Walker 1991). Images illustrating complex local and
global 3D dust structures are shown in Fig. 1. In ad-
dition, the illuminating sources of dust have been long
know to have complex distributions from the com-
bination of the anisotropic interstellar radiation field
and local neighboring stars to the stellar distribution
in galaxies. Both of these issues show that a complete
3D treatment of RT is inevitable and critical to make
progress in many fields.

Among the many computational problems in astro-
physics, 3D line and dust RT has long been a major
challenge and often approximated or neglected. While,
for example, 3D (magneto-)hydrodynamics ((M)HD)
codes have existed for many years, radiation transport
is considered to be one of the four Grand Challenges
in Computational Astrophysics 2. Dust RT is different
than line RT in that the dust opacities generally do not
depend on the RT solution itself.

The reasons to neglect or approximate 3D dust RT
are manifold. A good portion of the difficulties arises
from the fact that the underlying physical processes
combine, in the stationary case, to a non-local and
non-linear 6D problem. Since the radiation field needs
to be determined in all directions, at any spatial loca-
tion, and for each wavelength, the solution vector itself
comprises three dimensions more than the variables
in (M)HD problems. The RT problem is non-local
in space (propagation of the photons within the en-
tire domain), direction (scattering and absorption/re-
emission), and wavelength (absorption/re-emission).
This non-locality makes it difficult to simplify the
problem by neglecting processes or wavelengths.
For example, absorption and scattering have roughly
the same efficiency from UV to NIR, with strongly
anisotropic scattering (Gordon 2004). Modeling far-
infrared (FIR) images, a consistent treatment of the
dust emission requires the RT to be calculated where
the dust absorption happens, at shorter wavelengths.

2see, e.g., the Grand Challenge conference series at the Institute for
Pure & Applied Mathematics at the University of California, USA
from 2005 to 2007
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Fig. 1.— The complex and filamentary structures of
ISM dust are clearly seen in both Milky Way star for-
mation regions (top) and external galaxies (bottom).
The top image is a color image of the Aquila star
formation complex (André et al. 2010). This image
was taken as part of the Gould Belt Survey Herschel
Key Project, covers ∼11 deg2, and was created from
PACS 70 µm (blue), PACS 160 µm (green), and SPIRE
250 µm (red) observations. The bottom image shows
the complex structure of the ISM in M31 from HI ob-
servations (green, Braun et al. 2009), embedded star
formation using Spitzer 24 µm data (red, Gordon et al.
2006), and unobscured young stars from the GALEX
far-UV images (blue, Thilker et al. 2005).

Therefore, most of the current 3D dust applications
are intrinsically multi-wavelength in nature.

Other difficulties are related to the complexity that
is encountered when accessing 3D structures. The un-
derlying grids to resolve the sink and source contri-
butions to the radiation fields are generally discretized
and require substantial storage and the RT calculation
effort rises with the cell size for a given solution accu-
racy criterion. Moreover, when modeling the structure,
the spatial distribution of the sources and sinks has to
be parametrized. Modeling complex structures with
a simple spatial distribution model can lead to mis-
leading results. Witt & Gordon (1996) showed that
RT through a 3D fractal dust distribution is signifi-
cantly different than through similar, but smooth dis-
tributions. Combined with the runtimes expected for
the 3D dust RT code, an exploration or optimization
of the parameter space challenges the capabilities of
current computers. Finally, more than for simple ge-
ometries, applying 3D dust RT also struggles with the
loss of information due to projection effects.

As a result of non-local and non-linear effects, the
RT equation is an integro-differential equation includ-
ing a scattering integral; the thermal source term is
non-linearly coupled to a double-integral equation,
making it difficult to apply common solvers. More-
over, the varying extinction causes changes in the
numerical nature of the RT equation. Its character
changes from parabolic for the diffusive transport to
hyperbolic for freely-streaming photons; to a combi-
nation of the two, in the numerically difficult transition
region. Solving such a high-dimensional non-local,
non-linear problem requires substantial computational
resources (both computing power and memory), af-
fecting the solution algorithms and potential limiting
the model complexity.

With this review we enter this evolving and dy-
namic field to report on the significant progress that
has been made to tackle this grand challenge prob-
lem. Within the last 10 years, the availability of the
high resolution images and increase computer speed
and storage have triggered an expansion of the dust
RT community and the development of new codes ca-
pable of dealing with the complete 3D dust RT prob-
lem. Many of the techniques used to solve the 3D dust
RT problem were developed originally for 1D or 2D
geometries. The added computational complexity of
solving the 3D problem has emphasized the need for
highly efficient techniques, leading to refinements in
and use of all possible 1D/2D methods in most 3D
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codes. Applications explicitly using 3D RT include
models of young stellar objects (Wolf, Fischer & Pfau
1998), proto-stellar to proto-planetary disks (Indebe-
touw et al. 2006; Niccolini & Alcolea 2006), reflec-
tion nebulae (Witt & Gordon 1996), molecular clouds
(Steinacker et al. 2005; Pelkonen, Juvela & Padoan
2009), spiral galaxies (Bianchi 2008; Schechtman-
Rook, Bershady & Wood 2012), interacting and star-
burst galaxies (Chakrabarti et al. 2007; Hayward et al.
2011), and active galactic nuclei (Schartmann et al.
2008; Stalevski et al. 2012). This expansion motivated
the “Cosmic Dust and Radiative Transfer” workshop
held in Heidelberg in 20083. During the workshop, we
realized that a review of the various techniques and ap-
plications addressing 3D dust RT was need to commu-
nicate common strategies between related fields. We
felt that a review of 3D dust RT would be useful for
coders and users of dust RT codes and people wish-
ing to enter this field (including writers of line RT and
(M)HD codes).

While various solver techniques are in use for RT
problems, 3D dust RT is commonly solved using the
Monte Carlo (MC) technique, with some applications
being solved using the Ray-tracing (RayT) technique.
Since modern MC solvers make use of some RayT
methods, this review concentrates on describing the
spectrum of techniques based on these two approaches.

Other RT solution methods exist but have either not
been used to solve the complete 3D dust RT prob-
lem in all aspects, or have shown clear disadvan-
tages. One potential solution method is discretizing
the RT equation, e.g. with a finite difference approach
in spatial Cartesian coordinates and in direction, to
create a system of linear equations (Stenholm, Sto-
erzer & Wehrse 1991; Steinacker, Bacmann & Hen-
ning 2002). The corresponding matrix is extremely
difficult to solve even with powerful matrix solvers
(van der Vorst 1992). Two more methods are used for
RT problems, but have yet to be applied to 3D dust
RT. The discretization can be performed on unstruc-
tured grids (e.g., a Delaunay grid) and this can provide
a very fast solver of RT problems. Currently, such al-
gorithms have been updated to handle freely streaming
photon packages and changes in the optical depth, but
treatment of scattering has yet to be explored. Finally,
the moment method expands the intensity as a function
of angle using spherical harmonics as basis functions.
It has several numerical advantages both in terms of

3http://www.mpia.de/RT08/

solution accuracy and storage requirements, but can
exhibit non-physical oscillations. A common variant
of the moment method is the Variable Eddington Ten-
sor method (used, e.g., for 2D in the code RADICAL,
see description in Pascucci et al. 2004).

This review starts with the mathematical definition
of the full 3D dust RT problem. Next, the discretiza-
tion of the problem in spatial, direction, and wave-
length dimensions is presented. The RayT and MC
methods of solving the 3D RT problem are described
in detail. Challenges in comparing RT models with ob-
servations are discussed. A listing of existing 3D dust
RT codes is given along with current benchmarking ef-
forts. Finally, the review is concluded with a summary
and discussion of the future of 3D RT.

2. THE 3D DUST RADIATIVE TRANSFER
PROBLEM

2.1. The radiative transfer equation

The stationary radiation field is described by the
specific intensity I(x, n, λ), where x gives the location
in space, n is a unit vector indicating the direction of
the radiation, and λ its wavelength. The specific in-
tensity represents the amount of energy carried by ra-
diation in a unit wavelength interval, which is trans-
ported per unit solid angle and per unit time across an
element of unit area perpendicular to n.4 The contin-
uum radiative transfer equation (RTE) describes how
the specific intensity varies as a result of interactions
with a medium filled with sources and sinks. In its gen-
eral form, it can be written as (see e.g Chandrasekhar
1960; Rybicki & Lightman 1979)

n·∇I(x, n, λ) = −κ(x, λ) ρ(x) I(x, n, λ)+ j(x, n, λ). (1)

The left-hand side of this equation represents the
change of the intensity over an infinitesimal distance
along the path determined by the position x and the
propagation direction n. The first term on the right-
hand side represents the extinction, i.e. the loss of
radiant energy, when radiation passes through matter.
Here κ(x, λ) is the mass extinction coefficient, and ρ(x)
is the mass density. The second term on the right-hand
side represents the source term, i.e. the new luminosity

4The specific intensity can be defined as the intensity per unit of
wavelength or per unit of frequency. The convention chosen is typ-
ically indicated by a subscript, i.e. as Iλ or Iν. We adopt the per
unit of wavelength convention, and drop the subscript in order not to
overload the notations.
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released into the medium at x in the direction n. The
complexity of the RTE depends on the nature of the
source and sink terms, i.e. the different physical pro-
cesses that are responsible for extinction and emission.

An alternative form of the RTE (1) explicitly uses
the distance s along the path defined by a position x
and propagation direction n as a variable. We then ob-
tain

dI
ds

(s, λ) = −κ(s, λ) ρ(s) I(s, λ) + j(s, λ). (2)

If we assume for now that the source term j does not
depend on the intensity I, we can readily solve this
differential equation,

I(s, λ) =
∫ s

−∞
j(s′, λ) e−τ(s′,s,λ) ds′ , (3)

with the optical depth between two positions defined
as

τ(s1, s2, λ) =
∫ s2

s1

κ(s, λ) ρ(s) ds. (4)

Expression (3) has a simple physical interpretation: it
expresses that the intensity at any position s along a
path results from the emission at all anterior points s′
along the path, reduced by a factor e−τ(s,s′,λ) to account
for the extinction by the intervening matter. It is impor-
tant to stress that the expression (3) is only a formal so-
lution of the RTE, and not a very useful solution of the
RTE. Indeed, the emissivity generally does not only
depend on position, direction and wavelength, but also
on the specific intensity itself. The formal solution (3)
is then no more than an integral equation version of the
radiative transfer equation itself; this is particularly the
case for dust radiative transfer. In the following sub-
sections, we gradually build the dust RTE by including
the various relevant physical processes.

2.2. Primary emission and absorption

Two important and obvious processes to take into
account in a dusty medium are primary emission and
absorption. Primary emission accounts for the radia-
tive energy added to the radiation field – this is often
stellar emission, but it can include, for example, radia-
tion from an active galactic nucleus, emission line ra-
diation from ionized gas or Bremsstrahlung. In general
form, it can be characterized by a function j∗(x, n, λ).
Absorption is the process in which electromagnetic ra-
diation is taken up by dust grains and transformed into
the internal energy. It is characterized by the absorp-
tion coefficient κabs; for a given chemical composition,

size and shape of a dust grain, the absorption coeffi-
cient can in principle be determined at any wavelength
(Mie 1908; Purcell & Pennypacker 1973; Draine 1988;
Mishchenko, Travis & Lacis 2002; Min, Hovenier &
de Koter 2005).

When we take only primary emission and absorp-
tion by dust into account, the RTE (1) becomes

dI
ds

(x, n, λ) = −κabs(x, λ) ρ(x) I(x, n, λ) + j∗(x, n, λ).
(5)

This equation is a simple first-order differential equa-
tion and the solution can be found by just integrating
along the line of sight, as for the formal solution (3).
For general 3D geometries, this integration is done nu-
merically.

2.3. Including scattering

The complexity of the RTE increases substantially
when we take scattering into account. Scattering, as
absorption, removes radiation from a beam and hence
accounts for a second sink term in the RTE, the ef-
ficiency of which is quantified by the scattering co-
efficient κsca. Rather than converting the radiation to
internal energy, it emits the same radiation in a dif-
ferent direction. Scattering hence does not only im-
ply a second sink term, but also a second source term.
The scattering phase function Φ(n, n′, x, λ) describes
the probability that a photon originally propagating in
the direction n′ and scattered at the position x, will
have n as its new propagation direction after the scat-
tering event. Given this definition, the phase function
satisfies the normalization
∫

4π
Φ(n, n′, x, λ) dΩ′ =

∫

4π
Φ(n, n′, x, λ) dΩ = 1.

(6)
Adding the sink and source terms due to scattering to
the RTE, we obtain

dI
ds

(x, n, λ) = −κext(x, λ) ρ(x) I(x, n, λ) + j∗(x, n, λ)

+ κsca (x, λ) ρ(x)
∫

4π
Φ(n, n′, x, λ) I(x, n′, λ) dΩ′ .

(7)

where the extinction coefficient κext = κabs + κsca. Un-
like the simple differential equation (5), this equation
is an integrodifferential equation in which the radia-
tion fields at all different positions and in all different
directions are coupled.
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In many RT calculations, scattering is important
and adds significant complexity given that dust scat-
tering is anisotropic. This is especially true for UV
to NIR wavelengths: observations indicate that the
dust scattering albedo at these wavelengths is at least
50%, and that scattering off dust grains is strongly
anisotropic (Witt et al. 1992; Calzetti et al. 1995;
Burgh, McCandliss & Feldman 2002; Gordon 2004)5.
Using an isotropic phase function or other approxima-
tions such as an isotropic two-stream approximation
or an (effective) forward scattering (e.g. Code 1973;
Natta & Panagia 1984; Calzetti, Kinney & Storchi-
Bergmann 1994) might not always be physically jus-
tifiable. Several authors demonstrated that an im-
proper treatment of anisotropic scattering leads to sig-
nificant errors (e.g. Bruzual, Magris & Calvet 1988;
Witt, Thronson & Capuano 1992; Baes & Dejonghe
2001). Even for radiation at MIR wavelengths or
longer, where the scattering off common ISM grains is
low, an application requiring the heating of the grains
to be determined will need to properly handle scatter-
ing (Nielbock et al. 2012).

