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Abstract. I outline methods for calculating the solution of Monte Carlo Radiative
Transfer (MCRT) in scattering, absorption and emission processes of dust and gas,
including polarization. I provide a bibliography of relevant papers on methods with
astrophysical applications.
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1. Introduction

The Monte Carlo method was invented by Stanislaw Ulam and John von Neumann to study
neutron transport during the atomic bomb program of World War II. According to Wikipedia, be-
cause the work was secret, a code name was needed, so they chose Monte Carlo, after the famous
Casino in Monaco which Ulam’s uncle frequented. At this time and for several decades after,
the pressing radiative transfer problems in astrophysics were in stellar atmospheres and interiors,
which fortunately are 1-D problems that could be solved with other, much faster methods. Many
clever integral and differential equation techniques were devised to calculate sophisticated stellar
atmosphere models, including line transfer and stellar winds. These methods are reviewed in
several standard texts, e.g., Mihalas (1978). Scattering and polarization were always the most
complicated aspects of these methods, and were therefore often ignored. Not surprisingly, these
were tackled very early by S. Chandrasekhar (1946, 1960).

As radiative transfer began to be applied to other kinds of objects that are not as spherical
as stars, it became necessary to consider multi-dimensional geometries and scattering. As an
example, both forming and evolved stars are often surrounded by dusty disks and/or clumpy
envelopes and outflows. The asymmetric circumstellar geometries produce very different spectral
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energy distributions (SEDs) than 1-D models can account for. Galaxies can appear bluer than
expected if scattering from interstellar dust is not taken into account. A method that is ideally
suited to solve these types of problems is the Monte Carlo method. I was fortunate to have my
thesis advisor, Art Code, suggest this method to study polarization in magnetic white dwarfs, back
in the 1980s. I then applied this method in the area of star formation, where 2-D radiative transfer
proved very useful in interpreting the disk and bipolar structures of Young Stellar Objects (YSOs).
Since this time, many scientists have developed new methods to calculate, e.g., the radiative
equilibrium solution for dust, gas line and continuum transfer, photoionization, polarization, and
relativistic radiative transfer (references for these methods and applications are given later in the
text). Now the Monte Carlo method is in widespread use in astronomy and is an exciting area to
get into.

This article is designed for readers who are interested in learning the Monte Carlo method
for radiative transfer in astrophysics. It starts with the basics needed to write a complete but
simple Monte Carlo scattering code (Section 2), and then shows more complicated but common
scattering problems (Section 3), dust emission (Section 4.1-4.5), and gas emission (Section 4.6).
Not everything is described in detail, e.g., line scattering and gas emission, but numerous refer-
ences are cited. I have made an attempt to include the most relevant and up-to-date references on
methods, but I surely have missed some and I apologize for this1.

2. Monte Carlo basics and a simple scattering problem

In the Monte Carlo method for radiative transfer (MCRT), probabilistic methods are used to
simulate the transport of individual ‘photon packets’ (which we will abbreviate as ‘photons’)
through a medium. In this ‘random walk’, we just have to describe all the radiation sources,
trace a path for each photon describing all interactions, and tabulate parameters of interest, such
as intensity, flux, angle of exit, position of exit (for imaging), and wavelength. These should
converge to a mean and become statistically significant when a large number of photons are
processed. Many problems require iteration, and clever methods have been developed to handle
this as well as high optical depths efficiently, as will be described later. In this section, we
will describe the basic methods needed to solve a simple scattering problem, that of isotropic
scattering in a plane-parallel atmosphere (see also Watson & Henney 2001, and Gordon et al.
2001 for an overview of the MCRT scattering solution). This is a problem that Chandrasekhar
(1946, 1960) calculated analytically. His simplest case was a semi-infinite atmosphere, that is
infinite in the x, y, and −z directions and photons emerge from the top of the atmosphere, defined
at z = 0. This is our most time-consuming case, which can be approximated by a plane parallel
atmosphere with a large optical depth (τ = 7 is sufficient) from bottom to top. Coulson, Dave &
Sekera (1960) calculated finite thickness atmospheres using Chandrasekhar’s method. Our code
can be tested by comparing to Coulson et al.’s tables, recently updated by Natraj, Li & Yung
(2009).

1Please send me any relevant references and I will update the online version of this document
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2.1 The Fundamental Principle: sampling probability distributions

The essence of the Monte Carlo Method is sampling from probability distribution functions
(PDFs), and this is referred to as the ‘Fundamental Principle’. To sample a quantity x0 from
a PDF P(x), we need to invert the cumulative probability distribution (CPD), ψ(x0), which is the
integral of P(x):

ψ(x0) =

∫ x0

a P(x)dx
∫ b
a P(x)dx

. (1)

As x0 ranges from a to b, ψ(x0) ranges from 0 to 1 uniformly (the proof of this can be found
in Duderstadt & Martin 1979; see also Kalos & Whitlock 2008 or other standard Monte Carlo
texts). Thus, to sample a ‘random variate’ x0, we just need to call a random number generator
that samples from 0 to 1 uniformly (we call this ‘uniform random deviate’ ξ), and invert equation
1 to get x0.

To illustrate, we give the example of sampling the optical depth that a photon travels before
being absorbed or scattered. The probability that a photon travels an optical depth τ without
interacting is

P(τ)dτ = e−τdτ. (2)

Applying the fundamental principle:

ψ(τ) =

∫ τ0

0 e−τdτ
∫ ∞

0 e−τdτ
= 1 − e−τ0 = ξ. (3)

Inverting this gives
τ0 = − log(1 − ξ), (4)

where ξ is the uniform random deviate returned from the random number generator subroutine.
It is worth investigating the algorithm used by your compiler to find out how many numbers it
generates before repeating. A good source for a discussion on random number generators and a
recommended algorithm is given in Numerical Recipes (Press et al. 2007).

Sampling a scattering angle from an isotropic distribution (P(µ, φ)dµdφ = dµ/2dφ/(2π)) is
also very straightforward, giving

µ0 = 2ξ1 − 1
φ0 = 2πξ2

(5)

where µ = cos θ, dµ = sin θdθ.

We discuss in Section 3 different methods for sampling from more complicated PDFs. Kalos
& Whitlock (2008) describe in detail different sampling methods. Carter & Cashwell (1975)
describe methods relevant to radiative transfer, such as sampling from a Planck function.
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2.2 The random walk

To calculate this problem, we emit photons from the bottom of a plane-parallel atmosphere,
defining τz = 0, and the top of the atmosphere is τz = τatm. The initial photon position is
x, y, z = 0, 0, 0, and the initial direction is µ0, φ0 = 0. Sample optical depth from Eqn. 4, and
move the photon to a new position: τznew = τzold + µ ∗ τ. Check to see if τznew is greater than τatm.
If not, sample direction from Eqn. 5 and continue to randomly walk until the photon exits. When
the photon exits the top of the atmosphere, tabulate its angle of exit. Bin the angles uniformly
between µ = 0 − 1 and φ = 0 − 2π:

i = integer(µNµ) + 1 (6)

j = integer(φ ∗ Nφ + 0.5) + 1; i f j > Nφ, j = 1 (7)
where integer is a function that converts a real number to an integer (its actual call name depends
on the computer language), and Nµ is the number of µ bins. and Nφ is the number of φ bins.

