

Look forward

Malcolm S. Longair's "Galaxy Formation" 2nd edition [Library]

Chpt 1-2,5-8: expanding metrics, energy density, curvature, distances

Chpt 4,11,15,20: DM, Structure growth, inflation Chpt 9-10,13: Thermal History of Particle Reaction, Neutrinos, WIMPs

Text (intro): Andrew Liddle: Intro to Modern Cosmology (advanced): John Peacock: Cosmological Physics Web Lecture Notes: John Peacock, Ned Wright

AS 4022 Cosmology

Why Study Cosmology?

- Fascinating questions:

 Birth, life, destiny of our Universe
 Hot Big Bang --> (75% H, 25% He) observed in stars!
 Formation of structure (galaxies ...)
- Technology -> much recent progress:
 Precision cosmology: uncertainties of 50% --> 2%
- Deep mysteries remain: – Dark Matter? Dark Energy? General Relativity wrong?

 Redshift

 • Expansion is a stretching of space.

 • The more space there is between you and a galaxy, the faster it appears to be moving away.

 • Expansion stretches the wavelength of light, causing a galaxy's spectrum to be REDSHIFTED:

 STATIONARY:

 • DOPPLER SHIFT:

 • REDSHIFT:

 • REDSHIFT:

 • REDSHIFT:

 • REDSHIFT IS NOT THE SAME AS DOPPLER SHIFT

$\label{eq:constraint} \begin{array}{l} \textbf{Cosmic Neutrino Background:} \\ \textbf{seturinos (Hot DM) decouple from electrons (due to very weak interaction) while still hot (relativistic 0.5, <math>Mev \sim kT > mc^2 \sim 0.02 - 2 eV) \\ \textbf{mesently there are 3 x 113 neutrinos and 452 CMB photons per cm^3. Details depend on \\ \textbf{Neutrinos have 3 species of spin-1/2 fermions while photons are 1 species of spin-1 bosons \\ \textbf{Neutrinos rare a vece bir colder, 1.95K vs. 2.7K for photons [during freeze-out of electron-positions, more photons created] \\ \textbf{Initially mass doesn't matter in hot universe \\ relativistic (comparable to photon number density <math>-R^3 - T^3$). \\ freeduct collisions with other species to be in thermal equilibrium and cools with photon bath. \\ \textbf{Proton numbers (approximately) conserved, so is the number of relativistic massive particles \\ \end{array}

AS 4022 Cosmology

Concept: Particle-Freeze-Out?

- Freeze-out of equilibrium means NO LONGER in thermal equilibrium.
- Freeze-out temperature means a species of particles have the SAME TEMPERATURE as radiation up to this point, then they bifurcate.
- Decouple = switch off the reaction chain = insulation = Freeze-out

AS 4022 Cosmology

As 4022 Cosmology

Tutorial: Typical scaling of expansion
$H^2 = (dR/dt)^2/R^2 = 8\pi G (\rho_{m} + \rho_m + \rho_m + \rho_m)/3$
Assume domination by a component $\rho \sim R^{-n}$
Show Typical Solutions Are
$\rho \propto R^{-n} \propto t^{-2}$
n = 2(curvature constant dominate)
n = 3(matter dominate)
n = 4(radiation dominate)
$n \sim 0$ (vaccum dominate): $\ln(R) \sim t$ Argue also H = (2/n) t ¹ ~t ¹ . Important thing is scaling!

AS 4022 Cosmology

Drasisian	Coomology			
Precision Cosmology				
$h = 71 \pm 3$	expanding			
$\Omega = 1.02 \pm 0.02$	flat			
$\Omega_b = 0.044 \pm 0.004$	baryons			
$\Omega_{\scriptscriptstyle M}=0.27\pm0.04$	Dark Matter			
$\Omega_{\Lambda} = 0.73 \pm 0.04$ Dark Energy				
$t_0 = 13.7 \pm 0.2 \times 10^9 \text{ yr}$	now			
$t_* = 180^{+220}_{-80} \times 10^6 \text{ yr}$ z_*	$_{*} = 20^{+10}_{-5}$ reionisation			
$t_R = 379 \pm 1 \times 10^3 \text{ yr}$ z	$z_R = 1090 \pm 1$ recombination			
(From the WMAP 1-year analysis) 4022 Cosmology	data			

Cosmology Milestones

- 1925 Galaxy redshifts $\lambda = \lambda_0 (1+z)$ V = c z- lsotropic expansion. (Hubble law $V = H_0 d$) - Finite age. $(t_0 = l3 x l0^9 \text{ yr})$ • 1965 Cosmic Microwave Background (CMB) - lsotropic blackbody. $T_0 = 2.7 \text{ K}$ - Hot Big Bang $T = T_0 (1+z)$ • 1925 General Relativity Cosmology Models : - Radiation era: $R \sim t^{1/2} T \sim t^{-1/2}$ - Matter era: $R \sim t^{2/3} T \sim t^{-2/3}$
- 1975 Big Bang Nucleosynthesis (BBN) – light elements (${}^{1}\text{H} \dots {}^{7}\text{Li}$) $t \sim 3 \text{ min } T \sim 10^9 \text{ K}$
- nrimordial abundances (75% H 25% He) as observed!