The Henyey-Greenstein (HG) phase function (Henyey
& Greenstein 1941) is the most widely used parametriza-
tion of the dust phase function and provides a good
single parameter approximation. Dust grain models
predict small deviations from a HG phase function and
other parametrizations or numerical phase functions
can be used for increased accuracy (Kattawar 1975;
Hong 1985; Draine 2003b).

2.4. Radiative transfer in dust mixtures

In any realistic dust medium, there is a range of dif-
ferent types of dust grains present, with various chem-
ical compositions, sizes, shapes and number densi-
ties. Each of these different grain types i is charac-
terized by its own absorption coefficient κabs,i(λ), scat-
tering coefficient κsca,i(λ) and scattering phase function
Φi(n, n′, λ). If we denote the relative contribution of
each grain type i at the position x to the total dust num-

5Up-to-date versions of the Gordon (2004) plots of albedo
and scattering phase function asymmetry versus wavelength can
be found at http://www.stsci.edu/˜kgordon/Dust/Scat_
Param/scat_data.html.

ber density as wi(x), the transfer equation becomes

dI
ds

(x, n, λ) = −
∑

i

wi(x) κext,i(λ) ρ(x) I(x, n, λ)+ j∗(x, n, λ)

+
∑

i

wi(x) κsca,i(λ) ρ(x)
∫

4π
Φi(n, n′, λ) I(x, n′, λ) dΩ′ .

(8)

It is straightforward to see that (8) is formally identical
to equation (7) if we define the absorption coefficient,
scattering coefficient, extinction coefficient and scat-
tering phase function of a dust mixture as

κabs(x, λ) =
∑

i

wi(x) κabs,i(λ), (9a)

κsca(x, λ) =
∑

i

wi(x) κsca,i(λ), (9b)

κext(x, λ) =
∑

i

wi(x) κext,i(λ), (9c)

Φ(n, n′, x, λ) =
∑

i wi(x) κsca,i(λ)Φi(n, n′, λ)
∑

i wi(x) κsca,i(λ)
. (9d)

As long as we only consider primary emission, ab-
sorption and scattering, radiative transfer in dust mix-
tures is hence completely identical with radiative trans-
fer in a dust medium with a single average dust grain
and no approximations are needed (Martin 1978; Wolf
2003a).

2.5. Including dust emission

Apart from primary emission, absorption and scat-
tering, a fourth physical process to be taken into ac-
count in dust RT is the thermal emission by the dust
itself. Dust grains that absorb radiation re-emit the ac-
quired radiative energy at wavelengths longwards of
about 1 µm. To account for this astrophysical process,
we need to incorporate the third source term jd(x, λ) in
our RTE,

dI
ds

(x, n, λ) = −κext(x, λ) ρ(x) I(x, n, λ)+ j∗(x, n, λ)+ jd(x, λ)

+ κsca (x, λ) ρ(x)
∫

4π
Φ(n, n′, x, λ) I(x, n′, λ) dΩ′ .

(10)

It might seem as if the dust emissivity term is a simple
extra source term similar to the primary stellar emis-
sivity term. Its exact form is strongly dependent on
which physical emission processes are important, and

6



often the dust emissivity term depends in a compli-
cated and non-linear way on the intensity of the ra-
diation field itself.

A common assumption is that the dust grains are in
thermal equilibrium with the local interstellar radiation
field. In this case, the emissivity of the population of
grains of type i can be written as a modified blackbody
emission characterized by an equilibrium temperature
Ti(x). Summing over all populations, we obtain

jd(x, λ) =
∑

i

wi(x) κabs,i(λ) ρ(x) B
(
Ti(x), λ

)
, (11)

with B(T, λ) being the Planck function. The equilib-
rium temperature of each type of grain is determined
by the balance equation, i.e. the condition that the total
amount of energy absorbed equals the total amount of
emitted energy,
∫ ∞

0
κabs,i(λ) J(x, λ) dλ =

∫ ∞

0
κabs,i(λ) Bλ

(
Ti(x), λ

)
dλ,

(12)
where J(x, λ) represents the mean intensity of the ra-
diation field,

J(x, λ) =
1

4π

∫

4π
I(x, n, λ) dΩ. (13)

It is important to note that the equilibrium tempera-
ture of the dust grains depends explicitly on their size
and chemical composition. At the very same loca-
tion, dust grains with different sizes and/or chemical
compositions will obtain different equilibrium temper-
atures. So far, we have easily combined the absorp-
tion and scattering due to different kinds/sizes of dust
grains in the RTE without any approximations. The
same cannot be done for the thermal re-emission term.
One might be inspired by equations (9) and average the
temperatures of the different grains to a “mean” tem-
perature. This results in reducing the complexity of
the dust mixture at a given position to a single mean
grain that will reach a single equilibrium temperature.
While this could be useful, sufficient or even necessary
for certain applications, it is important to be aware that
this is a simplification of the RT problem that is not
physically correct (e.g. Wolf 2003a).

While the assumption of thermal equilibrium is use-
ful in some applications, it breaks down in others. Par-
ticularly important is the case where the dust medium
contains very small dust grains (including polycyclic
aromatic hydrocarbons [PAHs]). Large dust grains
reach thermal equilibrium and emit as modified black-
bodies with an equilibrium temperature. However,

small dust grains have small heat capacities, and the
absorption of even a single UV/optical photon can sub-
stantially heat the grain. These small grains will not
reach an equilibrium temperature but will instead un-
dergo temperature fluctuations that lead to grain emis-
sion at temperatures well in excess of the equilibrium
temperature. The emission from small grains is nec-
essary to explain the observed mid-infrared emission
of many objects (e.g. Sellgren 1984; Boulanger & Per-
ault 1988; Helou et al. 2000; Smith et al. 2007; Draine
et al. 2007). When including such transiently heated
dust grains, the dust emissivity changes from expres-
sion (11) to

jd(x, λ) =
∑

i

wi(x) κabs,i(λ) ρ(x)
[∫ ∞

0
Pi(T, x) B(T, λ) dT

]
.

(14)
Here Pi(T, x) is the temperature distribution for dust
grains of type i at the location x. This temperature
distribution depends on the chemical composition and
size of the dust grains, as well as on the intensity and
hardness of the radiation field in which it is embedded.
Several methods have been developed to calculate the
temperature distribution of small dust grains, using ei-
ther matrix operations or time averages (Dwek 1986;
Desert, Boulanger & Shore 1986; Guhathakurta &
Draine 1989; Siebenmorgen, Kruegel & Mathis 1992;
Draine & Li 2001; Compiègne et al. 2011). The result
is that the dust source term is an intricate, non-linear
function of the specific intensity, which adds a signifi-
cant complexity to the RT problem.

Finally, thermal emission is not the only emis-
sion process of dust grains: additional non-thermal
processes are extended red emission (Witt & Boro-
son 1990; Smith & Witt 2002) and blue luminescence
(Vijh, Witt & Gordon 2004). These non-thermal pro-
cesses can account for a substantial fraction of the sur-
face brightness of interstellar clouds at optical wave-
lengths (e.g. Gordon, Witt & Friedmann 1998; Witt
et al. 2008). Both processes can be included as an
additional term in the dust source term jd(x, λ) in the
RTE (10).

2.6. Radiative transfer of polarized radiation

The specific intensity I(x, n, λ) is not a complete de-
scription of the radiation field, as it only describes un-
polarized light. Scattering of photons from dust grains
naturally produces polarized radiation (e.g., Fig. 2 of
Gordon et al. 2001). In addition, aligned dust grains
also produce polarized radiation (Whitney & Wolff
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2002). While alignment of grains has been demon-
strated observationally for many decades, the physical
mechanism for grain alignment is still matter of debate
(Lazarian 2007).

The most common way to describe polarized radi-
ation makes use of the Stokes vector S = (I,Q,U,V),
where I is the total specific intensity, Q and U the lin-
early polarized intensity in two axes rotated by 45 de-
grees one from the other, and V the circularly polarized
intensity. The four components do not form a preferred
basis of this space, but were chosen because they can
easily be measured or calculated.

The RT formalism we have described in the previ-
ous subsections can be extended to include polarized
radiation. Instead of a single RTE, we then obtain
a vector RTE, or equivalently, a set of four coupled
scalar equations,

dS
ds

(x, n, λ) = −κext(x, λ) ρ(x) S(x, n, λ)+ j∗(x, n, λ)+ jd(x, λ)

+ κsca(x, λ) ρ(x)
∫

4π
M(n, n′, x, λ) S(x, n′, λ) dΩ′ .

(15)

A first complication is the scattering source term,
where the phase functionΦ(n, n′, x, λ) is now replaced
by a 4× 4 scattering (or Mueller) matrixM(n, n′, x, λ)
which describes the changes in the Stokes vector when
radiation is scattered from propagation direction n′ to
a new propagation direction n. For a full description
see e.g. Bohren & Huffman (1983), Fischer, Henning
& Yorke (1994) or Code & Whitney (1995). When
we consider RT of polarized light through a dust mix-
ture, each type i of grains is characterized by its own
Mueller matrix Mi(n, n′, λ). The radiative transfer
equation can then still be written as (15), with

M(n, n′, x, λ) =
∑

i wi(x) κsca,i(λ)Mi(n, n′, λ)
∑

i wi(x) κsca,i(λ)
. (16)

A second complication is the thermal emission term:
for thermal emission from aligned grains the full
Stokes vector is used in the emission.

3. THE DISCRETE 3D DUST RADIATIVE TRANS-
FER PROBLEM

A general analytical solution of the stationary 3D
dust RT equation is not possible for any of the non-
symmetric applications mentioned in the introduction.
To apply numerical solution techniques, solvers gener-

ally discretize the solution vector or the physical prop-
erties in the RTE. The quantities requiring discretiza-
tion are the three spatial coordinates, the two direc-
tional coordinates, the wavelengths, and/or the dust
properties.

A major concern when solving a 6D integro-
differential equation is the size of the solution vector.
With a resolution of 100 points in each variable, the
intensity vector has 1012 entries. Handling this inten-
sity vector requires an enormous amount of computer
memory and speed. Currently, many solution algo-
rithms avoid this requirement by not storing the full
solution vector. There are applications where the full
direction-dependent intensity is needed (e.g., when the
radiation pressure impacts the gas kinematics). Due to
this high dimensionality of 3D RT, the choice of appro-
priate grids is mandatory to effectively apply existing
solution techniques and minimize memory usage and
runtime. The solution techniques used does influence
the choice of grids (e.g., RayT versus MC).

Another concern is that for a discrete solution vec-
tor, the physics is only solved at the grid resolution
even if the solver used has no intrinsic error. Thus,
if the grid is too coarse, a strong change in the inten-
sity due a change from optical thin to thick may not
be resolved and the derived intensity would have large
systematic errors. This makes the choice of the grid
crucial.

3.1. Spatial grids

For many astrophysical applications, the density
values cover orders of magnitudes and are highly
structured (e.g., a turbulent gas cloud with filaments
and shocks). The same is true for the sources which
can be dust grain emission, the distribution of stars,
or a layer within a photon dissociation region (PDR)
emitting in the MIR. Consequently, the complexity
of spatial grids in 3D continuum RT ranges from
simple linear Cartesian grids (Stenholm, Stoerzer &
Wehrse 1991) to adaptively refined Cartesian grids
(Kurosawa & Hillier 2001; Niccolini & Alcolea 2006;
Lunttila & Juvela 2012) to multi-wavelength AMR
grids (Steinacker, Bacmann & Henning 2002). Com-
plex dust distributions are illustrated for three different
cases in Fig. 2 using refined Cartesian grids. In princi-
ple, the RTE could be solved on unstructured, dynamic
grids like those used in line RT (Petkova & Springel
2011; Paardekooper, Kruip & Icke 2010). Finally, the
density or source distribution could be given using an
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W. Saftly et al.: Octtrees in Monte Carlo radiative transfer

Fig. 6. Illustration of the geometry and the octtree grid structures for the three test models: the logarithmic spiral galaxy (top row),
the AGN torus (middle row), and the galaxy from an SPH simulation (bottom row). On each row, the left column represents a cut
through the dust density. For the two galaxy models, this cut corresponds to the xy plane, for the AGN torus model it is a cut through
the xz plane. The central and right column are cuts through the octtree grids corresponding to the same planes, and correspond to
the regular and barycentric subdivision recipes, respectively.

large variety of models for such tori have been proposed, rang-
ing from smooth, axisymmetric models (Pier & Krolik 1992;
Granato & Danese 1994; Efstathiou & Rowan-Robinson 1995;
Schartmann et al. 2005; Fritz et al. 2006) to completely clumpy
structures (Nenkova et al. 2002, 2008; Hönig et al. 2006; Hönig
& Kishimoto 2010). The model that we adopt here is similar to
the AGN torus models presented by Stalevski et al. (2012), in the
sense that it consists of a number of compact and optically thick
clumps embedded in a smooth, interclump medium. Contrary

to the approach adopted by Stalevski et al. (2012), where the
two-phase clumpy medium was generated in a statistical way by
applying a clumpiness algorithm (Boissé 1990; Witt & Gordon
1996; Wolf et al. 1998), we now consider a torus model consist-
ing of a smooth distribution of dust to which we add a discrete
number of individual clumps (as in Bianchi 2008). The smooth
model has an opening angle of 100 deg, an inner radius of 0.7 pc,
an outer radius of 15 pc and a density that falls of in the radial
direction as r−1. To this smooth dust distribution we add 40,000

6

Fig. 2.— Examples of advanced spatial grids that are
currently being used for 3D dust RT calculations, from
Saftly et al. (2012), are shown. The examples are 2D
plane cuts through octtree-based grids used in Monte
Carlo simulations; similar grids are applied in ray-
tracing techniques. On each row, the left panel shows
the dust density, the central panel the grid distribu-
tion in a regular octtree structure, and the right panel
the grid distribution in a barycentric octtree structure.
The top row represents a regular, analytical model of
a double-exponential disc with a three-armed logarith-
mic spiral density perturbation. The middle row corre-
sponds to a clumpy AGN model, consisting of a large
number of optically thick clumps in a smooth density
distribution (Stalevski et al. 2012). The bottom row
corresponds to a late-type disc galaxy model resulting
from N-body/SPH simulations with strong supernova
feedback (Rahimi & Kawata 2012). In all cases, the
grids contain between 3 and 4 million cells.

analytical formula and the 3D dust RT would be a
complex function with many parameters.