2.3 Calculating intensity and flux

Next we want to calculate the intensity of the exiting binned photons. From Chandrasekhar (1960;
equation 1)

Iν =
dEν

cos θdνdσdAdt
(8)

where Eν is the energy at frequency ν exiting at an angle θ to the normal of a surface with area
dA into a solid angle dω over time dt. This describes a pencil beam of radiation emitted from the
surface of the atmosphere.

If Ni, j is the number of photons exiting at µi, φ j, and assuming for now monochromatic pho-
tons with no time dependence, then the intensity Ii, j is given by

Ii, j =
hνNi, j
µi∆µ∆φdA

(9)

The intensity is usually normalized to flux F. As defined in Chandrasekhar (1960), the net rate
of flow of energy across a surface per unit area per unit frequency interval is given by

πF =
∫ 1

−1

∫ 2π

0
I(µ, φ)µdµdφ (10)

A total of N0 photons are incident at cosine angle µ0, giving

πF =
hνN0

µ0dA
(11)

and therefore
Ii, j
F
=
πµ0Ni, j
µiN0∆µ∆φ

(12)
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If the incident radiation is isotropic, Iν(µ, φ) = I0, then Eqn. 10 gives F = I0. According to Eqn.
8, dE = I0µdµdφdA. Integrating over solid angle and area gives E = hνN0 = πI0, which equals
πF. Substituting this definition of F into Eqn. 9 gives

Ii, j
F
=

πNi, j
µiN0∆µ∆φ

, (13)

which is the same as that for parallel incident radiation except there is no factor of µ0.

By extending this algorithm to include electron scattering (Section 3.1), polarization, and
albedo (Section 3.2.2), the code can be compared to Chandrasekhar (1946, 1960) and Code
(1950) for large optical depths, and Coulson et al. (1960) and Natraj et al. (2009) for vary-
ing optical depths and incident angles. This is a great way to test out your Monte Carlo code,
and learn how to compute intensity and flux. When considering more complicated problems with
different boundary conditions, or frequency and time dependence, refer to the original defini-
tions of intensity and flux to properly normalize the results. This is one reason I have referred to
Chandrasekhar’s (1960) book many times over the last 30 years.

2.4 More complicated geometries

The Monte Carlo Method solves problems in 3-D geometries as easily as 1-D, complicated scat-
tering functions as easily as isotropic, and low optical depth more easily than high; therefore this
is where it excels and is very complementary to other methods. All that is needed to solve any
scattering problem is to describe where the photons originate from and in what direction, where
the scattering material is, how it scatters, and when the photon exits. As described before, at each
scatter, a new photon direction is chosen and a new optical depth. In most problems, the density
of material varies with position, and the distance a photon travels is related to the optical depth
through the exinction opacity (the sum of the absorptive and scattering opacities) of the material:

dτ = χ1ρds = χ2nds = χ3ds (14)

reflecting the different units the opacity might have. In this case, the units of χ1 are cm−2 g, the
units of χ2 are cm2 and the units of χ3 are cm−1. In the first case multiply by the density ρ
(g cm−3), in the second case by the number density n (cm−3), and in the third case, the density
has already been factored into the value of χ3. As the photon propagates, equation 14 must be
integrated either analytically or numerically. The new photon position is then calculated from

x = xold + s sin θ cosφ
y = yold + s sin θ sinφ
z = zold + s cos θ

(15)

In most problems where the density varies with position, we use grids to describe the problem,
either spherical-polar, cylindrical, or cartesian. In each grid cell the density is constant across the
cell. Given the photon propagation direction, the distance to the nearest wall is calculated, swall
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(in a cartesian grid, we find the distance to planes; in a spherical-polar grid, we find the distance
to planes (φ), cones (θ) and spheres (r)). The photon position is updated using equation 15. The
optical depth is updated:

τ = τold + χρcell swall (16)

If τ exceeds the sampled value (equation 4), the photon is moved back to where τ = τ0;
otherwise it continues through the next cell where x, y, z, and τ are updated again. When τ = τ0,
the photon scatters.

2.5 Producing images

Images are easily computed by tracking the position of the previous interaction. When the pho-
ton exits, its position of last interaction (scatter or emission) is projected onto the x − y plane
perpendicular to the outgoing direction:

ximage = zold sin θ − yold cos θ sinφ − xold cos θ cosφ
yimage = yold cosφ − xold sin φ, (17)

where (xold, yold, zold) are the coordinates of the last interaction. Next we bin the photon into a
pixel (ix, iy) on the image:

ix = integer(nx(ximage + xmax)/(2xmax)) + 1
iy = integer(ny(yimage + ymax)/(2ymax)) + 1, (18)

where (nx, ny) are the number of x and y pixels in the image, and the image size ranges from
[−xmax : xmax] and [−ymax : ymax].

2.6 Estimating errors

In the simple case of isotropic scattering as described above, the photon energy remains constant
as it propagates through the medium, and the fractional error in the intensity is the Poisson statis-
tical error 1/

√
N where N is the number of photons. In more complicated problems as described

below, if we sample properly the PDFs for scattering and propagation, then the energy of each
photon remains constant and is also given by simple Poisson statistical error. As described below,
we could sample from isotropic scattering and then weight the photon by its more complicated
phase function for scattering. Then the errors can be estimated from the standard deviation of
the summed intensities of the outgoing photons normalized to

√
N. When polarization is in-

cluded, the other Stokes parameters are estimated in the same way, by the standard deviation of
the outgoing Stokes component (Q, U, or V), normalized to

√
N (Wood et al. 1996). The er-

rors are minimized when the PDFs are sampled exactly. Gordon et al. (2001) also discuss error
estimation.
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3. More complicated scattering problems

The kinds of scattering problems usually investigated in astrophysics applications are electron,
Compton, resonance line, and dust scattering. In many cases, the scattering phase function (the
angular dependence of the scattering function) can be defined or approximated with analytic
functions, and in other cases, they are computed numerically and described in tabular form. All
of these cases, including the polarization components, can be solved with relative ease with the
Monte Carlo method. I summarize one general method here, including polarization (see also
Chandrasekhar 1960; Code & Whitney 1995), noting that there are other variations to implement
this (Hatcher Tynes et al. 2001; Cornet, C-Labonnote, & Szczap 2010; Hillier 1991). We use the
Stokes Vector S to describe the polarization:

S(θ, φ) = [I(θ, φ),Q(θ, φ),U(θ, φ),V(θ, φ)] (19)

where I is the intensity, Q the linear polarization aligned parallel or perpendicular to the z-axis,
U is the linear polarization aligned ±45◦to the z-axis and V is the circular polarization. The
Stokes vector could also be defined as [I‖(θ, φ), I⊥(θ, φ),U(θ, φ),V(θ, φ)], where I‖ is the intensity
of light with polarization parallel to the z-axis, I⊥ has polarization perpendicular to the z-axis,
and Q = I‖ − I⊥. A scattering diagram is shown in Figure 1 (Chandrasekhar 1960). The photon
is originally propagating into direction P1 and will scatter into direction P2. In many scattering
problems, the phase function can be described analytically dependent only on the angle Θ with
respect to P1. For polarization problems, it is more complicated, because the polarization depends
on the frame of reference. We define the polarization in the “observer’s” frame (the x−y−z frame
in Figure 1). Thus, we need to rotate into and out of the photon propagation direction to apply the
scattering matrix, using Mueller matrices (Chandrasekhar 1960; Code & Whitney 1995). This is
not strictly necessary, as the full scattering matrix can be calculated in the observer’s frame (e.g.,
Whitney 1991a). In magnetic problems, it is easier to define the scattering phase function with
respect to the magnetic field direction, and rotate in and out of these frames (Whitney & Wolff
2002). The resulting Stokes vector after scattering is:

S = L(π − i2)RL(−i1)S′, (20)

where S′ is the incident Stokes vector and L is the Mueller matrix that rotates in and out of the
photon frame, defined as

L(ψ) =































1 0 0 0
0 cos 2ψ sin 2ψ 0
0 −sin2ψ cos2ψ 0
0 0 0 1































. (21)

The scattering matrix R(Θ) is

R(Θ) = a































P11 P12 P13 P14
P21 P22 P23 P24
P31 P32 P33 P34
P41 P42 P43 P44































. (22)
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Figure 1. Geometry for scattering. A photon propagating into direction P1 (θ′,φ′ in the observer’s frame)
scatters through angle Θ into direction P2 (θ,φ)

where Θ is the scattering angle measured from the incident photon direction and a is a normaliza-
tion factor. Note that if we want to ignore polarization, we can ignore all of the elements except
P11.

3.1 Rayleigh scattering

Let us consider the case of Rayleigh scattering, where

a = 3/4
P11 = P22 = cos2Θ + 1 = M2 + 1
P12 = P21 = cos2Θ − 1 = M2 − 1
P33 = P44 = 2 cosΘ = 2M

(23)

where M = cosΘ, and the other elements are 0.

Then the I Stokes parameter in the reference frame of the photon is computed:

S = RL(−i1)S′, (24)

giving:
I = (M2 + 1)I′ + (M2 − 1) cos 2i1Q′ − 2M sin 2i1U ′. (25)

We want to sample the scattering direction (M, i1) from this function.
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3.1.1 Ignoring polarization and using lookup tables for sampling PDFs

First consider the case where we ignore the polarization. Then I = I′(M2 + 1). There are
a couple of ways we can sample scattering angle from this PDF. We could sample M from a
uniform angular distribution (equation 5), and calculate a new photon intensity at each scatter
from I = I′(M2 + 1). Or we can sample the angle M directly from the PDF I = I′(M2 + 1). In
this case the photon intensity will always be equal to 1 as it propagates through the medium. To
do this for Rayleigh scattering, we apply the fundamental principle (equation 1),

ξ =

∫ M0

−1 1 + M2dM
∫ 1
−1 1 + M2dM

= 1/2 + 3/8M0 + 1/8M2
0 (26)

As described before, ξ is a uniform random number between 0 and 1, obtained from a random
number generator. Inverting equation 26 to get M0 for each scatter is not trivial. A fast way to
sample M0 is to make a table of the CPD (equation 26), 1/2+3/8M0+1/8M2

0, which ranges from
0 to 1 uniformly. Then linearly interpolate this table to get the value of M0 that corresponds to
the value of ξ obtained from the random number generator. Once M0 is computed, an azimuthal
angle i1 is sampled (i1 = 2πξ), and the new direction in the coordinate frame of the observer is
computed (Fig. 1).

3.1.2 Including polarization and using the rejection method for sampling from PDFs

If solving the full polarization problem, we will sample M and i1 from the I Stokes parameter
calculated from equation 24. As described before, we could sample M(= cos2 Θ) and i1 from
uniform angular distribution (equation 5), and calculate a new photon intensity from equation
25. Then the intensity of the photon will vary as the photon propagates through the medium.
For Rayleigh scattering, where the intensity varies only by a factor of 2 with angle of scatter, it
is okay to sample isotropically and weight the photon intensity. For scattering that has a more
peaked function, such as dust scattering, or in strong magnetic fields, this will lead to higher errors
and systematic biases (many photons with small intensities and few with large intensities but poor
statistics). To prevent this, I generally try to sample from the exact probability distribution. A
simple method that samples from complicated probability distributions is the rejection method.
All that is needed for this method is to know the peak of the PDF.

In the rejection method, we sample from a rectangle that encloses the curve of P(x) vs x.
That is, following equation 1, we sample x uniformly from a to b: x0 = a + ξ(b − a); and we
sample y uniformly from 0 to Pmax, the maximum value of P(x): y0 = ξPmax. We ask if y0 is
less than P(x0). If so, we accept x0. If not, we sample again. It is like throwing random darts
at the plot and only accepting those that fall below the curve. By throwing enough darts, we
accurately sample the different values of x appropriately. That is, in regions of the plot where
P(x) is low, we sample those values of x less frequently than regions where P(x) is large. The
rejection method is less efficient for highly peaked PDFs; that is, if the rectangle enclosing the
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PDF has a lot of area above the PDF. However, it is so simple to use that it is still usually much
faster and easier to implement than more complicated inversions of the CPD (equation 1). See
Kalos & Whitlock (2008) or other Monte Carlo texts for more examples and more sophisticated
modifications to this method (such as enveloping highly-peaked functions with simple analytic
highly-peaked functions which are sampled from first).

Going back to our scattering problem, as described in Figure 1, we want to sample scattering
angles that change our direction from P1 to P2. That is, we want to sample Θ and ı1, compute
the new Stokes parameters and then rotate back into the observer’s frame of reference. Using
the rejection method, we sample i1 and M = cosΘ from an isotropic distribution (equation 5):
i1 = 2πξ1; M = 2ξ2 − 1. We calculate I(M, i1) from equation 25. We sample P(M, i1) = ξPmax. If
P(M, i1) is greater than I(M, i1), we accept M and i1 as our new scattering angles. Otherwise, we
resample until P(M, i1) is greater than I(M, i1). As mentioned previously, we need to know the
value of Pmax. This can be determined analytically or numerically (from brute-force calculation
over all angles). It is a good idea to verify that P(M, i1) never exceeds Pmax during the run.

Now that we have our new scattering angles M and i1, we compute the new propagation
direction and Stokes vectors in the observer’s frame. The angles i2, θ, φ − φ′ (Figure 1) can be
calculated from the spherical laws of sines and cosines (Green 1985). The matrices are multiplied
through and the Stokes parameters are calculated from equation 20. The Stokes vectors are then
normalized to the PDF we sampled from P(M, i1) (equation 25). Then the I-Stokes parameter of
the photon is equal to 1 as it propagates through.

3.2 Dust scattering

Since dust is ubiquitous throughout the universe, having the capabilities to solve the radiative
transfer of dust in multi-dimensional geometries allows us to model everything from planets,
extrasolar planets, forming stars, evolved stars, star forming regions, and galaxies throughout the
universe. Dust scattering can be approximated with analytic functions or tables produced from
numerical models.