AS 4022 Cosmology

Universe of uniform density Metrics ds, Scale R(t) and Redshift EoS for mix of vacuum, photon, matter, geometry, distances	Quest of H0 (obs.) Applications of expansion models Distances Ladders
Thermal history Freeze-out of particles, Neutrinos, CDM wimps Nucleo-synthesis He/D/H	Cosmic Background COBE/MAP/PLANCK etc. Parameters of cosmos
Structure formation Inflation and origin of perturbations Growth of linear perturbation Relation to CMB peaks, sound horizon	Quest for Omega (obs.) Galaxy and SNe surveys Luminosity Functions (thanks to slides from K. Horne)

<u>6th concept:</u> Distances in Non-Euclidean Curved <u>Space</u>
How Does Curvature affect Distance Measurements ?
Is the universe very curved?
AS 4022 Cosmology

Geodesics

Gravity = curvature of space-time by matter/energy. Freely-falling bodies follow **geodesic trajectories**. Shortest possible path in curved space-time.

Is our Universe Curved?				
	Closed	Flat	Open	
(A	
	Spherical Space	Flat Space	Hyperbolic Space	
Curvature:	+	0	-	
Sum of angles	of triangle:			
	> 180°	= 180°	< 180°	
Circumference	e of circle:			
	<2p r	= 2 p r	> 2 p r	
Parallel lines:	converge	remain parallel	diverge	
Size:	finite	infinite	infinite	
Edge:	no	no	no	
AS 4022 Cosmo	logy			

Cartesian coordinates :
$1 \mathrm{D}: \qquad dl^2 = dx^2$
$\int dz = dx^2 + dy^2$
3 D: $dl^2 = dx^2 + dy^2 + dz^2$
$\frac{dx}{dx} = dy^{2} + dx^{2} + dy^{2} + dz^{2}$
Metric tensor : coordinates - > distance
$\frac{dl^2}{dt^2} = (dx dy dz)(1 0 0)(dx)$ Orthogonal coordinates < -> diagonal metric
0 1 0 dy
$\begin{pmatrix} 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} dz \end{pmatrix} \qquad g_{xx} = g_{yy} = g_{zz} = 1$
Summation convention : $g_{xy} = g_{xz} = g_{yz} = 0$
$dl^2 = g_{ij} dx^i dx^j \equiv \sum \sum g_{ij} dx^i dx^j$ symmetric : $g_{ij} = g_{ji}$
1 j

Einstein's General Relativity			
• 1. Spacetime geometry tells matter how to move			
 gravity = effect of <u>curved spacetime</u> free particles follow <u>geodesic</u> trajectories ds² < 0 v < c time-like massive particles ds² = 0 v = c null massless particles (photons) ds² > 0 v > c space-like tachyons (not observed) 			
• 2. Matter (+energy) tells spacetime how to curve			
Einstein field equations nonlinear second-order derivatives of metric with respect to space/time coordinates			
AS 4022 Cosmology			

List of keys

Redshift z, wavelength, temperature, cosmic time, energy density, number density, sound

What have we learned?

Where are we heading?

Inflation as origin of perturbation, flatness, horizon. Sound speed of gas before/after decoupling, and sound horizon.

Topics Next:

Growth of [bankruptcy of uniform universe] Density Perturbations (how galaxies form by N-body simulations) peculiar velocity (how galaxies move and merge) CMB fluctuations (temperature variation in CMB)

Non-linear Collapse of an Overdense Sphere

- An overdense sphere is a very useful non linear model as it behaves in exactly the same way as a closed sub-universe.
 - Any spherically symmetric perturbation will clearly evolve at a given radius in the same way as a uniform sphere containing the same amount of mass.

Why Analogies in Cosmology

Help you memorizing

- Cosmology calls for knowledge of many areas of physics. Analogies help to you memorize how things move and change in a mind-boggling expanding 4D metric.
- *Help you reason*, avoid "more equations, more confusions".
- If unsure about equations, e.g. at exams, the analogies *help you recall* the right scaling relations, and get the big picture right.

Years after the lectures,

Analogies go a long way