The optimal grid would be based on changes in the
radiation field intensity. As we don’t know the radi-
ation field a priori (this is the goal of the RT calcula-
tions), it is extremely challenging to generate such an
optimal grid. First, the spatial grid is only 3D while
the intensity is defined in 6D (spatial, direction, and
wavelength). For example, the intensity in a certain
direction can remain constant between two positions,
while the intensity in another direction can vary dras-
tically between the same positions. The radiation field
also depends on the wavelength, so the optimal spatial
grid is different for each wavelength. The dust mass
density, or the optical depth, could serve as the starting
point on which the grid could be based (see e.g. Fig-
ure 3, which shows 3D RT octree grids with a refine-
ment criterion based on the total dust mass in a cell).
However, the cell optical depth alone is not suitable
to define a grid refinement criterion, as the strength of
the radiation field can show strong gradients even in
regions where the optical depth is small. In summary,
the optimal grid should combine the details of the dis-
tribution of both the dust and source terms such that it
captures the variation of the radiation field intensity.

As a result of the difficulty in creating an optimal
spatial grid, various approximations are used. To re-
view the variety of grids and their purpose, it is con-
structive to distinguish three spatial grid classes. They
are used in various combinations by different solvers
and in the different astrophysical communities.

Local mean intensity storage grids

This most common class of grids stores the mean
intensity with the goal to resolving its variation. In the
end, the grid’s resolution determines the spatial reso-
lution of the obtained solution.

To achieve a reasonable sampling of the gradients
in the mean intensity, it is possible to calculate a series
of spatial grids that are refined using the local opti-
cal depth averaged over all directions for each wave-
length. The computational effort to calculate such
grids is negligible compared to the effort of solving the
RT equation (Steinacker, Bacmann & Henning 2002).
The drawback of multi-wavelength grids is that a large
number of interpolations have to be performed in or-
der to assemble the wavelength dependent radiation
field. Such interpolations are time consuming and in-
troduce interpolation errors. As a compromise, grids
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optimized for tracking the variation in the local optical
depth for the wavelengths that dominate the radiative
energy locations have the advantage of resolving the
important regions at the expense of excess grid points.
An alternative way of building the grid was proposed
by Niccolini & Alcolea (2006) where an initial calcu-
lation is used to define the explicit location of a num-
ber of photons and these locations then used to refine
the grid to have a constant absorption rate in each grid
cell.

Density and source grids

The grids storing density and source information
can originate from a discretization of simple physical
models to deep structure grids designed to resolve the
kinematic processes. The latter one is often realized
as adaptive mesh refinement grid or smoothed particle
(SP) distributions used in hydrodynamical simulations
(e.g. Steinacker et al. 2004), typically incorporating
several tens of millions of cells and many levels of re-
finement or SPH particles. While RT calculations can
be performed directly using such density grid (Abel &
Wandelt 2002), in most cases the density information
is stored on coarser grids to meet the storage and speed
limitations of the 6D RT.

Solution grids

The third class of grids is designed to calculate
the solution directly at the grid points by advancing
from one cell to the next in one step. The refine-
ment criterion is defined to minimize solution errors
of a certain order (Steinacker et al. 2002) or to provide
a flexible grid that minimizes solution errors due to
the coarse spatial coverage of the physical quantities
(Paardekooper, Kruip & Icke 2010). These grids are
well suited for (M)HD codes. Solving the RT equa-
tion directly on a grid accumulates discretization er-
rors causing, e.g., a smearing of beams in the case of
finite differencing solvers. Additional numerical meth-
ods or higher-order corrections are used to compensate
for these numerical diffusion errors. It should be noted
that in some applications the source function may also
contain a smaller number of discrete sources such as
stars. These can be considered outside the main spatial
grid or using smaller subgrids (Stamatellos & Whit-
worth 2005).

3.2. Direction grid

There are two major challenges in defining a fixed
direction grid for 3D RT. First, the radiation field can
be strongly peaked due to nearby sources, and a smear-
ing of this beam due to insufficient direction resolu-
tion will result in remote regions not being illuminated
accurately. Since the optimal intensity discretization
can vary greatly across the domain, a globally opti-
mal refinement of direction space is not usually pos-
sible. Second, even direction grids optimized to be
equally-spaced on the unit sphere (Steinacker, Thamm
& Maier 1996) require a large number of points pro-
vide good angular resolution. Another possible reg-
ular direction grid is given by the HEALPix method
which subdivides the unit sphere in pixels of equal
size (Górski et al. 2005). For example, a grid with
600 direction points equally spaced on the unit sphere
provides a mean resolution of ∼10◦ only, and it takes
10000 grid points to achieve a mean resolution of
∼2.5◦. For a protoplanetary disk, this resolution cor-
responds to a hot dust region with the size of 4!AU
placed at a distance of 100 AU from the central star.

It is important to note that the two main RT solution
techniques treat the discretization of directions quite
differently. In MC, the direction of the photons is not
discretized, but sampled from a probability function.
For example, in MC the calculation of the scattered in-
tensity is based directly on the scattering phase func-
tion, allowing an arbitrarily precise solution. In RayT,
a discrete direction grid is used for all calculations.
The scattered intensity calculation is done on the di-
rection grid, potentially undersampling the scattering
process in the direction space of the solution.

Another issue in direction space is the divergence of
rays or photon tracks. The chance to miss physically
important parts of the domain increases with the dis-
tance from the current point or cell. When tracing the
radiation from a single source, this can lead to large er-
rors in the computed radiation field for distant cells, or
long runtimes to increase resolution using more pho-
tons or rays. Solutions to this issue exist and are dis-
cussed in the MC and RayT sections.

3.3. Wavelength and dust grain grids

It is important to consider variations in source spec-
tra and dust opacity when choosing a wavelength grid.
The spectrum of the radiation sources should covered
well enough to resolve the overall shape and any im-
portant spectral features (e.g., emission lines). The

10



wavelength grid should resolve variations in the grain
properties (e.g., opacities and scattering properties).
Where there are features in the dust properties (e.g.,
2175 Å bump, MIR aromatic/PAH features), the wave-
length grid should resolve the feature, ideally includ-
ing a point at the maximum of each feature as well as
enough points to Nyquist sample the feature.

Beside the discretization of the variables entering
the intensity directly, the size distribution of the grains
needs to be discretized if not given analytically. The
grain size discretization can have a strong impact on
the radiation field. The extinction of the radiation is
the sum of the extinction of the different species, but
the emissivity of individual grains is coupled to the in-
tensity of the incoming radiation field (see Sec. 2.3).

4. THE RAY-TRACING SOLUTION METHOD

Ray-tracing (RayT) is a method widely applied in
physics and computer graphics to describe the propa-
gation of electromagnetic waves or particles through
a medium with varying properties. Important appli-
cations outside astrophysics cover the propagation of
radio signals in the ionosphere, the investigation of
heating by plasma waves, sound waves in the ocean,
optical design of lenses, tomographic reconstruction
of the Earth’s interior, and image generation in com-
puter graphics. In radiative transfer, RayT is used to
follow the change of intensity in a particular direc-
tion which is the basic transport problem described by
Eq. (1). The MC solution technique described in the
next section is a sophisticated variant where a prob-
abilistic approach is taken to choose the direction of
the photon package representing the ray. RayT solvers
have been used for a number of 2D continuum RT ap-
plications (see e.g. the benchmark comparison in Pinte
et al. 2009) and 3D RayT is based on many techniques
first developed in 2D.

In the following subsections, we describe the ba-
sic ingredients and challenges when using RayT as a
solver of the general 3D continuum RTE. The solution
on a single ray under various numerical and physical
conditions is given in §4.1. The global solution and
the treatment of source terms coupling directions are
discussed in §4.2.

4.1. RayT Solution for Single Ray

The elementary RayT operation is to solve the first-
order differential equation (2) within a spatial density
grid cell along a given direction. The mass density

ρ0, the mass extinction coefficient κ0, and the source
function j0 are assumed to be constant within the cell
for a given wavelength, so that we can determine the
intensity I(s + ∆s, λ) from I(s, λ) using Eq. (3)

I(s + ∆s, λ) = I(s, λ)e−τ0(λ) +
j0(λ)∆s
τ0(λ)

(
1 − e−τ0(λ)

)

(17)
with τ0(λ) = κ0(λ)ρ0∆s. For a ray crossing several
cells, the numerical task is to determine the cells that
are hit by the ray, calculate the intersection points
with the cell borders, and use Eq. (17) to calculate the
change in intensity along the ray in each cell. The first
step can be time-consuming, since an adaptively re-
fined grid is often stored as a tree, and neighbor-search
calculations are required. The error in the intensity is
solely defined by the the finite resolution of the under-
lying spatial grid.

For clarity in the notations used, we note that the
solution of the RTE along rays with constant direction
is also called the method of short or long character-
istics. Long characteristics refers to calculating the
radiation field along a ray through the entire compu-
tational domain. Since several rays can cross a certain
cell causing redundant calculations, pre-calculated lo-
cal column density or optical depth values can be used
(short characteristics) to interpolate the contributions
along a ray. Usually, a sweep of the ordering of the
grid is required to ensure that, for a given direction, all
information about positions before the currently con-
sidered point are given before performing the step de-
scribed by Eq. (17). The method is less accurate than
long characteristics due to the accumulation of inter-
polation errors. For combined applications of RT and
(M)HD, hybrid methods have been proposed combin-
ing the advantages of short and long characteristics
(Rijkhorst et al. 2006).

Beyond the Spatial Grid Resolution

There are cases where the best RayT solution is not
performed at the density grid resolution. First, the spa-
tial resolution of the density from an Adaptive Mesh
Refinement (AMR) MHD calculation with many re-
finement levels can be too fine for a RT calculation
to be done in a reasonable time. One way to deal
with this case is to interpolate the density to a coarser
grid, but this loses some of the information on the
physical structure obtained in the AMR run. Second,
the density grid shows strong gradients. One way to
soften the gradients is to interpolate the density to a
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finer grid. But this can still leave the density changes
abrupt. Instead an interpolation scheme can be used
to find the density in between grid cells. Finally, the
density is given analytically and no step size infor-
mation is a available. Note that in practice analytical
density structures are not automatically simpler than
AMR density grids. The density used for the RT mod-
eling of Spitzer images of the molecular cloud L183 by
Steinacker et al. (2010), e.g., involved 100 3D clumps
with Gaussian profiles and 700 free parameters.

The simplest approach to solve the RTE in these
cases is to apply an upwinding first-order finite dif-
ference scheme. The relation between two intensities
located at s and s + ∆s along the ray is then

I(s+∆s, λ) = I(s, λ) [1 − τ(s,∆s, λ)]+ j(s, λ)∆s. (18)

using the local optical depth τ(s,∆s, λ) = κ(s, λ)ρ(s)∆s.
The step size ∆s is chosen to be small enough to stay in
the optically thin limit allowing the Taylor expansion
of the exponential to be truncated after the first term
(exp[−τ] ≈ 1−τ). The advantage of this scheme is that
it is fast, the disadvantage is that first-order errors can
accumulate along the ray. Moreover, the steps become
very small in regions of high optical depth, although
the radiation field takes a simple form in this limit.

The concept of ”trial” steps can improve the accu-
racy. Using a Runge-Kutta scheme, a step with the size
∆s/2 can be made to calculate a second estimate of the
derivative. The scheme then advances to the next point
by using a linear combination of both derivatives. The
linear factors are chosen by comparison with the Tay-
lor series of I(s) and letting the first-order term vanish.

This improvement can be repeated to achieve a bet-
ter solution, at the cost of repeated calculations or
look-up of the density and source terms. An advanced
ray-tracer based on a 5th-order Runge-Kutta accuracy
has been proposed by Press et al. (2002). It is coupled
with an adaptive step size control using an embedded
form of the 4th-order Runge-Kutta formula. As pa-
rameters for the error truncation, values determined by
Cash & Karp (1990) are used. The tracer steps are cho-
sen adaptively and with full error control. Such a tracer
is therefore the first choice for astrophysical RT prob-
lems with moderate optical depth variations which are
not solved at the resolution of the density grid. This
explicit error control is an important characteristic of
the RayT solution technique.

High optical depths

There are 3D RT applications with strong gradients
in the source function or in the local optical depth. In
particular, the case of high optical depth τ * 1 occurs
in all star formation regions as well as in AGN tori. All
algorithms used to solve the RT encounter problems in
correctly describing the intensity changes in the opti-
cally thick case. Adaptive grid RT solution techniques
refine the regions into too many cells. Only moment
methods which are applied in conjunction with (M)HD
solvers are well-posed to treat the optical thick regime,
but in turn fail to describe a strongly peaked radiation
field arising in low optical depth regions.