3.2.1 Analytic functions

The most famous analytic function is the Henyey-Greenstein (H-G) function (Henyey & Green-
stein 1941). White (1979) added to this with approximations for the polarization functions. The
elements of the scattering matrix R(M) (where M = cosΘ) (equation 22) are

a = 3/4
P11 = P22 = (1 − g2)/(1 + g2 − 2gM)3/2

P12 = P21 = −p1P11(1 − M2)/(1 + M2)
P33 = P44 = P11(2M)/(1 + M2)
P34 = P43 = −pcP11(1 − M2

f )/(1 + M
2
f ),

(27)
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where g is the scattering asymmetry parameter, ranging from 0 for isotropic scattering to 1 for
fully forward scattering; pl is the maximum linear polarization; pc is the peak circular polariza-
tion; Mf = cosΘ f , Θ f = Θ(1+ 3.13sexp(−7Θ/π), and s is the skew factor which we take to be 1
following White (1979). The other elements in equation 22 are 0. Note that this function includes
a circular polarization component (P34 and P43). This is a second order effect that depends on the
linear polarization and is usually small.

Multiplying through equation 24 to get the I Stokes parameter in the photon reference frame
gives:

I = P11I′ + P12 cos 2i1Q′ − P12 sin 2i1U ′ (28)

The scattering angles M, i1 can be sampled using the rejection method (Section 3.1.2).

If you don’t care to solve the polarization problem, you just use P11 for the scattering phase
function. This can be sampled from directly using the following formula (Witt 1977a):

M =
1 + g2 − [(1 − g2)/(1 − g + 2gξ)]2

2g
(29)

Witt (1977a) describes in detail a Monte Carlo dust scattering algorithm using this function, as
well as superpositions of H-G functions. He also describes how to force the first scattering in an
optically thin nebula to make the code more efficient (see also Gordon et al. 2001).

The other parameters that describe the dust properties are the extinction opacity χ (see equa-
tion 14) and the albedo ω (Section 3.2.2). These as well as g have been estimated observation-
ally. Theoretical models also match these as well as estimating pl and pc which can be tested
by comparing scattered light models to polarization observations. All of these quantitites are
wavelength-dependent.

3.2.2 Dust scattering albedo

The scattering albedo is the ratio of scattered to extincted (scattered + absorbed) flux, and it
ranges from 0 to 1. This can be taken into account in one of two ways: either by weighting the
photon at each scatter by the albedo, or by casting for a random number ξ to determine if the
photon is absorbed or scattered at each interaction. In calculations where we only consider the
scattered component of the radiation at a specified wavelength (e.g., dusty sources illuminated
by UV, optical, and near-IR radiation), we might think the first solution would be more efficient,
that of weighting the scattered photons by albedo. This is often not the case, especially in sources
with very high optical depths in some regions, where too much computing time is wasted on
photons with little weight and therefore little contribution to the final answer. In those cases, it is
much faster to let the photon scatter or absorb by casting for a random number. If ξ is less than
the albedo, the photon scatters; otherwise, it is killed, and we proceed to the next photon.
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3.2.3 Tabular functions

The scattering matrix R(M) (equation 22) can also be computed numerically. Tables of the 16-
element matrix as a function of scattering angle are read in at the beginning of the computation.
For spherical grains, the matrix is simplified, with only 4 independent elements needed, as above
in the analytic approximation. For randomly oriented non-spherical grains, 6 independent ele-
ments are needed. For aligned grains, all 16 elements are non-zero.

The rejection method works well at sampling the tabular functions. At the beginning of the
code, the peak of the M11 element is computed, which we will call Ipeak. In the cases I have tried,
this is also the peak of the I Stokes vector even when the incident radiation is polarized. At each
scatter, as described in §3.1.2, the angles M and i1 are sampled uniformly. The values of P11, P12,
and P13, P14 (if non-zero) are calculated by interpolating the tables (which depend on M). Then
the I Stokes parameter in the reference frame of the photon is computed from equation 24:

I = P11I′ + (P12 cos 2i1 + P13 sin 2i1)Q′ + (P13 cos 2i1 − P12 sin 2i1)U ′ + P14V ′. (30)

For spherical grains, only 8 of the scattering matrix elements are filled with 4 unique elements, as
in the analytic prescription above: P11 = P22, P12 = P21, P33 = P44, P34 = P43, and the rest are
zero, giving the same form as equation 28. As described in Section 3.1.2, a random number ξ is
chosen between 0 and the peak of I; if ξ is less than Ipeak, the angles M and i1 are accepted, and the
rest of the Stokes vectors are calculated from equation 20. To verify that we properly calculated
the peak of the scattering function, we check at each scattering that the I Stokes parameter does
not exceed Ipeak. if it does, we need to rerun the code with the correct value. Once the scattering
angle has been calculated, the other angles are computed, and the Stokes vector in the observer
frame are computed (equation 20), as described in Section 3.1.2.

3.2.4 Aligned grains

Aligned grains use the full 16-element scattering matrix, calculated as described in the previous
section (Section 3.2.3). Instead of rotating in and out of the photon direction frame, we rotate into
and out of the frame aligned with the magnetic field along the z-axis. The 16-element scattering
matrix is defined with respect to field direction rather than photon direction. The additional
component here is in the random walk, where the opacities depend on the polarization of the
photon. Photons traversing the medium develop Q polarization in the frame of the magnetic field,
called dichroism. Photons with some U polarization (w.r.t. magnetic field direction) develop
V polarization, called birefringence. Whitney & Wolff (2002) describe how to implement these
effects along the photon propagation path.
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3.2.5 Applications of continuum scattering problems

Most electron scattering applications are in resonance line scattering of stellar winds, as described
in the next section. Whitney (1991a) described how to calculate the scattering of electrons in
magnetic fields of arbitrary strength, and showed how the magnetic effects can explain the unusual
polarization behavior in the polarization of magnetic white dwarfs (Whitney 1991b).

The most widespread applications of Monte Carlo (MC) continuum scattering have been for
dust scattering. Witt (1977a,b,c) and Witt & Oshel (1977) pioneered this field describing algo-
rithms for sampling the Henyey-Greenstein function and computing the MC radiative transfer.
Witt and collaborators applied these codes to galaxies showing the “blueing” due to scattering
partially compensates for reddening by extinction (Witt, Thronson & Capuano 1992) and the ef-
fects of clumping on the radiative transfer (Witt & Gordon 1996, 2000). Bianchi et al. (2000) also
studied the effect of clumping in dusty galaxies. Boisse (1990) studied the effects of clumps in the
penetration of UV photons inside molecular clouds. Whitney & Hartmann (1992, 1993), Kenyon
et al. (1993), and Fischer, Henning & Yorke (1994) calculated dust scattering and polarization in
2-D structures–disks, envelopes, and bipolar cavities—surrounding protostellar envelopes. Sev-
eral authors have modeled high spatial-resolution images from Young Stellar Objects (YSOs),
determining disk/envelope properties and grain size distributions (e.g., Wood & Whitney 1998;
Cotera et al. 2001; Schneider et al. 2003; Wolf, Padgett & Stapelfeldt 2003; Watson & Stapelfeldt
2004, 2007; Duchene et al. 2004; Stark et al. 2006; Watson et al. 2007 and references therein),
and polarization maps (Whitney, Kenyon & Gomez 1997; Lucas & Roche 1997, 1998). Whit-
ney & Wolff (2002), Lucas (2003), and Lucas et al. (2004) modeled polarization maps of YSOs
with aligned grains, to study the magnetic field structures. Jonsson (2006) describes a code for
computing scattering in galaxies. The advances of this code are that it follows a spectrum of
photons through, rather than a single wavelength; and is designed to work with SPH simulations
and on an adaptive grid. This code is widely used in the study of galaxy evolution to visualize
galaxy images produced from SPH simulations (such as the GADGET code; Springel, Di Matteo
& Hernquist 2005).