To illustrate the difficulties of high optical depths
for the RayT method, we assume a simple modi-
fied black body thermal source term for a single dust
species j(s, λ) = κ(s, λ)ρ(s)B(s, λ) in Eq. (18), which
becomes

I(s+∆s, λ)− I(s, λ) = τ(s, λ) [B(s, λ) − I(s, λ)] . (19)

When the ray moves from one to the next point, most
of the radiation at s is damped, as is the source con-
tribution along the path, so that the local radiation at
s+∆s is dominated by the source contribution. Hence
B − I is small, suggesting that the solver can perform
large steps. But B − I is multiplied by the large opti-
cal depth τ amplifying any change in the source term
that arises from the spatial variation in the temperature.
Thus, to meet accuracy requirements, the tracer must
perform small steps.

The second reason to modify the ray-tracer is the
two exponential functions entering the radiation equa-
tion. First, the exponential containing the optical depth
has to be calculated precisely along the ray. Given a
limited computational range of the computer, an op-
tical depth of 1000 usually exceeds these limits and
makes it necessary to renormalize the intensity. Sec-
ond, the Planck function rises sharply with λ for tem-
peratures in the Wien part T (x) < hc/λk.

To solve the two exponential problem, Steinacker,
Bacmann & Henning (2006) proposed to use the trans-
formation to the relative intensity D = I/(I + B). For a
vanishing source function, it approaches unity, and for
the optically thick part with I(s, λ) ≈ B(s, λ), D(s, λ)
has a value close to 1/2. The authors showed that the
transformation avoids numerical problems caused by
the exponentials and that the intensity error amplifica-
tion by the transformation is less than a factor of 2. As
criterion for the use of an approximate solver in the
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optically thick region D(s, λ) ≈ 1/2, they derived

|B(s2, λ) − B(s1, λ)|
B(s1, λ)

1
τ(s1, λ)

< ε (20)

where ε is a positive limit for the relative difference
|B − I|/B. The condition is fulfilled either due to small
relative changes in the source term or a large local op-
tical depth. In a pre-calculation along the ray, the re-
gions where the condition is fulfilled can be identified.
Then, a fast solution is obtained for these region by
performing large steps while assuming D(λ, x) = 1/2.
Applying the scheme to the case of a massive molecu-
lar cloud core illuminated by a nearby star, Steinacker,
Bacmann & Henning (2006) verified speed-up factors
of several hundreds compared to fourth-order Runge-
Kutta solvers.

4.2. Ray location and RTE global solution

After discussing the solution methods for a single
ray through the computational domain, the next step is
to determine how to place the rays to ensure that the
radiation field is correctly calculated. This is a critical
part of the solution process.

Thermal Emission

We describe how to place the rays in order to cal-
culate the intensity of the radiation field when the
source term is dominated by thermal emission from
dust grains. The various ray patterns used in RayT
are illustrated in Fig. 3. For what follows, the term
”placing a ray” will be used for the basic RayT step
that includes defining the ray by a point in space and
a direction, solving the intensity along the ray as pre-
viously described, and storing the absorbed energy in
the cells that are crossed. According to Eq. (17), the
intensity of the absorbed radiation per cell is

I(s,∆s, λ) = I(s, λ)
(
1 − e−τ0(λ)

)
+ j0(λ)∆s

[
1 − 1
τ0(λ)

(
1 − e−τ0(λ)

)]
.

(21)
Its contribution to the local radiation field then is cal-
culated from the formula for the mean intensity (13)
and the balance equation (12). In each RayT step, the
local source term (11) contains the thermal energy of
the currently crossed cell; this is updated with each ray
crossing.

In RayT, pre-calculation steps are done to analyze
the specific RT problem and accelerate the computa-
tions. The optical depth affects the transport within

the domain, the thermalization of the radiation, and the
appearance of the object on the τ(λ) ≈ 1-surface for
the observer. Therefore a penetration depth analysis is
performed at all wavelengths determining the optical
depth distribution with respect to all discrete sources as
well as to the observer (see, e.g., Steinacker, Bacmann
& Henning 2002). For this calculation, rays are placed
from the sources to all grid cells (Fig. 3a,b). In addi-
tion, we calculate the optical depth from the source to
the cell using

τsou(s1, s2, λ) =
∫ s2

s1

κ(s, λ)ρ(s)ds =
Nc∑

i=1

κi(λ)ρi∆si

(22)
with the ray crossing Nc cells with their individual κi,
ρi, and crossing length ∆si. τsou ≈ 1 marks the region
where most of the source radiation is reprocessed.

The solver also calculates the optical depth from
each cell to the observer τobs as described above
(Fig. 3f). This information is used to understand which
regions are shielded at which wavelengths from the ob-
server, and to calculate the final images once the main
RayT has been performed.

The second pre-calculation is to propagate the ini-
tially deposited discrete source energy and the radia-
tion field at the domain boundary through the domain.
The calculation is done on a regular grid of rays like
the one shown in Fig. 3e. This calculation also deter-
mines the optical depth between cells, τcc, on a coarse
spatial grid at all wavelengths, in this way providing
information on which regions in the domain exchange
significant amounts of radiation. In star formation ap-
plications, e.g., regions often do not connect signifi-
cantly at UV wavelengths.

If the source of radiation is the interstellar radiation
field, the pre-calculation can be very time-consuming,
as it comprises rays from all directions to all cells
at all wavelengths for which the optical depth can
reach 1. However, there are many cases where this
pre-calculation is less time-consuming. For example,
when the dust properties are constant in the domain as
then the optical depth is τsou = κNcol and this is an
integral only over the density.

The main RayT calculations are performed sepa-
rately for each wavelength. Rays are placed through
the grid points in the τsou ≈ 1-layers covering all
directions. In this way additional resolution is pro-
vided where the largest changes in the radiation field
are expected. Moreover, additional rays from discrete
sources are placed to help resolving the illumination
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of the τsou ≈ 1 layers. This can be important, e.g.,
in the case of an accretion disk atmosphere that is il-
luminated by a protostar through a narrow solid an-
gle. It is important to note that the order in which
the computation is done for each wavelength influ-
ences the convergence. In RayT, information has al-
ready been transported from the sources to the cells
during the pre-calculation step. Therefore, starting
with wavelengths covering the peak of the re-emitted
photon energy (e.g., in the MIR) can speed up the in-
formation transport in thermally dominated problems.
For problems dominated by low optical depths in the
UV/optical, the order is less important as the dust self-
heating is small compared to the dust heating from
UV/optical photons.

In practice, the placing of rays is controlled by the
maximal numbers of rays per cell Nl and the ”width”
of the τsou ≈ 1 layers ∆τl with |τsou − 1| < ∆τl. The
placing and iteration over wavelength is stopped when
the change in the energy deposited in all cells drops
below a chosen change limit and the mean field dis-
tribution has been determined. If the energy does not
converge after placing Nl rays in all cells within the
τsou ≈ 1 layers, a second run with all rays is performed
but using the updated energy information from the first
run. If still no convergence is obtained in this run, Nl
is increased to improve the resolution. The number of
rays for typical 3D dust RT applications can easily ex-
ceed 106.

The final step is to calculate the radiation that is re-
ceived by the observer from each cell. This calculation
makes use the pre-calculated τobs. Moreover, radia-
tion directly received from the inner and outer discrete
sources as well as from the background radiation that
is inside the field of view is calculated by placing rays
from the sources and the background to the observer.

To illustrate how the rays are placed in various sit-
uations, we present a few simple examples. The first
is a molecular cloud core with a gas mass of 1 M+
that is illuminated by a strong MIR radiation field that
dominates its thermal budget. The core has no in-
ternal source of radiation except the thermally emit-
ting dust. Furthermore, the self-heating of the dust
by neighboring dust within the core can be neglected.
The pre-calculations will not yield any τ-surfaces since
the optical depth is too low in the MIR. The main
calculation will therefore be to propagate the external
anisotropic radiation field through the core with little
need for refinement by placing additional rays. Cor-
respondingly, the rays can be placed dense enough in

direction space to resolve all features of the extended
illumination source (e.g., a nearby photodissociation
region, see Steinacker et al. 2005).

The second example is a binary star surrounded by
a circumstellar disk. The pre-calculation will identify
the inner disk and the disk surface as the τ ≈ 1-zone
for the NIR wavelengths. The ray pattern will there-
fore be dense at the inner rim, and in the zone above
and below the disk. At MIR or longer wavelengths, the
ray pattern will be less dense in the atmosphere since
the τ ≈ 1-range will move deeper into the disk as the
thermally emitting inner dust is important. This appli-
cation has an additional complication in that it requires
the scattered light to be calculated (see below).

More complex structures being illuminated by a
central source are a problem for all RT solvers: a
proper resolution requires many spatial cells and there-
fore many rays from the star to the cell and from the
cell into the surrounding regions. For RayT, if a fixed
direction grid is used, more and more cells are over-
looked when the diverging rays reach the outer parts.
For such applications, beam-splitting can be used to
split a ray in order to sample several neighboring cells
(Abel & Wandelt 2002).

Including scattered radiation

While the thermal source contribution can be calcu-
lated using the mean intensity J(x, λ) per cell, the scat-
tered light intensity depends on the direction of the in-
coming radiation, the optical depth for scattering, and
the phase function of the grains. The RayT scheme
that includes thermal re-radiation and scattering must
therefore store J and the intensity and direction of the
incoming radiation for each cell and wavelength.

Every RayT step is expanded to include ”directly
scattered light” by calculating the amount of radiation
that is scattered towards the observer using the pre-
calculated τobs. In many applications, this singly scat-
tered radiation is a good fraction of the total scattered
light in the computational domain. Including multiple
scattering in RayT methods significantly increases the
computational requirements. Applications using 3D
dust RT based on RayT with scattering sources have
been presented for massive disk candidates (Steinacker
et al. 2006) and grain growth in molecular cloud cores
(Steinacker et al. 2010). Further codes using ray-
tracing solvers and also alternative techniques to deal
with high-optical depth are described in Pinte et al.
(2009) and the references within. Fortunately, there
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are specific astrophysical regimes where multiple scat-
tering is not crucial or where reasonable approxima-
tions can be made to limit the computational require-
ments.

The standard ISM dust grain distribution can be ap-
proximated as a mean grain with a 0.1 µm grain size.
Such grains have very low scattering efficiency in the
MIR and, thus, scattering is often neglected if calcu-
lations are done at MIR or longer wavelengths. But
caution should be exercised as for coagulated grains in
dense molecular clouds scattering can be be important
even at MIR wavelengths (Steinacker et al. 2010). In
addition, dust grains have a strongly forward peaked
scattering phase function and a portion of the scat-
tered light can be transported along the already cal-
culated rays (see, e.g., Steinacker et al. 2003). For the
wavelengths where dust shows a more isotropic scat-
tering phase function (e.g., MIR), additional rays can
be added to carry the scattered radiation. An exam-
ple of where adding scattering is fairly straightforward
is in modeling star formation regions. Models of these
regions will have a high number of rays in cells that are
identified using the τ ≈ 1-search algorithm, allowing
scattering to be calculated along existing rays. Finally,
the high albedo of dust grains and the distribution of
the scattered intensity over the unit sphere naturally re-
duce the intensity of the scattered radiation with sub-
sequent scatterings allowing an intensity threshold to
be used to limit the number of scatterings needing to
be calculated.

In astrophysical objects where the optical depth is
very small, or very large, or where the τ ≈ 1 layer is
not resolved, calculating multiple scattering can be ig-
nored. If τ , 1 for an object (e.g., the diffuse ISM or
the Zodiacal light), then single scattering completely
dominates the scattered intensity and multiple scatter-
ing can be ignored. In models of τ * 1, the main mod-
eling goal is usually to calculate the thermal dust emis-
sion. Since scattering is generally important at optical
and shorter wavelengths, most of energy at these wave-
lengths is absorbed in the τ ≈ 1 regions of the object.
Thus, not calculating the scattered light properly will
not have a large impact on the dust emission results.
For very embedded sources like massive young stellar
objects, the stellar energy is completely converted to
radiation at MIR or longer wavelengths before it leaves
the core and therefore scattering does not influence the
outer radiation field. Finally, if a model does not re-
solve optically thick regions (e.g., in some extragalac-
tic applications) and thus not not having τ ≈ 1 regions,

then all the rays can be used to determine the global
field and transport the single scattering.

4.3. RayT Error analysis

The precision of a solution of the RT equation along
a ray through a spatial grid on which the opacity and
source terms are described analytically is limited by
machine precision.

Solving the RT equation along a ray through a spa-
tial grid on which the opacity and source terms are an-
alytically described can be done with only machine
precision errors. For example, the previously men-
tioned Runge-Kutta solver with adaptive step size con-
trol provides a good compromise between accuracy
and computational cost while providing explicit error
control.

The main source of error for solutions on a sin-
gle ray is the interpolation error of the density and
source function from the underlying grid. It can accu-
mulate if the density grid shows strong (and partially
unresolved) gradients. The pre-calculation of τ ≈ 1-
regions and shielded areas helps to characterize how
well the chosen grid describes the underlying physical
problem, and refining the grid with this information
can reduce the interpolation errors in the intensity dis-
tribution. Unlike solvers calculating the intensity on a
grid (e.g. using finite differencing), RayT solvers cre-
ate no diffusive errors (beam-smearing).

There is no general formula for the global error in
the achieved intensity distribution, because deviations
caused by coarse resolution due to the placement of
rays are hard to quantify. A good test for the global ac-
curacy of the thermal conversion of radiation is to cal-
culate the energy output of the source term integrated
over the domain, and to compare it to the energy in
the radiation leaving the domain. Another test for the
overall resolution of the important regions in the do-
main is based on the number of crossing rays per cell.
All the cells that contribute significantly to the radia-
tion field overall should crossed by many rays. Having
important cells with a small number of rays is an indi-
cation of underresolving the grid.