3.3 Line scattering problems

3.3.1 Resonance line scattering and scattering in flows

Resonance lines are transitions to and from the ground states of bound electrons. The scattering
matrix is the sum of a Rayleigh phase function plus an isotropic function. In a flow, such as
an expanding atmosphere or universe, we take into account the Doppler shifts of the fluid with
respect to the incident photons. Hillier (1991) calculated the electron scattering of lines in Wolf-
Rayet stars. He described how to calculate the emission location, that is, where the photon of
a given direction and frequency will resonantly interact with the flow, and how to transform the
frequency from one frame to the next in the flow. Kurosawa & Hillier (2001) applied these
algorithms in a 3-D tree-structured grid, and demonstrated their model on interacting winds in
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massive binaries (see also Kurosawa, Hillier & Pittard 2002 for an application to the massive
binary V444 Cyg). Sundqvist, Puls & Feldmeier (2010) calculate resonance line formation in
2-D wind models, in an ongoing effort to resolve a very interesting new controversy on mass-loss
rates from clumpy massive stellar winds (see Puls, Vink & Najarro 2008). They require higher
mass loss rates than in the optically thin clump models which they say resolves the controversy.
Knigge, Woods & Drew (1995) calculated resonance line scattering in accretion disk winds.

Another useful application for resonance line scattering is the radiative transfer of Lyα pho-
tons. This problem can be approximately solved analytically only for a limited number of cases
such as a static, extremely opaque and plane-parallel medium. Several authors describe radiative
transfer calculations (e.g., Zheng & Miralda-Escude 2002; Verhamme, Schaerer & Maselli 2006;
Laursen et al. 2009)) and apply them to, e.g., Lyα radiative transfer in a dusty, multiphase medium
(Hansen & Oh 2006), Lyα pressure in the neutral intergalactic medium (Dijkstra & Loeb 2008),
Lyα escape fractions from simulated high-redshift dusty galaxies (Laursen, Sommer-Larsen &
Andersen 2009), cosmological reionization simulations (Zheng et al. 2010), and the Lyα forest
around high redshift quasars (Partl et al. 2010).

3.3.2 Relativisitic scattering

In principle, the calculations for relativistic scattering processes are similar, with additional trans-
formations of the photon frequency in and out of the co-moving frame. If gravitational redshift
is important, we need to apply this to the photon frequency at each step of the photon path inte-
gration. For more information, I refer the reader to other authors who know much more than I:
Wang, Wasserman & Salpeter (1988) calculate cyclotron line resonance transfer in neutron star
atmospheres; Fernandez & Thompson (2007) also calculate cyclotron resonance scattering in 3-D
geometries. Stern et al. (1995) describe a large particle (LP) method for simulating non-linear
high-energy processes near compact objects. And Dolence et al. (2009) describes a general code
(grmonty) for relativistic radiative transport.

4. Including emission

Adding emission usually adds wavelength dependence to the problem and allows us to model
the spectral dependence of an astrophysical source. The dominant emission processes are from
gas and dust. We start with dust, which is the easiest to calculate. Fortunately, a wide variety
of astrophysical problems can be addressed with 3-D dust radiative transfer, due to the wealth
of infrared data recently available from, e.g., the Spitzer Space Telescope, Herschel Space Ob-
servatory, Wide Field Infrared Survey Explorer (WISE), and the upcoming James Webb Space
Telescope.
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4.1 Dust radiative equilibrium

Due to the nature of its opacity, dust generally scatters and absorbs optical radiation, and emits
infrared radiation. For grains larger than about 200 A in radius, we can usually assume that the
dust is in thermal equilibrium with the surrounding gas (we will address smaller grains in Section
4.2). The gas-to-dust mass ratio is about 100 in our Galaxy. Even though there is much more gas
mass than dust, its opacity is many orders of magnitude larger than gas, so we can usually neglect
the gas opacity in dusty nebulae.

We calculate the radiative transfer as described previously, but when a photon is absorbed
(see Section 3.2.2), we re-emit a thermal photon. To do that, we need to know the temperature
of the dust. This is straightforward to solve under conditions of radiative equilibrium and local
thermal equilibrium (LTE). The radiative equilibrium process describes the condition when all of
the energy is transported by radiation. Then we can say that the total energy absorbed by a given
volume of material is equal to the total energy emitted (Mihalas 1978):

4π
∫ ∞

0
χν(S ν − Jν)dν, (31)

where S ν is the Source function, or the ratio of the total emissivity to the opacity, Jν is the average
intensity in the same volume, and χν = κν +σν is the mass extinction coefficient. In local thermal
equilibrium, we can write (Mihalas 1978):

S ν = (κνBν + σνJν)/(κν + σν) (32)

where κν and σν are the mass absorption and scattering coefficients, respectively, and their sum is
χν (in units of cm2/g). The condition of radiative equilibrium is then

∫ ∞

0
κνBν(T )dν =

∫ ∞

0
κνJνdν, (33)

This is all the information we need for our Monte Carlo calculation. We will do our calculation on
a grid so we can calculate the volume and mass of each cell for the emission properties. This also
allows flexibility in including arbitrary density functions and makes optical depth integrations
straightforward (Section 2.4).

Bjorkman & Wood (2001, hereafter BW01) describe how to determine the temperature of
each grid cell by equating the total absorbed photons with those emitted assuming thermal equi-
librium. This gives

σT 4
cell =

NcellL
4NκP(Tcell)mcell

, (34)

where Ncell is the number of photon packets absorbed in the cell, L is the source luminosity,
κP(Tcell) is the Planck mean opacity,mcell is the mass of the cell, and N is the total number of pho-
ton packets in the simulation. This applies to any continuous opacity source that is independent
of temperature. To solve this equation efficiently, we pretabulate the Planck mean opacities and
use a simple iterative algorithm.
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When a photon is absorbed in a cell we sum its energy into an array for use in computing
equation 34. We then emit a new photon of equal energy to conserve radiative equilibrium. All
that’s required is to properly sample its frequency from the emissivity function converted to a
PDF:

dPcell
dν
=

jν
∫ ∞

0 jνdν
=

κνBν(Tcell)
∫ ∞

0 κνBν(Tcell)dν
(35)

where (dPcell/dν) is the probability of emitting a photon between frequencies ν and nu + dν. We
precompute the running integral of this function (that is, the cumulative probability distribution
or CPD, see Section 3.1.1) for a range of frequencies and temperatures, and interpolate the table
based on the sampled random number ξ to get ν.