A practical test to understand and measure the
global error is to increase the spatial or wavelength res-
olution by inserting more rays or adding wavelength
grid points, and testing the stability of the solution.
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5. THE MONTE CARLO SOLUTION METHOD

The Monte Carlo (MC) method is a general compu-
tational technique that is widely used in many different
areas, including numerical mathematics, physical sci-
ences, finance, and medicine. It is a joint name for a
variety of stochastic or probabilistic techniques, which
all have in common that they solve equations by sam-
pling random numbers. MC methods are particularly
interesting for transport systems, which was the moti-
vation of their first application in the 1940s. For a gen-
eral overview of MC as a tool for transport problems,
see e.g. Dupree & Fraley (2002), Kalos & Whitlock
(2009) or Whitney (2011). Its application to dust RT
problems in an astrophysical context has a history of
more than 40 years (e.g Mattila 1970; Roark, Roark
& Collins 1974; Witt & Stephens 1974; Witt 1977).
In the last four decades, it has become a mainstream
method for 3D dust RT calculations.

The basis of MC RT is to treat the radiation field as
the flow of a large but finite number of photon pack-
ages (often called photons). Each individual photon is
followed along its journey through the dusty medium.
At every stage in its journey, the characteristics that de-
termine the path of each photon (such as its birth loca-
tion, initial propagation direction, or the distance along
the path until the next interaction with a dust grain) are
determined in a probabilistic way by generating ran-
dom numbers from an appropriate probability density
functions (PDF). At the end of the simulation, the ra-
diation field is recovered from a statistical analysis of
the photon paths. Hence, the MC technique simulates
the RT instead of explicitly solving the RT equation.

Central to all MC techniques is the process of gen-
erating random numbers from a given PDF p(x) dx.
Thus an algorithm is needed that returns a set of num-
bers X such that the probability that X lies in the in-
finitesimal interval between x and x + dx is equal to
p(x) dx. The starting point for such algorithms, which
are key to the MC process, is a (pseudo-)random num-
ber generator. This is a code that generates uniform
deviates (random numbers with an equal probability to
be chosen in the unit interval between 0 and 1). In
order to generate random numbers from another, arbi-
trary PDF, one almost always applies appropriate op-
erations on one or more uniform deviates. The most
popular methods are the so-called transformation and
rejection methods, details of which can be found in
Devroye (1986) or Press et al. (2002, Ch. 7).

In the following subsections, we will gradually in-

troduce the ingredients and techniques that are com-
bined to to develop a 3D MC dust RT code. We start
by describing the simplest MC RT technique, as it is
the basis for all modern MC RT, in §5.1. These sim-
ple techniques are sufficient for MC calculations in
geometries with a large degree of symmetry, such as
1D spherical or slab geometries. For 3D applications,
however, they would result in codes that would be very
inefficient. Fortunately, there are various weighting
schemes that improve the performance of this tech-
nique making modern MC RT quite efficient. Some
of these weighting schemes have a strong heritage in
RayT methods, making most modern MC RT codes
hybrids between the classical MC and RayT tech-
niques. A number of these weighting schemes were
developed for 2D geometries, especially cylindrical
geometries. The use of weighting schemes is critical
for 3D MC RT; in §5.2 we discuss several of these
techniques.

5.1. Simple MC RT

The simplest MC calculation consists of consider-
ing the RT problem at a single wavelength λ. We con-
sider a source of photons, characterized by the source
term j∗(x, n, λ), and a distribution of dust, character-
ized by the dust density ρ(x). Throughout the cal-
culation, the state of each photon is tabulated by its
energy, position, direction of travel, and polarization
state. For 3D RT, the Cartesian coordinate system is
usually used resulting in the photon’s position being
stored as x = (x, y, z) and the direction using direction
cosines as n = (nx, ny, nz). The polarization state is
stored using the Stokes vector, S = (I,Q,U,V).

Step 1: birth

The first step in a photon’s life cycle is its birth, i.e.
its injection into the computational domain. If N is the
number of photons in the model run and Ltot(λ) is the
total luminosity of the source, the luminosity carried
by each photon is L = Ltot(λ)/N. The initial position x
and propagation direction n are to be chosen randomly
according to the source term j∗(x, n, λ), which means
that they need to be sampled from the PDF

p(x, n) dx dn =
j∗(x, n, λ) dx dn
!

j∗(x, n, λ) dx dn
=

j∗(x, n, λ) dx dn
Ltot(λ)

.

(23)
In many cases, e.g. for emission by stars or thermal
emission by dust grains, the emission is isotropic,
which implies that the initial propagation direction can
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be chosen randomly from the unit sphere,

p(n) dn =
dn
4π
=

sin θ dθ dφ
4π

. (24)

Generating random values for θ and φ from this dis-
tribution can easily be done using the transforma-
tion method. In other cases, e.g. when we deal with
external emission illuminating an interstellar cloud
or anisotropic emission from an AGN accretion disc,
different PDFs for the initial propagation direction
need to be considered (e.g. Niccolini, Woitke & Lopez
2003; Stalevski et al. 2012). For most cases, the pho-
ton is assumed to be emitted unpolarized, i.e. S =
(1, 0, 0, 0).

Step 2: determination of the interaction point

Once the photon is launched into the dusty medium,
the next step consists of randomly determining whether
it will interact with a dust grain, and if so, where this
interaction will take place. The PDF that describes the
free pathlength before an interaction is most conve-
niently described in optical depth space, where it has
an exponential distribution, p(τ) dτ = e−τdτ. The opti-
cal depth τ to which a particular photon travels along
its path before it interacts with a dust grain, is drawn
from from this exponential distribution. This is easily
done using the transformation method: we simply pick
a uniform deviate ξ and solve the equation

ξ =

∫ τ

0
e−τ

′
dτ′ (25)

for τ. Integrating and solving gives τ = − ln ξ re-
membering that the distributions of ξ and 1 − ξ are
equivalent. If τ is greater than the optical depth τpath
to the surface of the system in the direction the pho-
ton is traveling, the photon escapes the system, and the
life cycle of this particular photon is over. Otherwise,
the photon will interact with the dust medium at the
location along the path corresponding to the traveled
optical depth τ.

The next step is converting the traveled optical
depth τ to a physical path length s, such that we can
move the photon to the interaction site. This means
that we have to integrate along the path and solve the
integral equation

∫ s

0
κext(s′, λ) ρ(s′) ds′ = τ (26)

for the path length s. Comparison between this equa-
tion and Eq. (22) highlights the intimate link between

the MC solution technique and the RayT technique: a
large fraction of the calculations in MC simulations are
pure ray-tracing operations.

In practice, MC codes virtually always use a grid
structure of dust cells on which the dust density and
the optical properties are discretized. The integral in
equation (26) then reduces to a sum over the consecu-
tive grid cells along the path, and the integral equation
comes down to summing the optical depth along the
path until τ is reached. This calculation is often one
of the more computationally intensive portions of MC
RT and is a strong driver for choosing a grid optimized
for the particular astrophysical object of interest. For a
Cartesian model grid, the distance traveled in each cell
is easy to calculate, as is the next grid cell along the
path. For hierarchical grids, more complex neighbor
search algorithms may be required.

Step 3: absorption and scattering

Once the path length s has been calculated, the pho-
ton moves from its old location x to its updated loca-
tion, i.e. the interaction site x + s n. At this location,
the photon can either be absorbed or scattered; the ap-
propriate PDF is hence not a continuous, but a discrete
function with only two possible values. The probabil-
ity that the interaction is a scattering event is equal to
the dust albedo a = κsca/κext. Using a uniform deviate
ξ, the nature of the interaction is easily determined: if
ξ ≤ a we have a scattering event, if ξ > a an absorption
event.

In the case of an absorption event, this is the end of
the photon’s life cycle. If dust emission is to be cal-
culated in the simulation, the absorbed photon lumi-
nosity is stored in the interaction cell. This absorbed
luminosity will be used at a later stage to calculate the
dust emission spectrum, which can then be used as the
source function for another MC cycle.

If the interaction is a scattering event, the next step
consists of determining the new propagation direction.
In the case of isotropic scattering, this just comes down
to generating a new random point from the unit sphere.
In the case of anisotropic scattering, the new propaga-
tion direction n is chosen according to the PDF

p(n) dn =
Φ(n, n′, x, λ) dn

4π
, (27)

where Φ(n, n′, x, λ) is the scattering phase function
and n′ is the original propagation direction before the
scattering event. For spherical dust grains, the scat-
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tering phase function is dependent only on the scat-
tering angle between n and n′. For the HG phase
function, the most popular approximation to the real
phase function, the generation of a random scattering
angle and hence the calculation of the new propaga-
tion direction, can be done analytically (Witt 1977).
For polarized RT, the scattering process is more com-
plex, as the scattering phase function is dependent on
the polarization of the photon and, in addition, scat-
tering changes the polarization state of the photon. A
detailed description of scattering events in the case
of polarized radiation can be found in e.g. Fischer,
Henning & Yorke (1994), Code & Whitney (1995), or
Goosmann & Gaskell (2007).

With its new propagation direction determined, the
photon can continue its journey through the dusty
medium. This means that the second and third step
are repeated until the photon either escapes from the
system, or is absorbed by a dust grain.6 This entire
process is repeated for all the photons until the last
photon has left the dusty medium. The RT at differ-
ent wavelengths can be independently calculated given
there is no explicit wavelength coupling in the RT.
There is an implicit coupling when dust emission is
included in the modeling. In this case, the absorbed
luminosity at every wavelength is stored in every dust
cell in the spatial grid. After finishing the simulation
at all the wavelengths, the absorbed luminosity is used
to compute the mean intensity J(x, λ) of the radiation
field and subsequently the dust source term jd(x, λ). It
is common to include the dust emission as a second
source of photons by first computing the RT from the
primary sources, computing the RT for the dust emis-
sion, recomputing the dust emission with the new ra-
diation field, and iterating until a set convergence level
is reached.

In simple MC RT, the output desired from the calcu-
lation is usually the view of the system from a partic-
ular observer location. Images of the system are con-
structed by projecting the position of each photon that
escapes in the direction of the observer within some
angular tolerance onto the plane of the sky. This plane

6It is possible to have cases where the optical depth is very large and
the number of scatterings is correspondingly large. It is common to
impose a limit on the number of scatterings to calculate as a result.
This has the consequence that high optical depths are not sampled
well with potential systematic errors in the calculation. For most
cases, the systematic errors from imposing a maximum number of
scatterings are negligible.

is divided into pixels and the images are built from
those photons. A large number of the photons will es-
cape the system in directions other than the observer
and are not counted, unless symmetries (e.g., circular
or cylindrical) can be exploited. Special care must be
applied when constructing the images which give the
polarization state of the scattered flux, specifically the
Q and U images. As part of the construction of these
images, the polarization vector of the photon must be
rotated so that it is referenced correctly in the image
plane.

5.2. Weighted MC RT

Simple MC RT is the easiest to understand, but it
would be extremely inefficient for full 3D calculations.
For 1D and 2D MC RT calculations, there are sym-
metries, such as spherical and cylindrical, that can be
exploited and thus the number of photons needed to
achieve accurate results is relatively small. In the case
of 3D dust RT, there are no symmetries by definition;
this has been one of the motivations for a number of ac-
celeration methods. Most of these acceleration meth-
ods are well established and validated, while others
still have a more experimental character. Almost all
of these methods were first developed for 2D RT cal-
culations. The benefits of weighted MC techniques as
compared to simple MC RT methods are illustrated in
Fig. 4.

The basis of all acceleration methods is to assign
a weight W to each photon and modify this weight.
The weight of each photon is equivalent to the frac-
tion of the luminosity of the emission source carried by
that photon i.e. the number of photons in each photon
package. Several acceleration techniques use the idea
of biasing, i.e. generating random numbers from a PDF
q(x) dx rather than from the appropriate PDF p(x) dx.
This biased behavior is corrected for by assigning the
weight W = p(x)/q(x) to the photon. The biasing tech-
nique is used in many MC applications, and can be a
very effective way of reducing the variance (Dupree &
Fraley 2002). It is, for example, common practice in
MC numerical integration where it is known as impor-
tance sampling.

Biased emission

A direct application of the biasing technique is the
so-called biased emission. The initial propagation di-
rection of the photons launched into the dust medium
is usually determined from the angular part of the
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source term j(x, n, λ). There are cases, however, where
an increased level of emission in particular directions
is desired, for example to increase the signal-to-noise
in particularly interesting directions, such as the polar
regions of a star with an accretion disk (Yusef-Zadeh,
Morris & White 1984). In this case, the emission of
photons is biased towards the directions of interest,
and the initial weight of the photon is determined us-
ing the standard biasing weight formula. The same
technique can also be applied to the spatial part of the
source term to increase the number of photons emitted
from regions with a low emission rate (Juvela 2005).

This technique of biased emission has the potential
of strongly increasing the efficiency of a MC simula-
tion. On the other hand, it has the drawback that it is
very model-dependent, and therefore requires signifi-
cant manual interaction. It is, in a sense, comparable
to the placement of the rays in the RayT method.

Absorption-scattering split

This acceleration method allows for a photon to
contribute to both absorption and scattering at each in-
teraction site. Instead of randomly choosing the nature
of the interaction, the photon is split in two parts: one
that is absorbed and one that scatters. The fraction ab-
sorbed is equal to (1 − a) times the current weight of
the photon. For the scattered part that continues its life
cycle through the dust, the weight is multiplied by a
factor a.