At the start of our simulation, we do not know the temperature of each cell, so we use an
arbitrary value (we start with 3 K), and use the absorbed photons to determine the temperature.
We can iterate, i.e., do the calculation several times, and calculate a new temperature for each
cell (equation 34) after each iteration, until the cell temperature converges (Lucy 1999a). Alter-
natively, we can correct the temperature as we go and emit from a corrected emissivity spectrum
(BW01). This corrects the emitted spectrum so that the total emitted spectrum at the end of the
simulation is appropriate for the temperature of that cell. For example, if the cell starts out cold,
the emitted photon frequencies will be lower than the proper spectrum, so as the temperature
warms up, we will sample from an overly “hot” spectrum to emit higher frequency photons. This
is described graphically in Figure 1 of BW01. The temperature correction probability distribution
is

dPcell
dν

=
κν

K

(

dBν
dT

)

T=Tcell
, (36)

where K =
∫ ∞

0 κν(dBν/dT )dν is the normalization constant. Again, we can precompute the CPD
and interpolate from this to sample ν based on random number ξ.

Lucy (1999a) derived a much faster way to compute the total absorbed radiation in a grid cell
(the right-hand-side of equation 33), using the pathlengths of all photons crossing a cell, rather
than summing only those absorbed. This gives

∫ ∞

0
κνJνdν =

L
4πNV

∑

κνl, (37)

where V is the volume of the cell, l is the pathlength across the cell that a given photon traveled,
and the others are as defined in equation 34. The pathlengths are summed during the optical depth
integration as the photon travels through various cells on its way to an interaction. Following
BW01 and equating this with the emitted radiation to solve for temperature, we get:

σT 4
cell =

ρcellL
∑

κνl
4NκP(Tcell)mcell

, (38)

Thus, we can call our temperature solver with ρcell
∑

κνl in place Ncell. Robitaille (2011) presents
a variation of this method where he tabulates the specific internal energy rather than the tem-
perature. This allows the straightforward inclusion of other heating sources in addition to LTE
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dust. The temperature can be calculated if needed from the internal energy, similar to equation
(38). The simplest way to implement the Lucy method for correcting the temperature is with
an iterative scheme. The temperature remains constant during an iteration, we sample frequency
from the emissivity (equation 35), and then calculate a new temperature for each cell at the end of
the iteration (equation 38). Lucy (1999a) notes that this temperature correction scheme appears
identical to the “notorious” lambda-iteration procedures that are known to fail (Mihalas 1978);
however it is not the same, because flux is conserved exactly across all surfaces. In fact, this
method converges in only a few iterations (3-4).

This method has several advantages over BW01: 1) It is very fast at converging the tem-
perature. Chakrabarti & Whitney (2009) quantified this by running several 3-D simulations and
comparing the BW01 and Lucy methods. In the Lucy iteration method, the number of photons re-
quired to get an accurate temperature is approximately Ntemp ∼ 2Ngrid, where Ngrid is the number
of grid cells. The BW01 method requires at least Ntemp ∼ 100Ngrid. In the Lucy method, we run
the first n iterations using Ntemp photons, and then run the final iteration using NSED , the number
of photons required to produce an SED of our desired signal-to-noise. Usually, NSED is much
larger than NTemp. In 2-D problems, the run-time of Lucy and BW01 is similar; in 3-D problems,
because there are so many more grid cells, the Lucy method runs much faster. Robitaille (2011)
describes a robust method to determine convergence. 2) The Lucy method is easily parallelizable.
Since the temperature remains constant during an iteration, the photons can be divided up among
several processors and run independently. At the end of each iteration, they are summed up and
a new temperature is calculated. Robitaille (2011) shows the speedup expected as a function
of number of processors. 3) More complicated physical processes that require iteration can be
incorporated in a straightforward way. For example, including temperature dependent opacities
(e.g., gas opacity); calculating grain alignment from moments of the radiation intensity; and cal-
culating non-thermal small grain emissivity which requires knowledge of the average intensity in
a grid cell.

4.1.1 High fidelity spectra and images

A useful technique for computing a high signal-to-noise image and SED is to ‘peel-off’ a photon
in a specified (observer’s) direction at every interaction (Yusef-Zadeh, Morris, & White 1984).
When a photon is initially emitted, in addition to its sampled direction, we emit an additional
photon into one or more specified observer directions, weighted by the PDF, or the probability
that it would have gone in this direction. The photon’s intensity is additionally weighted by the
extinction it undergoes on its way to the observer I = I0e−τ where τ is the integrated optical
depth along its path. At each interaction (scattering or emission), we again peel-off a photon
into the observer direction, weighted by the PDF (for scattering or emission), and the extinction.
Note that the peeling-off technique does not replace the regular Monte Carlo simulation, but is
an added computation. The main ‘trick’ with this is that we have to make sure that the peeled
photon is normalized properly. In the regular simulation, this is done at the end of the simulation
with the conversion of exiting photons to flux and energy; during the simulation, the PDF’s are
normalized to range from 0-1 (to match the random number range). For example, in emitting
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photon packets from a limb darkened star, we emit each photon with the same energy, but the
distribution of emitted photons varies with angle. For the peeled photon, we weight it by the
limb-darkening law and need to normalize it properly. Fortunately, this is easy to verify by
comparing the peeled images and spectra with the regular Monte Carlo in simulations that test
all the emission and scattering processes (i.e., viewing images and SEDs of the star only, then
scattering-only simulations, emission-only, high and low optical depths, etc.).

4.2 The diffusion method

In sources with high optical depths, MCRT can become very slow to compute when the pho-
ton path length is much shorter than the escape length from a given region. In dust radiative
transfer this effect is offset to some extent because the opacity of dust decreases with increasing
wavelength: optical photons that are absorbed and re-emitted by the cooler dust get converted to
infrared photons that can usually escape. Thus sources with visual optical depths of even 1000 are
computed quickly. However, in regions of much higher optical depths, such as protostellar disks,
the photons effectively get trapped in the disk midplane, undergoing millions of interactions be-
fore escaping. Min et al. (2009, hereafter M09) developed a modified random-walk (MRW) that
moves photons through optically thick regions, using the diffusion approximation.

In the MRW method, when the optical depth in a grid cell is much larger than 1, we define
a sphere whose radius is smaller than the distance to the closest wall, and travel to the edge of
the sphere in a single step. The true distance the photon would have traveled in a random walk is
calculated using the diffusion approximation. This along with the average mass absorption coef-
ficient are used to compute the total energy deposited and therefore the temperature of the cell. A
new photon emerges from the sphere with the frequency sampled from the Planck function at the
local dust temperature. If the BW01 temperature correction method is used, the photon frequency
is sampled from dBν(T )/dT . Robitaille (2010) showed how to compute the local diffusion co-
efficient D, the average mass absorption coefficient and the dust emission coefficient ην without
iteration, giving:

D =
1

3ρχR
, (39)

κ =

∫ ∞
0 κνBν(T )dν
∫ ∞

0 Bν(T )dν
= κP, (40)

ην = χνBν(T )
κP

χP
, (41)

where χP is the Planck mean opacity,

χP =

∫ ∞
0 χνBν(T )dν
∫ ∞

0 Bν(T )dν
(42)



Monte Carlo radiative transfer 19

and χR is the Rosseland mean opacity:

1
χR
=

∫ ∞
0 χνBν(T )/χνdν
∫ ∞

0 Bν(T )dν
. (43)

Robitaille (2010) describes the implementation of the MRW algorithm in his Section 3, so I refer
the reader to that.

M09 also describe a Partial Diffusion Approximation (PDA) which can be used to obtain
a reliable temperature in regions where few if any photons reach, such as the midplane of an
externally illuminated disk with no self-luminosity due to accretion. For computations of images
and SEDs, if no photons reach a given region, none are emitted, so PDA is not needed. However,
if we want to solve for the vertical hydrostatic density distribution of the disk, the temperature
in all regions is required. The PDA assumes that no photons escape the optically thick region
without interactions, which simplifies the 3-D radiative diffusion equation (Wehrse, Baschek &
von Waldenfels 2000; Rosseland 1924)

∇ · (D∇E) =
1
c
∂E
∂t

(44)

to
∇ · (D∇T 4) = 0. (45)

This results in a system of linear equations that can be solved knowing the temperature at the
boundaries of the optically thick regions (Robitaille 2011 shows how this can be solved on a
spherical polar grid). Thus the PDA requires iteration, using the temperature calculated from
the MCRT solution. The PDA overestimates the temperature slightly because it does not take
into account the few very long-wave photons that can escape from the region and cool it more
efficiently.

4.3 Non-equilibrium dust (small grain emission)

Grains smaller than about 200 A, or Very Small Grains (VSGs), as well as large molecules such as
Polycyclic Aromatic Hydrocarbons (PAHs) undergo quantum heating from even single photons,
which leads to temperature fluctuations. These fluctuations depend on the size of the particle.
Given a probability distribution P(T)dT for the temperature of a grain, the emission from an
ensemble of VSGs is given by (Misselt et al. 2001)

L(ν) = 4π
∑

i

∫ amax

amin
ni(a)σi(a, λ)da

∫

Bν(Ti,a)P(Ti,a)dT (46)

where i is the species of the grains (e.g., silicates or carbon), n is the number density of grains
(typically units are cm−3) of radius a and σ is the cross section of the grains (in units of cm2).
This can be compared to the left-hand side of equation 33, where the grain cross sections are
already integrated over size and are all assumed to emit at the same temperature T, which is
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valid for large grains. Misselt et al. (2001) describe how to determine P(T) for VSGs using the
continous cooling approximation developed by Guhathakurta & Draine (1989), which speeds up
the calculation significantly. They describe an even more simplied approach to compute the PAH
emission:

LPAH(a, ν) = 4πσ(a, ν)B[T (t)], (47)

where the Planck function is averaged over the mean time between absorptions calculated from

1
t
=

4π
hc

∫ νc

0
σ(a, ν)Jνdν, (48)

where νc is the cutoff frequency in the optical/UV cross section of the PAH molecule (Desert et
al. 1990).

In their radiative transfer algorithm, Misselt et al. (2001) first process the stellar and nebular
sources, calculating the transmitted, scattered and absorbed photons in the grid. Then they calcu-
late the dust emission and transfer based on the heating from the absorbed photons. They iterate
on the fractional change of energy absorbed by the grid. This method does not conserve energy
in a given iteration and may be subject to Lambda iteration issues. The large grain emission is as
described in the radiative equilibrium equation 33, using the average intensity of each cell com-
puted at the end of an iteration. The PAH and very small grain component is as given in equations
46 and 47. The solution for the very small grains is the most computationally expensive part of
the code.

Pontoppidan et al. (2007) also use the method of Guhathakurta & Draine (1989) to compute
the heating of the very small grains, and do not compute the PAH emission (though they do
include PAH absorption opacity). Photons absorbed by these very small grains are lost in the first
iteration, to be released in a post-processing step and/or in a second iteration.

Wood et al. (2008) bypass the temperature calculations of the VSGs and PAHs altogether,
and use look-up tables for the emissivity of these species. The input to the lookup tables is the
average intensity J in each grid cell, calculated using the Lucy (1999a) method (equation 33,
without the opacity). This method requires iteration. In each iteration the photons are emitted
from the star and other luminosity sources (e.g., disk accretion) and are processed as described
in previous sections. At each interaction, we sample a probability that a photon is absorbed by a
thermal grain, a VSG, or a PAH molecule, based on the relative opacities of these material for the
frequency of the incoming photon. If a thermal grain, a thermal photon is emitted based on the
temperature of the cell (equation 35); if a VSG or PAH, a non-thermal photon is emitted from the
pre-computed emissivity spectra based on J in the cell. After each iteration a new temperature
and J are computed in each cell. Energy is conserved, and the models converge in 3-4 iterations.
This method is as fast as the radiative equilibrium method using the Lucy method. The lookup
tables incorporate all the physics of the temperature fluctuations and emission as a function of
input radiation field, but are pre-computed so that it does not slow down the radiative transfer
calculations. The main approximation to the Wood et al. (2008) implementation is that they do
not take into account the frequency dependence of the average intensity (Jν). This assumption
is not as egregious as it might seem because the wavelength dependence of the opacity is taken
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into account, ensuring that PAH and VSG photons are not emitted in regions with high J but
low probability of excitation. Robitaille (2011) improves on this method by tabulating the energy
absorbed by the PAH and VSGs rather than the average intensity. This better samples the spectral
shape of the emissivity; that is, if the intensity peaks in the UV, the energy absorbed would predict
a higher excitation emissivity.

4.4 Aligned grain emission

Thermal emission from aligned grains is similar to that of spherical grains except the full Stokes
matrix is used in the emission. The dust opacities need to be calculated, along with the degree
of alignment. Fiege & Pudritz (2000) describe a method for emitting polarized submillimeter
emission in molecular clouds. Bethell et al. (2007) and Pelkonen, Juvela & Padoan (2009) show
how to calculate the degree of alignment using radiative torques. Hoang & Lazarian (2008, 2009a,
2009b), and Hoang, Draine & Lazarian (2010) present new calculations on the radiative torque
mechanism. Because of the low opacities at these wavelengths, the absorption and scattering is
ignored in these calculations. In protostellar disks where the grains are larger and the optical
depths higher, these approximations are likely not valid. Whitney & Wolff (2002) describe how
to include absorption along the photon path and scattering of aligned grains. When emission,
scattering, and absorption are included, models can be made at all wavelengths and densities.

4.5 Applications of dust MCRT

Several authors have developed dust MCRT codes that can be applied to a variety of astrophysical
objects. Their methods are generally similar to what I described above but there are variations
in, for example, conserving energy by re-emitting photons as they are absorbed vs separating the
initial emission and re-emission processes; or different coordinate-system rotations for the Stokes
vectors (conceptually simple vs computationally efficient). Numerical techniques and codes have
been described by Lucy (1999a), Wolf, Henning & Stecklum (1999), Wolf & Henning (2000),
Misselt et al. (2001), Bjorkman & Wood (2001), Wolf (2003), Stamatellos & Whitworth (2003),
Stamatellos, Whitworth, & Ward-Thomson (2004), Whitney et al. (2003a,b), Niccolini et al.
(2003), Goncalves, Galli & Walmsley (2004), Baes et al. (2005), Pinte et al. (2006), Niccolini &
Alcolea (2006), Pontoppidan et al. (2007), Bianchi (2008), Wood et al. (2008), Min et al. (2009),
Kama et al. (2009), and Robitaille (2010, 2011). Adaptive grid techniques have been described
by Niccolini & Alcolea (2006). Benchmark tests have been made by Pascucci et al. (2004) and
Pinte et al. (2009).