Forced scattering

Instead of having each photon either scatter or es-
cape the system, the scattering can be forced to occur
every time (Cashwell & Everett 1959). In the simple
MC routine, the randomly generated optical depth is
compared to the total optical τpath along the photon’s
path. This approach has a problem for regions with
low optical depth: in those regions, many photons just
leave the system without interacting with the dust, re-
sulting in a low efficiency of dust scattering and heat-
ing. A way to avoid this low efficiency is the tech-
nique of forced scattering, which limits the values of
the randomly chosen optical depths to the range be-
tween 0 and τpath. This can be achieved by biasing
the PDF from which the optical depth is generated. In-
stead of sampling from the actual exponential PDF, we
consider an exponential distribution cut off at τ = τpath.

Properly normalized, this PDF reads

q(τ) dτ =




e−τ dτ
1 − e−τpath

τ <τ path,

0 τ ≥ τpath.
(28)

Generating a random τ from this distribution is
straightforward, and guaranteed to produce an inter-
action before the photon has left the system. The com-
pensation to be applied to the weight of the photon is
a factor

Wfs =
q(τ)
p(τ)

= 1 − e−τpath . (29)

One issue with forcing every scattering, when com-
bined with the absorption-scattering split, is that there
is no longer a natural stopping criterion for the scat-
tering calculation. In the original MC cycle, photons
end their journey when they are either absorbed by the
dust or leave the dusty system. The common solution
is to set a minimum weight for a photon, below which
the photon’s life cycle is terminated. The value of this
termination weight is usually set to be very low, after
the equivalent of many scatterings. An alternative so-
lution is to only force the first scattering and revert to
the standard scattering calculation for subsequent scat-
terings.

Peel-off technique

For 3D cases, it is usually desired to calculate the
appearance of a system for an observer at a partic-
ular orientation. Simple Monte Carlo RT is particu-
larly inefficient in building up such an image as only
the photons that are emitted from the system in the
direction of the observer contribute to the output ap-
pearance. In addition, some blurring of the image is
inherent as photons that are within some tolerance of
the desired direction are used. This inefficiency can be
eliminated by requiring that all photons directly con-
tribute to the output images by calculating the portion
of the photon that is emitted from sources and scat-
tered at every interaction point in the observer’s direc-
tion (Yusef-Zadeh, Morris & White 1984). The weight
factor of a photon in the direction of the observer is

Wpo = p(nobs) e−τobs (30)

where τobs is the optical depth from the position of
the emission or scattering event, and p(nobs) is the
probability that the photon would be directed towards
the observer. For example, for isotropic emission,
p(nobs) = 1, and after a scattering event we have
p(nobs) = Φ(n, nobs, x, λ).
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Peel-off is a pure application of RayT, again high-
lighting the connection between both approaches.
Peel-off is probably the most important acceleration
technique for 3D MC RT simulation. It has a sig-
nificant computational cost, however, as it requires a
calculation of the optical depth from the emission or
scattering location towards the observer after every
emission or scattering event. One way to alleviate this
computational burden is by precalculating the optical
depth towards the observer for each cell. Another pos-
sibility is to store the information per cell and create
the images at the end of the simulation (e.g. Dulle-
mond & Turolla 2000; Pinte et al. 2006; Min et al.
2009). Using a precomputed τobs or using stored infor-
mation to compute the image does come with a price,
loss of subgrid resolution in the model images. The
benefit of this approximation in decreased computa-
tion time has to be weighted against the loss of subgrid
resolution for the particular modeled astrophysical ob-
ject.

Continuous absorption

The accuracy of the dust re-emission of the ab-
sorbed energy can be enhanced by absorbing not just
at the interaction site, but along the path the photon
travels. Depending on the implementation, this can be
done up to the location of the scattering event (Lucy
1999), or along the entire path (Niccolini, Woitke &
Lopez 2003; Baes et al. 2011). In the latter scenario,
the photon is effectively split in N + 2 different parts:
one part Wesc that leaves the system (and is hence not
accounted for anymore), one part Wsca that is scattered
at the interaction location (determined stochastically),
and N parts Wabs, j that represent the fraction absorbed
in each of the N cells along the photon’s path. These
different fractions are

Wesc = e−τpath , (31)
Wsca = a

(
1 − e−τpath

)
, (32)

Wabs, j = (1 − a)
(
e−τ j−1 − e−τ j

)
, (33)

where τ j is the optical depth measured from the pho-
ton’s location to the surface of the j’th cell along the
path. An alternative interpretation of this continuous
absorption approach is that it estimates the mean inten-
sity of the radiation field not by means of the absorbed
luminosity, but by means of counting the luminosity
that passes through each cell. The strength of the tech-
nique lies in the fact that all photons contribute to the
calculation of the absorption rate of each cell they pass

through, and not only of those cells with which they in-
teract. This is particularly useful for the optically thin
regime, which has very few absorptions in the simple
MC approach.

Instantaneous dust emission

The traditional method in computing the self-
consistent dust emission in a MC RT simulation con-
sists of running an independent MC simulation at ev-
ery individual wavelength and storing the absorbed
luminosity over the computational grid. In a sec-
ond stage, the dust emission spectrum is calculated
in each dust cell and used as secondary source term.
This approach inevitably leads to iteration, as the dust
emission itself affects the radiation field. It is pos-
sible to compute the output dust emission spectrum
from a multiwavelength model without iterating. The
instantaneous dust emission technique or frequency
distribution adjustment technique emits dust thermal
photons immediately after each absorption event in a
specific grid cell, with the wavelength of the emitted
thermal dust photon carefully chosen to retain ther-
mal equilibrium (Bjorkman & Wood 2001, Baes et al.
2005).

Besides eliminating the need for iteration in the
computation of the dust emission spectrum, the instan-
taneous dust emission technique also has the advan-
tage that photon packages are emitted at the exact po-
sition where the absorption event took place, so sub-
grid resolution is achieved. One disadvantage is that
the absorption/re-emission event takes place in a sin-
gle cell, which results in a poor convergence rate of
the radiation field in cells with a low dust absorption
rate. This makes the classical iterative technique with
continuous absorption more efficient than the instanta-
neous dust emission technique, at least when applied in
its original form, for 3D simulations (e.g. Chakrabarti
& Whitney 2009). This problem can be alleviated
by applying a combination of the instantaneous dust
emission and the continuous absorption techniques. In
this hybrid method, the photon packages are followed
through the domain using the instantaneous dust emis-
sion technique, but the final dust emission spectrum
of the cells, used to create images and SEDs, is cal-
culated based on the continuous absorption approach
(Pinte et al. 2006). A second problem for the instan-
taneous dust emission technique is that it was origi-
nally designed to work with equilibrium dust emission.
Several ways have been explored to adapt the instan-
taneous dust emission technique for transiently heated
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grains (Krügel 2007, Wood et al. 2008, Heymann &
Siebenmorgen 2012).

High optical depths

In regions of high optical depth, the simple MC
routine becomes very inefficient, as photons can be
trapped in a virtually never-ending loop of scatter-
ing events. This problem is largely solved when the
absorption-scattering split is applied, as the weight of
the photon then decreases with every scattering event
terminating when a very low weight is reached. How-
ever, in regions with extreme optical depths (such as in
the midplane of circumstellar discs around protostars)
or at wavelengths where scattering largely dominates
absorption (such as the far-UV), this can still imply
a significant computation burden. A solution to this
problem is to mirror or reflect photons from high opti-
cal depth regions and use the diffusion approximation
to find the RT solution in these regions. The diffusion
approximation allows for multiple interaction steps to
be calculated in a single computation. An elegant solu-
tion that is well adapted to the MC method is to solve
for the RT in optically thick cells using a modified ran-
dom walk technique that also uses the diffusion ap-
proximation (Min et al. 2009; Robitaille 2010).

Polychromatism

For multi-wavelength RT, it is possible to signifi-
cantly speed up the calculation by considering photon
packages that consist of photons of all wavelengths.
The advantage of this technique that a MC run is si-
multaneously solved at all wavelengths, instead of a
run for each wavelength. The difficulty in this ap-
proach is that many of the PDFs that describe the
life cycle of a photon are wavelength dependent, such
as the path length distribution or the scattering phase
function. One solution is to consider partly polychro-
matic photon packages, which shift to monochromati-
cism as soon as wavelength-dependent PDFs are in-
volved (Baes, Dejonghe & Davies 2005). A more ad-
vanced option is perform the calculations at one ref-
erence wavelength λref and use the biasing technique
to adjust for the wavelength-dependent PDFs (Juvela
2005; Jonsson 2006). The efficiency gains of full poly-
chromatic RT are large given that every photon calcu-
lated would contribute to the output images and radia-
tion field density at all wavelengths instead of a single
wavelength. But there is a known significant compli-
cation – the biasing factors can be very large and, as

a result, can dominate the results at a particular wave-
length. This has a systematic effect on the results that
is hard to control and therefore, this method should be
considered experimental.

5.3. Uncertainties for Monte Carlo

In the simple (unweighted) MC RT, the noise in the
output quantities (i.e., scattered intensity, polarization,
etc.) scales as N−1/2, where N is the number of pho-
tons. In the case of weighted Monte Carlo, the uncer-
tainties in the output quantities does not scale directly
with N−1/2.

The uncertainties can be calculated by using the dis-
persion in the average properties of the photons used to
determine an integrated quantity (Gordon et al. 2001).
If the integrated quantity is X, then

X =
N∑

j=1

x j = N x , (34)

where x j is the contribution of the j’th photon to X, N
is the total number of photons in the model run, and
x̄ is the average contribution each photon makes to X.
The uncertainty in X is then σX = X (σx/x), where σx
is the standard deviation of x̄, calculated using

σ2
x =

1
N(N − 1)

N∑

j=1

(x j − x)2 =
1

N − 1

(
x2 − x2

)
. (35)

The equations for the uncertainties in output quantities
given above can be used to explicitly enforce a par-
ticular uncertainty level in the final results of a model
run. The uncertainties in the output quantities of in-
terest can be checked during the model run and the
number of photons adjusted dynamically to achieve
the desired accuracy. For example, when calculating
a multi-wavelength model more photons can be put at
the wavelengths with higher optical depths compared
to wavelengths with lower optical depths. As the num-
ber of photons is determined from the statistics of the
particular run itself, it automatically takes into account
the full RT solution, including the locations of the pho-
ton sources, dust, etc. The output quantities to be used
for uncertainty control can range from the global flux,
to pixels in resolved images, to the radiation field den-
sity in each cell. Additionally, it is possible to improve
the convergence to the needed accuracy by identify-
ing areas of the model with high noise (e.g., partic-
ular cells with few photon interactions) and dynami-
cally adding photons to those areas (e.g., though bi-
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ased emission). The use of dynamically determine un-
certainties to improve the convergence of a model has
been done in limited cases and is clearly an area for
future improvement.

Uncertainties associated with the model setup itself
are more difficult to quantify. Evaluating the system-
atic uncertainties due to specific model choices is usu-
ally done by trying other parametrizations or increas-
ing the grid resolution and evaluating how the out-
put quantities change. Example model setup choices
that are prone to systematic uncertainties are the dust
density grid, specific parametrizations of the photon
sources, and wavelength grid. These kinds of uncer-
tainties are clearly the most difficult to diagnose and
generally rely on the expertise of the coder and user.

6. CHALLENGES IN MODELING OBSERVA-
TIONS

The uses of 3D dust RT codes are many, from
understanding the impact of locally clumpy dust on
dust RT (Witt & Gordon 1996, 2000; Bianchi 2008)
to modeling observed images of objects to derive the
source and dust distributions (De Looze et al. 2012b;
Steinacker et al. 2005; Gordon et al. 1994) to predict-
ing the appearance of an object that has been modeled
with a HD code (Steinacker et al. 2004; Bethell et al.
2004; Jonsson, Groves & Cox 2010; Robitaille 2011)
to investigating the ensemble behavior of objects to de-
rive average source and dust properties (Law, Gordon
& Misselt 2011) to test observability of objects for in-
strument and observation planning (Wolf 2008; Gon-
zalez et al. 2012). To illustrate the challenges in mod-
eling observations, we focus on the modeling of ob-
jects to derive their physical properties from observa-
tional data. The common approach is to perform some
steps of the following scheme:

1. Choose a parametrized model for the dust den-
sity, radiation sources, and dust optical proper-
ties.

2. Discretize the problem with the choice of grids
and use the RT code to derive a SED and/or im-
ages for this object model.

3. Compare simulated and observed SED or im-
ages.

4. Evaluate the differences in the SED or images
and change the model parameters and/or the

model assumptions to minimized these differ-
ences. Repeat step 2.

5. Find the parameter sets that come closest to de-
scribing the observed data.

6. Evaluate the observational and theoretical errors
that are important for the comparison.

Although the scheme seems straightforward, the full
set of steps has rarely been carried out for existing,
published 3D dust RT models as each of these steps
provides challenges for 3D dust RT.

Model choice

The aim is to choose an appropriate model that al-
lows meaningful physical information to be derived
from the given observational data. This is a general
topic, but 3D RT modeling has special features which
are important to consider. The data are usually SEDs
and/or images and we can investigate the number of
independent information bits a priori, e.g. by counting
the number of wavelengths for which the flux density
values have been measured. This is then compared to
the number of model parameters.

Most 3D models include several 10 to hundreds of
free parameters depending on the complexity of the
spatial model and the assumed dust properties. Even
for attempting only to reproduce the global SED of
an object, it is difficult to stay below 10 parameters
since modeling a dusty 3D structure requires a few
length scales and/or power laws to describe density,
dust properties, and viewing angles. Fig. 5 illustrates
the large number of free parameters needed to repro-
duce the 3D dust distribution of a molecular cloud.
Fig. 6 shows four examples of state-of-the-art RT fits
to dusty galaxy images. Such RT model fits are de-
signed to determine the parameters that describe the
intrinsic 3D distribution of stars and dust both large-
scale geometric parameters (e.g., stellar and dust scale
lengths and heights) and measures of the small scale
inhomogenity or clumpiness of the dust.

Starting with more free model parameters than data
points is often considered to produce meaningless pa-
rameter values. However, a careful exploration of the
parameter space can detect ambiguities and reveal re-
dundant parameters. As long as the parameter space
exploration can be afforded computationally, starting
with a detailed model and analyzing the parameter am-
biguities is usually the most accurate way to model an
object.
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Gridding

As discussed in §3, there are a variety of options
for discretizing space, direction, wavelength, and the
dust model. If the grid fails to resolve structures that
are important at a particular wavelength, the corre-
sponding model image will be correspondingly inac-
curate. A good example is the surface layer of an
accretion disk illuminated by a central star. If the
layer is not well-resolved, the description of the ra-
diation field that is scattered in the layer will be poor,
and the scattered light images inaccurate. Therefore,
the discretization step often includes running the RT
code before the start of the modeling to verify that ex-
pected features are present in the image or SED, and
that changes/refinement do not influence the overall
appearance of the object.

Comparison of model and data

Once the model images or SED have been calcu-
lated, the results should be convolved with the beam
of the observed instruments/telescopes and the sam-
pling should be made equal (pixel size for images). It
is important to apply detection limits, especially when
studying faint structures. For interferometric obser-
vations, the incomplete coverage of all spatial scales
implies that the comparison should be performed in
the (u,v) plane rather than in spatial plane to achieve
the highest fidelity. Calibration uncertainties and cor-
related noise properties in the observations should be
understood and included in the model versus obser-
vations comparison. In addition, foreground emission
(e.g. caused by the zodiacal light) should be carefully
removed or modeled, especially for on-off chopping
observing modes that remove this emission as part of
the data reduction process. Generally, modeling can
benefit from good communication with experienced
observers. Another potential source of error in com-
paring model results and data can be a displacement
of structures due to observational uncertainties. Addi-
tional translation parameters can correct this and pro-
vide physical insight by deriving improved position-
ing.

Exploration of the parameter space

The parameter space of 3D dust distributions is
large: a uniform coverage of a 10-dimensional pa-
rameter space with 5 grid points in each parameter,
would imply about 10 million individual RT calcula-
tions. Therefore, almost all 3D RT modeling of data

has been done ”by hand,” that is starting from a point
in the parameter space and then varying just one pa-
rameter to explore the variations in the results. This
drastically reduces the coverage in parameter space at
the expense of not exploring correlations between pa-
rameters. In structures with strong gradients, inhomo-
geneously distributed radiation sources or varying op-
tical depth, the resulting radiation field may strongly
react to changes in the model parameter. In this case,
low-coverage ”by hand” explorations are likely quite
unreliable.

To evaluate the model and the variation in the model
parameter, the difference between the model data and
the observed data is defined (often using a χ2 metric)
and the fitting procedure is then to minimize this dif-
ference by varying the parameters. There are standard
optimization methods that have been applied in astro-
physics such as gradient descent, Newton’s method,
Metropolis optimization, or genetic algorithms. The
latter two are able to leave local minima with the goal
of ending in the deepest minimum providing the best-
fitting model parameters.

There are advancements in the application of au-
tomated fitting techniques that are already in use for
2D RT calculations and are or should be used for 3D
RT calculations as well. One such technique is the
Metropolis algorithm that has been applied to 3D dust
RT in the form of simulated annealing (Steinacker
et al. 2005). Precomputing a large grid of models is
a promising technique. Robitaille et al. (2007) used
a parametrized circumstellar disk model to create just
such a large grid of precalculated SEDs for a 2D con-
figuration and then used the grid to fit the disk parame-
ters and to characterize uncertainties in fit parameters.
Other promising techniques are 2D RT fitting tech-
niques based on the Levenberg-Marquardt algorithm
(e.g. Xilouris et al. 1999), downhill-simplex method
(Bianchi 2007), and genetic algorithms (De Geyter
et al. 2012). Some of these techniques have already
been applied to 3D structures, albeit in limited param-
eter spaces (e.g. Witt & Gordon 2000; Schechtman-
Rook, Bershady & Wood 2012).

Quantifying the ambiguity of the derived parame-
ters is also important. The 2D circumstellar disk mod-
eling of SEDs in Robitaille et al. (2007) provides a
template for determining the ambiguity when a com-
plex model is applied to only a few SED points. A
general strategy to assess ambiguity is to explore the
variation of the fitting metric (e.g., χ2) in the vicin-
ity of the best fit parameters, as well as to characterize
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the overall degree of variation by random or grid-based
parameter space exploration.

Error analysis

Each of the RT solvers has its own sources of errors
due to approximations, the underlying grid, undetected
regions of the computational domains, etc. Tracing
these errors, measuring them, and estimating their im-
portance is non-trivial. RayT provides error control for
the solution along one ray and MC can provide error
control on the number of photons needed, but whether
the rays are sent through the right parts of the domain
is not well quantified. For modeling, a comparison of
these errors with the solution and observational errors
determines the sensitivity of the observed data to the
specific science question of interest.

Inverse RT

The true challenge of RT modeling is to invert it:
determine the 3D density structure of the dust and
the sources, and the dust properties from a set of im-
ages taken at different wavelengths. Direct inversion
is computationally impossible in 3D with current or
expected computing capabilities. In 1D an analytic in-
version can be performed under special assumptions
(Steinacker, Michel & Bacmann 2002), and numeri-
cal 1D inverse RT modeling was used in Doty et al.
(2010). A forward RT method using many iterations
provides a good solution, but is limited to fairly sim-
ple RT applications. A prominent difficulty is the loss
of information due to the line-of-sight integration in-
herent in the observations. Multiwavelength observa-
tions can help disentangle the line-of-sight integration.
For example, points in the center of a molecular core
are better shielded and cold compared to points in the
outer parts, so mm observations can be used to con-
strain the core center and shorter wavelength observa-
tions the outer parts. Such molecular cores are simple
enough to enable inverse RT to be done. For example,
Steinacker et al. (2005) used a 3D background radia-
tion field illuminating a 3D model core and fitted the
MIR and mm images of the core Rho Oph D, deriv-
ing the density and temperature structure with assumed
dust properties.

7. CODES AND BENCHMARKS

7.1. Available 3D codes

Until the mid-1990s, few RT codes could handle the
absorption, scattering, and thermal emission by inter-
stellar dust in general 3D geometries. The available
codes were either limited to 1D or 2D geometries, or
were not able to calculate full 3D problem (e.g., miss-
ing either scattering or thermal emission). The spec-
tacular increase in computational capabilities during
the past two decades, as well as the development of
more powerful techniques to solve the RT problem,
has led to the creation of a number of 3D RT codes.
There are now (to our knowledge) almost 30 codes op-
erational that can handle the full dust RT problem, i.e.
including absorption and multiple anisotropic scatter-
ing, in a general 3D geometry. Table 1 gives a list
of published 3D dust RT codes that have been or are
being used for astronomical applications. The applica-
tion fields of the different codes varies widely, ranging
from prestellar cores and circumstellar discs to active
galactic nuclei and galaxies.

With many different codes and several techniques
available, it might be difficult for a potential user or
future developer to decide which one to choose. The
choice for a given code or solution technique should
primarily be driven by the specific nature of the prob-
lem that is to solved. While most of the 3D codes in
Table 1 are applicable for a wide range of RT prob-
lems, virtually all of them been developed with a par-
ticular application in mind, and hence have been opti-
mized for that particular goal.

The programming language can also influence the
choice; most existing 3D RT codes have been coded
in FORTRAN, C, or C++. There are no features in
the 3D RT problem itself or the two solution methods
presented in this review that make certain languages
preferential to others. The main driver is speed: since
the the 3D RT problem is computationally very chal-
lenging, all codes should be developed in a language
suitable for high-performance computing. Moreover,
parallelization is becoming increasingly important as
a means to increase computational speed and mem-
ory availability. Several codes are designed to work on
shared-memory or distributed-memory clusters and/or
adopt graphical processing units (e.g. Jonsson 2006;
Jonsson & Primack 2010; Baes et al. 2011; Robitaille
2011; Heymann & Siebenmorgen 2012).

The choice of a given code or method primarily de-
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Table 1: List of published 3D dust RT codes that have been or are being used for astronomical applications. The codes
are ordered alphabetically as it is difficult to establish true code development dates given that many codes are first used
for specific investigations with the full code details (references in table) published at a later date.

name typea reference main application
SKIRT MC Baes+ 2003; 2011 galaxies, AGNs
(no name) MC Bethell+ 2004; 2007 SF clouds
TRADING MC Bianchi+ 1996, Bianchi 2008 galaxies
RADISHE MC Chakrabarti+ 2007; 2009 galaxies
(no name) MC Doty+ 2005 SF clouds
RADMC-3D MC Dullemond (in prep.) SF disks
MOCASSIN MC Ercolano+ 2005 photoionized regions
(no name) MC Fischer+ 1994 SF disks
(no name) MC Gonçalves+ 2004 SF clouds
STOKES MC Goosmann+ 2007 AGNs
DIRTY MC Gordon+ 2001, Misselt+ 2001 galaxies, nebulae
TORUS MC Harries 2000, Harries+ 2004 SF disks
(no name) MC Heymann+ 2012 SF disks, AGNs
SUNRISE MC Jonsson 2006, Jonsson+ 2010 galaxies
CRT MC Juvela+ 2003, Juvela 2005 SF clouds
(no name) MC Lucy 1999; 2005 supernovae
MCMax MC Min+ 2009; 2011 SF disks
STSH MC Murakawa+ 2008 SF disks
MCTRANSF MC Niccolini+ 2003; 2006 SF disks
mcsim mpi MC Ohnaka+ 2006 carbon stars
MCFOST MC Pinte+ 2006 SF disks
HYPERION MC Robitaille 2011 SF clouds
PHAETHON MC Stamatellos+ 2004; 2005 SF cores
STEINRAY FD Steinacker+ 2003 SF disks

RayT Steinacker+ 2006 SF cores
(no name) FD Stenholm+ 1991 SF disks, AGNs
HO-CHUNK MC Whitney+ 2002 SF disks
MC3D MC Wolf+ 2000, Wolf 2003b SF disks, SF cores, AGNs
(no name) MC Wood+ 1999, Bjorkman+ 2001 SF disks, galaxies

a finite differencing (FD), Monte Carlo (MC) or ray-tracing (RayT)

Fig. 3.— Illustration of the various types of rays used
in 3D dust RT calculations performed within an adap-
tively refined density grid. Only a small fraction of the
typical number of rays are shown for (a) an outer radia-
tion source, (b) an inner radiation source, (c) a scatter-
ing event, (d) a region with an optical depth near 1, (e)
a coarse regular outer grid, and (f) rays to the observer.

pends on the specific needs of the application and/or
the personal preferences of the user or developer. Nev-
ertheless, the different approaches have some general
strengths and weaknesses. These need to be consid-
ered as rough guidelines only, as there are significant
differences among codes based on the same approach.
For example, simple MC codes based on the naive
techniques explained in §5.1 are many orders of mag-
nitude less efficient than modern MC codes that use
weighting schemes.

Generally speaking, setting up a reasonably effi-
cient 3D MC RT code fits within the lifetime of a PhD
project. Most MC RT codes are intrinsically 3D codes,
and hence the shift from 1D or 2D codes to a full 3D
geometry is fairly straightforward. For RayT codes, on
the other hand, the increase in complexity when mov-
ing from 1D and 2D to 3D is much steeper. These
differences explain the relative scarcity of general 3D
RayT codes compared to MC codes in Table 1; a sim-
ilar comparison of 1D or 2D codes would result in a
table with a much larger fraction of RayT codes. A big
part of this complexity lies in the placements of the
rays, which needs manual adjustment in RayT codes,
but is done automatically in MC codes. The RayT pre-
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Fig. 4.— Both simple and weighted Monte Carlo are
illustrated graphically. This example includes 5 pho-
tons resulting in one scattering photon reaching the
observer and two absorption events for simple MC RT.
This same set of 5 photons produces 5 scattered pho-
tons towards the observer and 28 absorption events for
weighted MC. The improvement in computational ef-
ficiency of weighted Monte Carlo is clearly seen.

calculation step needed for the manual placement of
rays reveals an advantage for this solver as it identi-
fies the critical locations in the model that dominate
the appearance of the object. Other advantages of the
MC method are that it needs less storage than RayT
codes when scattering is included, and that it is widely
used with many coders in the community improving
its application to astrophysics with new algorithms,
whereas RayT methods are mainly improved outside
astrophysics. One strength of the RayT codes is the
stronger and explicit error control. For example, the
precalculation step can identify areas that are poten-
tially under-resolved allowing for changes to the grid
to provide adequte resolution for the full calculation.
At this point, MHD codes tend to use RayT rather than
MC techniques (e.g. Heinemann et al. 2006; Kuiper
et al. 2012).

7.2. Benchmark efforts

Probably the most objective way to compare the
strengths and weaknesses of the different codes is
using benchmark problems. In the past few years,
there have been benchmark efforts in many different
computational astrophysics areas, including molecu-
lar line transfer (van Zadelhoff et al. 2002), halo and
void finder algorithms (Colberg et al. 2008; Knebe
et al. 2011), astrophysical hydrodynamics (Agertz
et al. 2007), cosmological hydrodynamical simula-
tions (Frenk et al. 1999; O’Shea et al. 2005) and cos-
mological radiation hydrodynamics (Iliev et al. 2006,
2009). At the moment, no code validation or bench-
mark project exists for 3D dust RT. The most advanced
dust RT code validation projects are 2D benchmarking
efforts.