These codes have been applied widely in the study of protostellar envelopes/disks, and galax-
ies. In both cases, clumpy structures (e.g., Schartmann et al. 2008 and Bianchi 2008 for galaxies,
Indebetouw et al. 2006 for protostars, Doty, Metzler, & Palotti 2005 for externally heated molec-
ular clouds), and other asymmetric dust distributions (e.g., outflow cavities and disks) require
2-D and 3-D radiative transfer codes to properly interpret the SEDs, images, and polarization.
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Grain alignment models have been applied to near-IR polarization maps, to determine mag-
netic field structures in protostars (Whitney & Wolff 2002; Lucas 2003; Lucas et al. 2004); and to
submillimeter polarization maps to determine magnetic structures (Fiege & Pudritz 2000), den-
sity distributions, grain size distribution (Pelkonen et al. 2009), and to test the radiative torque
theories for grain alignment, polarization-Intensity relations (Bethell et al. 2007; Pelkonen, Ju-
vela & Padoan 2007), and the Chandrasekhar-Fermi formula (Padoan et al. 2001).

The recent explosion of optical and IR data from several observatories and surveys (e.g.,
Spitzer Space Telescope, Herschel Space Telescope, Hubble Space Telescope, 2MASS, UKIDDS,
WISE), combined with advances in dynamical simulations that provide realistic density distribu-
tions, has made the development of 3-D dust radiative transfer a very fruitful area of research.

4.6 Gas emission

4.6.1 Non-LTE MCRT and flows

As in the scattering and dust emission processes, MCRT is very complementary to other meth-
ods. Whereas traditional methods excel in high optical depth LTE 1-D geometries, MCRT can
excel in non-LTE, 3-D geometries with complex velocity fields and anisotropic radiation fields.
Bernes (1979) outlined a procedure for non-LTE multi-level radiative transfer and demonstrated
the method for CO line profiles in a spherical, homogeneous, collapsing dark cloud. Since then,
several authors have improved on the Bernes (1979) algorithms to, e.g., extend to 3-D (Park &
Hong 1995) allow for very high optical depths (Hartstein & Liseau 1998), treat clumpy structures
(Park, Hong & Minh 1996; Juvela 1997; Pagani 1998), accelerate the convergence and include
dust emission Hogerheijde & van der Tak (2000), and include multiple molecules (Pavlyuchenkov
et al. 2007).

The application of MCRT to the computation of expanding gaseous envelopes was described
by Abbott & Lucy (1985). Mazzali & Lucy (1993) adapted this code to supernova envelopes,
where a single continuum photon can interact with many more spectral lines due to the high
velocities of the outflow (∼ 30000 km s−1). The Monte Carlo approach is better suited to this
problem than the formal integral type solutions. Mazzali & Lucy (1993) include ionization,
electron scattering and line scattering in their code. Lucy (1999b) improves the line formation
treatment of this code and the noise in the emergent spectrum by using the formal integral for
the emergent intensity. Lucy (2005) removes many of the simplifying assumptions in the earlier
codes and solves the time-dependent 3-D NLTE transfer in homologously expanding ejecta of a
SN, given the distribution of mass and composition at an initial time t1. Kasen, Min & Nugent
(2006) describe a similarly capable code, which also includes polarization and non-grey opacities,
that can provide direct comparison between multidimensional hydrodynamic explosion models
and observations. Maeda, Mazzali & Nomoto (2006) and Sim (2007) also developed similar
codes based on the Lucy methods.
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Long & Knigge (2002) apply the methods of Mazzali & Lucy (1993) to calculate line forma-
tion and transfer in accretion disk winds. Sim, Drew & Long (2005) extended this code to include
‘macro atoms’, as devised by Lucy (2002, 2003), allowing energy conservation and radiative
equilibrium to be enforced at all times. This allows lines formed by non-resonance scattering or
recombination to be modeled.

Carciofi & Bjorkman (2006) employ a 3-D non-LTE code to study the temperature and ion-
ization structure of Keplerian disks around classical Be stars. They devised a method independent
of Lucy’s (2002) transition probability method to solve the equations of statistical equilibrium.
It is similar in many ways, except that the photon absorption and re-emission mechanisms are
uncorrelated, allowing them to dispense with Lucy’s macro atoms, along with their associated in-
ternal transitions and Monte Carlo transition probabilities. Their models show that the optically
thick regions of the disk are similar to Young Stellar Object (YSO) disks and the optically thin
outer parts are like stellar winds. Carciofi & Bjorkman (2008) build on their previous work and
solve the steady state nonisothermal viscous diffusion and vertical hydrostatic equilibrium of Ke-
plerian disks. Their solution departs significantly from the analytic isothermal density, affecting
the emergent spectrum.

4.6.2 Photoionization

Several authors describe algorithms for calculating photoionization, e.g., Och et al. (1998), Wood
& Loeb (2000), Ciardi et al. (2001), Maselli, Ferrara & Ciardi (2003), Ercolana et al. (2003),
Wood, Mathis & Ercolana (2004), Ercolana et al. (2008), and Cantalupo & Porciana (2011).
Some particular features of these codes are Wood et al.’s (2004) use of photon packets vs energy
packets to more easily match the notation of the recombination coefficients; the x-ray extension
to the MOCASSIN code to allow computation detailed high-resolution spectra (Ercolano et al.
2008); and photoionization on adaptive mesh refinement grids (Cantalupo & Porciani 2011).

These have been applied to the study of escape of ionizing radiation from high-redshift galax-
ies (Wood & Loeb 2000), cosmological reionization around the first stars (Ciardi et al. 2001),
modeling the diffuse ionized gas in the Milky Way and other galaxies (Wood & Mathis 2004,
photoevaporating planetary disks (Ercolano & Owen 2010), H II regions (Ercolano, Wesson &
Bastian 2010 and references therein), and planetary nebulae (Ercolano et al. 2004 and references
therein), to name a few.

4.6.3 Chemistry

The combinations of dust radiative transfer (Section 4.1) and line radiative transfer (Section 4.6.1)
can be used to study the chemistry in clouds. Jorgensen et al. (2006) iterate on the dust temper-
ature and molecular line calculations to determine where molecules freeze-out in protostellar
envelopes. Spaans (1996) includes a chemical network of 44 species to study the effects of
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clumpiness. Bruderer et al. (2009a,b, 2010) demonstrate chemical modeling of Young Stellar
Objects in a 3-part series. They pre-calculate a grid of chemical composition as a function of
time, for a given gas density, temperature, far-UV irradiation and X-ray flux. The local far-UV
flux is calculated by a Monte Carlo radiative transfer code, which includes scattering and temper-
ature calculation. The use of the pre-calculated chemical grid speeds up calculations by several
orders of magnitude.

5. Summary

The Monte Carlo method for radiative transfer (MCRT) is complementary to the traditional for-
mal methods. While those excel in 1-D, at high optical-depths, incorporating many gas lines
and computing detailed spectra, MCRT excels with 3-D geometries, non-LTE gas processes,
anisotropic radiation fields and scattering functions, complex velocity fields, and polarization
calculations. Thus MCRT is a great tool to add to the set of well-developed methods for radiative
transfer. In fact, it is a necessary tool to interpret the ever-increasing sophistication of our new
observatories.
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