Pascucci et al. (2004) presented a benchmark test
for two-dimensional equilibrium RT problems. Their
system consists of a single star surrounded by a
flared axisymmetric accretion disc. The optical depth
through the disc varies from τV = 0.1 to τV = 100.
The accretion disc contains strong density gradients,
which makes it an ambitious benchmark problem (un-
fortunately, anisotropic scattering is not taken into ac-
count). The authors compare the temperature maps
and spectral energy distributions for five 2D dust RT
codes (two grid-based codes and three MC codes).
Differences between the various codes in the temper-
ature maps are smaller than 1% for the most optically
thin model, but reach up to some 15% in the most
optically thick system. For the emerging spectra, the
differences range from a few percent for the optically
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thin models to more than 20% for the most optically
thick models.

A first extension of the Pascucci et al. (2004) bench-
mark test was presented by Pascucci et al. (2003)7,
with two of the five codes from the original benchmark
participating (one MC code and one RayT code, both
intrinsically 3D codes). They considered a similar disc
as in the Pascucci et al. (2004) benchmark, with an
azimuthal ring added as a simplified model for a spi-
ral density distortion. The main advancements were
the addition anisotropic scattering and that images and
visibilities, in addition to SEDs and temperature maps,
were compared. The difference in flux in the entire
image was smaller than 20%, but the visibility curves
showed substantially larger discrepancies in their over-
all shape.

Pinte et al. (2009) go another step further, in what
is the most advanced dust RT benchmark to date. They
start from a similar circumstellar disc model, but con-
sider optical depths up to τV = 106, use anisotropic
scattering, and compare images and polarization maps.
The four different codes that participate in the bench-
mark are all MC codes. The agreement in the tempera-
ture distributions is very good, with differences almost
always smaller than 10%. Differences in the SEDs re-
main smaller than 15% for models with τV = 1000
and agree within 20% over almost the entire wave-
length range for the most optical thick cases. Pixel-to-
pixel differences in high-resolution scattered light im-
ages remain limited to 10% and the polarization maps
do not differ by more than 5◦ in regions where the po-
larization can be effectively measured by observations
(Figure 7).

8. THE FUTURE OF THE FIELD

Present status

3D dust RT is a rich and diverse field, with applica-
tions across a broad range of astrophysical topics from
dust near stars to entire galaxies. Correctly modeling
the effects of dust on the transfer of radiation is criti-
cal to studying many astrophysical objects, including
the dust itself. Recent years have seen an impressive
improvement in observational capabilities across the
electromagnetic spectrum and this has shown that the
dust distribution in many regions is strongly 3D. This
requires methods to compute the dust radiative trans-

7This paper appeared in print before the Pascucci et al. (2004) paper,
but was actually a follow-up project.

fer that can handle 3D structures and return solutions
in a reasonable amount of time. The most common 3D
dust RT solver is based on MC techniques, with RayT
features in its modern accelerated form. A few appli-
cations have used pure RayT solvers. Both methods
face the challenges of grid discretization, determina-
tion of uncertainties in solutions, and accurate com-
parison between observations and the model calcula-
tions. Almost 30 codes are currently able to deal with
the full 3D dust RT with code variations arising from
the prime field of application. There is no 3D dust RT
benchmark, currently code comparisons are done us-
ing 2D benchmarks.

General trends

Several trends indicate that the future of 3D dust
RT is bright. The number of people actively involved
in 3D dust RT is growing and the number of new
published codes has increased significantly in recent
years. A 3D approach to modeling complex distribu-
tions is becoming common in many fields featuring 3D
dust distributions. The continuing increase in available
computing power and storage will support this trend,
allowing a full transition from 2D to 3D dust RT for all
objects showing 3D signatures. A prominent example
of this trend is circumstellar disks with (proto-)planets,
where the (M)HD simulations have been 3D for years,
dust RT modeling often was 2D, and observations are
now reaching the resolution to identify the 3D signa-
tures of disk deformation due to a planet. In addition,
modern online tools are expected to support the access
to the codes by users through sophisticated interfaces.

Future benchmarks

For progress in 3D dust RT to continue, 3D dust RT
benchmarks need to be established. Given the com-
plexity of the codes, the increasing number of accel-
eration algorithms, and large number of specific appli-
cations, it is critical to provide a quantitative compari-
son between codes. Experience with existing dust RT
benchmarks and similar efforts in other areas indicate
a suite of 3D dust RT benchmarks is needed. Ideally,
each benchmark would focus on a particular part of the
RT solution (e.g., scattering, polarization, equilibrium
dust emission, or non-equilibrium dust emission) in a
3D geometry. This would provide a clear test of differ-
ent aspects of 3D dust RT and support the participation
of all codes in at least part of the suite.
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Data modeling future

Given the impressive flow of new data now and
coming years from ground- and space-based observa-
tories, it is clear that the demand to accurately model
3D dusty structures will rise strongly. Interfaces that
can simulate observations with different telescope
properties will become necessary to perform model-
ing. We expect a rise of 3D dust RT modeling efforts
that rely on automated fitting processes rather than
by-hand explorations of the model parameter space.
Since the number of sources of multi-wavelength data
will rise, collaborations crossing borders between ob-
servers and modelers will become more frequent. The
utimate goal of 3D dust calculations is to modeling
multi-wavelength images and derive quantitative and
statistically sound information about 3D structures,
embedded sources, and the dust itself.

Future connections to non-dust RT codes

Another future direction is the coupling of 3D dust
RT codes with codes describing other physical effects
in astrophysical objects. This trend is already happen-
ing with 2D dust RT codes and the extension to 3D
dust RT codes is clearly the next step. A variant of this
type of connection is already happening where 3D dust
RT is used to calculate the radiation field in a dust dis-
tribution generated with a (M)HD code . Furthermore,
(M)HD codes that make use of simple dust RT could
be tested or the simple algorithms improved by com-
parison to full 3D dust RT solutions. Chemical net-
work calculations could be based on a more realistic
estimate of the incoming radiation calculated from 3D
dust codes. Finally, a combined calculation for 3D line
and dust RT would enable line and continuum data to
be simultaneously investigated using the same under-
lying physical model.

Future algorithms

In the past, conferences and keyword related publi-
cation searches have often been used to improve the
unfortunately rare communication of new numerical
algorithms from applied mathematics to astrophysics.
The basic issue is the sheer flow of new findings and
the different language of the two communities. Re-
cent MC improvements have been mainly developed
by coders working in the field, and additional efforts
should be made to enable community-crossing ex-
change on algorithms and error control. As a result
of communications between coders preferring differ-

ent solvers, we expect hybrid solvers making use of the
advantages of the various approaches to appear more
frequently. Given the increase in complexity in the
modeled objects, we expect future activities to estab-
lish grid generation algorithms that are optimized for
3D dust RT; besides the octree or AMR-style grids that
are now routinely implemented in 3D dust RT codes,
unstructured grids as used in line RT (Paardekooper,
Kruip & Icke 2010) and (M)HD codes (Springel 2010)
are an interesting alternative. The inclusion of time
dependence in the 3D RT problem, which could be
important in the context of star formation or episodic
accretion, will also need to be tackled with new algo-
rithms (e.g. Harries 2011). The increasing availability
of massively parallel machines will support algorithms
that are optimized to run on many processors.

Input physics improvements

The improvement of the solvers is not restricted to
developing algorithms that provide accelerated solu-
tions. The interaction of radiation with cosmic dust
is still not fully understood, and the variation of the
dust properties with environment is an area of active
research. The various continuum radiation sources like
stars, PDRs, AGN accretion discs, and the ISRF are
areas of vigorous investigation. For example, efforts
based on existing and upcoming large scale surveys
are being used to update the 3D structure of the stars in
the Milky Way. Consequently, we expect to achieve a
better understanding of the observed radiation from fu-
ture research on the optical properties of dust, and im-
proved data on the stellar and non-stellar sources that
enter the 3D dust RT equation.

Challenges

A major challenge in 3D dust RT that emerges from
this review is how to account for and mitigate sys-
tematic uncertainties in the dust RT solution. They
arise from under-resolving grids, from not propagat-
ing rays/photons to important cells, and/or from uncer-
tainties in the underlying dust grain models. As under-
resolving of the dust and radiation field grid is often
a result of constraints on computer memory and speed
and improvements in algorithms to implicitly handle
optimal grids are clearly needed. The pre-processing
steps necessary for the RayT solver address some of
these issues, but need further automating. The issue
of not propagating enough rays/photons into particu-
lar cells has been solved for both RayT (placement of

28



rays) and MC (biased emission), but in both cases cur-
rently requires hand-tuning. An algorithm to automat-
ically add additional rays/photons similar to that used
for adaptive mesh refinement would clearly be useful.
Finally, uncertainties in the assumed dust grain model
provide a systematic uncertainty in the dust RT mod-
eling that is difficult to quantify. Different dust grains
models can be used to provide an estimate of this un-
certainty, but the best way to reduce this uncertainty
is to support the improvement of dust grain models
through the use of improved laboratory and observa-
tional data.
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Compiègne M, Verstraete L, Jones A, Bernard JP,
Boulanger F, et al. 2011. A&A 525:A103

Cox NLJ, Kerschbaum F, van Marle AJ, Decin L, Lad-
jal D, et al. 2012. A&A 537:A35

De Geyter G, Baes M, Fritz J, Camps P. 2012. ArXiv
e-prints

De Looze I, Baes M, Bendo GJ, Ciesla L, Cortese L,
et al. 2012a. MNRAS 427:2797–2811

De Looze I, Baes M, Fritz J, Verstappen J. 2012b. MN-
RAS 419:895–903

Desert FX, Boulanger F, Shore SN. 1986. A&A
160:295–300

Devroye L. 1986. Non-uniform random variate gener-
ation. Springer-Verlag

Doty SD, Metzler RA, Palotti ML. 2005. MNRAS
362:737–747

Doty SD, Tidman R, Shirley Y, Jackson A. 2010. MN-
RAS 406:1190–1200

Draine BT. 1988. ApJ 333:848–872

Draine BT. 2003a. ARA&A 41:241–289

Draine BT. 2003b. ApJ 598:1017–1025

Draine BT, Li A. 2001. ApJ 551:807–824

Draine BT, et al. 2007. ApJ 663:866–894

Dullemond CP, Turolla R. 2000. A&A 360:1187–1202

Dunne L, Gomez HL, da Cunha E, Charlot S, Dye S,
et al. 2011. MNRAS 417:1510–1533

Dupree S, Fraley S. 2002. A Monte Carlo Primer:
A Practical Approach to Radiation Transport.
Kluwer Academic/Plenum

Dwek E. 1986. ApJ 302:363–370

Dwek E, Galliano F, Jones AP. 2007. ApJ 662:927–
939

Ercolano B, Barlow MJ, Storey PJ. 2005. MNRAS
362:1038–1046

Falgarone E, Phillips TG, Walker CK. 1991. ApJ
378:186–201

Fischer O, Henning T, Yorke HW. 1994. A&A
284:187–209

Frenk CS, et al. 1999. ApJ 525:554–582

Fritz J, Gentile G, Smith MWL, Gear WK, Braun R,
et al. 2012. A&A 546:A34
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Hoppe P, Leitner J, Gröner E, Marhas KK, Meyer BS,
Amari S. 2010. ApJ 719:1370–1384

Iliev IT, Ciardi B, Alvarez MA, Maselli A, Ferrara A,
et al. 2006. MNRAS 371:1057–1086

Iliev IT, Whalen D, Mellema G, Ahn K, Baek S, et al.
2009. MNRAS 400:1283–1316

Indebetouw R, Whitney BA, Johnson KE, Wood K.
2006. ApJ 636:362–380

Jonsson P. 2006. MNRAS 372:2–20

Jonsson P, Groves BA, Cox TJ. 2010. MNRAS 403:17–
44

Jonsson P, Primack JR. 2010. New A 15:509–514

Juvela M. 2005. A&A 440:531–546

Juvela M, Padoan P. 2003. A&A 397:201–212

Kalos M, Whitlock P. 2009. Monte Carlo Methods.
John Wiley & Sons

Kattawar GW. 1975. J. Quant. Spec. Radiat. Transf.
15:839–849

Keller LD, Sloan GC, Forrest WJ, Ayala S, D’Alessio
P, et al. 2008. ApJ 684:411–429

Knebe A, et al. 2011. MNRAS 415:2293–2318
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Fig. 5.— Left: Spitzer image of the molecular cloud
L183 at 3.6 µm revealing ”coreshine” which is scat-
tered light from the densest part of the cloud. Right:
Spatial modeling based on basis functions which have
Gaussian density structure in all three coordinates
(Steinacker et al. 2010). The ellipses give the FWHM
of the various Gaussians in the plane of sky.
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Fig. 6.— Examples illustrating the current state of the
art in fitting dust RT models to images of galaxies. The
left panels show the observed images, the correspond-
ing panels on the right are the fits to these images.
From top to bottom: (a) a clumpy 3D spiral galaxy
model fit to an HST B-band image of the prototypi-
cal edge-on spiral galaxy NGC 891 by (Schechtman-
Rook, Bershady & Wood 2012); (b) a 2D disc galaxy
model fit to an SDSS g band image of NGC 4565 by
De Looze et al. (2012a) using a fully automatic fitting
based on genetic algorithms (De Geyter et al. 2012);
(c) a detailed 2D model for the Sombrero Galaxy, fit
to a V-band image (De Looze et al. 2012b); (d) a
3D clumpy disc model fit to an R-band image of
the edge-on low surface brightness galaxy UGC 7321
(Matthews & Wood 2001).
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Fig. 7.— An example of the Pinte et al. (2009) 2D dust
RT benchmark, for a flared circumstellar disc with a
V-band optical depth in the midplane of τ = 106. The
image is a scattered light image, the three panels on
the right show brightness profiles along the cuts plot-
ted in the left panel, and the differences among the four
different models used in the benchmark. The different
line styles and colors indicate if the model was Pin-
ball (Watson & Henney 2001), MCFROST (Pinte et al.
2006), MCMax (Min et al. 2009), or TORUS (Harries
et al. 2004).
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