AS 4022: Cosmology

Hongsheng Zhao

Online notes:

star-www.st-and.ac.uk/~hz4/cos/cos.html

take your own notes (including blackboard lectures

Look forward

Malcolm S. Longair's "Galaxy Formation" 2nd edition [Library]

Chpt 1-2,5-8: expanding metrics, energy density, curvature, distances

Chpt 4,11,15,20: DM, Structure growth, inflation

Chpt 9-10,13: Thermal History of Particle Reaction, Neutrinos, WIMPs

Text (intro): Andrew Liddle: Intro to Modern Cosmology (advanced): John Peacock: Cosmological Physics Web Lecture Notes: John Peacock, Ned Wright

Why Study Cosmology?

- Fascinating questions:
 - Birth, life, destiny of our Universe
 - Hot Big Bang --> (75% H, 25% He) observed in stars!
 - Formation of structure (galaxies ...)
- Technology -> much recent progress:
 - Precision cosmology: uncertainties of 50% --> 2%
- Deep mysteries remain:
 - Dark Matter? Dark Energy? General Relativity wrong?
- Stretches your mind:
- Curved expanding spaces, looking back in time, ...

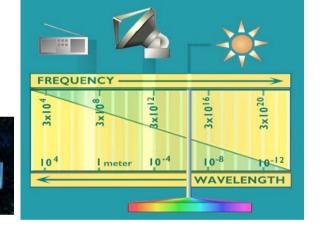
 AS 4022 Cosmology

Observable Space-Time and Bands

See What is out there? In all Energy bands

Pupil → Galileo's Lens → 8m telescopes → square km arrays

Radio, Infrared ← optical → X-ray, Gamma-Ray (spectrum)



COBE satellites ← Ground → Underground DM detector

Know How were we created? XYZ & T?

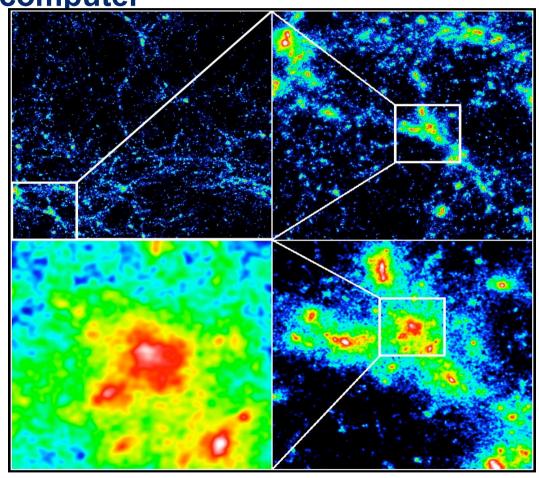
Us, CNO in Life, Sun, Milky Way, ... further and further

→ first galaxy → first star → first Helium → first quark

Now → Billion years ago → first second → quantum origin

The Visible Cosmos: a hierarchy of structure and motion

"Cosmos in a computer"



Observe A Hierarchical Universe

Planets

moving around stars;

Stars grouped together,

moving in a slow dance around the center of galaxies.

Cosmic Village

The Milky Way and Andromeda galaxies,

along with about fifteen or sixteen smaller galaxies, form what's known as the Local Group of galaxies.

The Local Group

sits near the outer edge of a supercluster, the Virgo cluster.

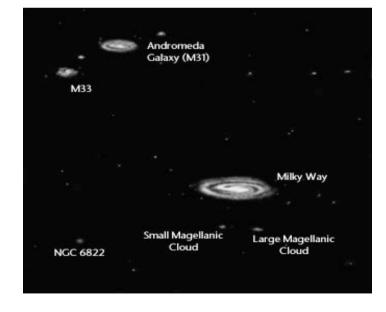
the Milky Way and Andromeda are moving toward each other,

the Local

e of the Virgo cluster, and

the entire Virgo cluster itself,

is speeding toward a mass known only as "The Great Attractor."



Hubble Deep Field:

At faint magnitudes, we see thousands of Galaxies for every star!

~10¹⁰ galaxies in the visible Universe

 $\sim 10^{10}$ stars per galaxy

~10²⁰ stars in the visible Universe

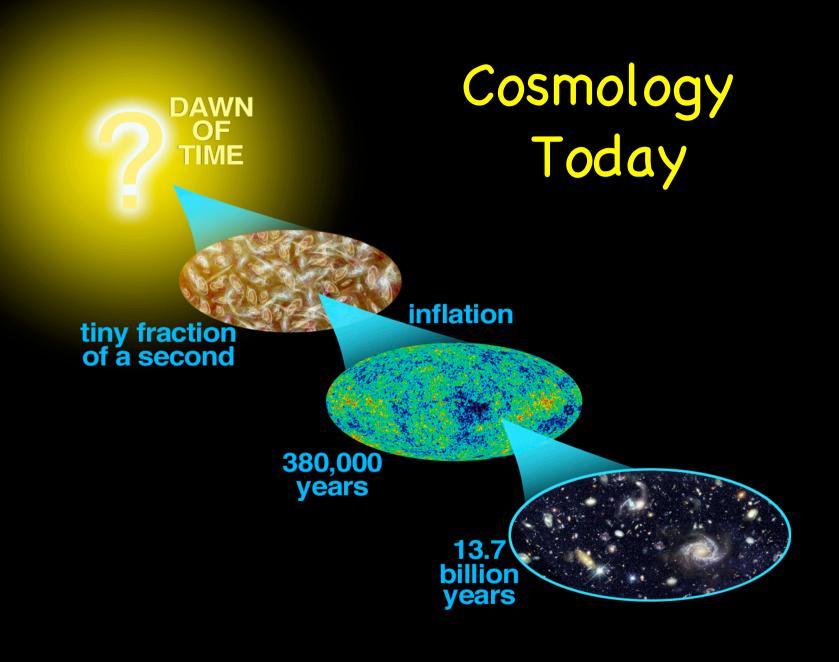


Galaxies themselves

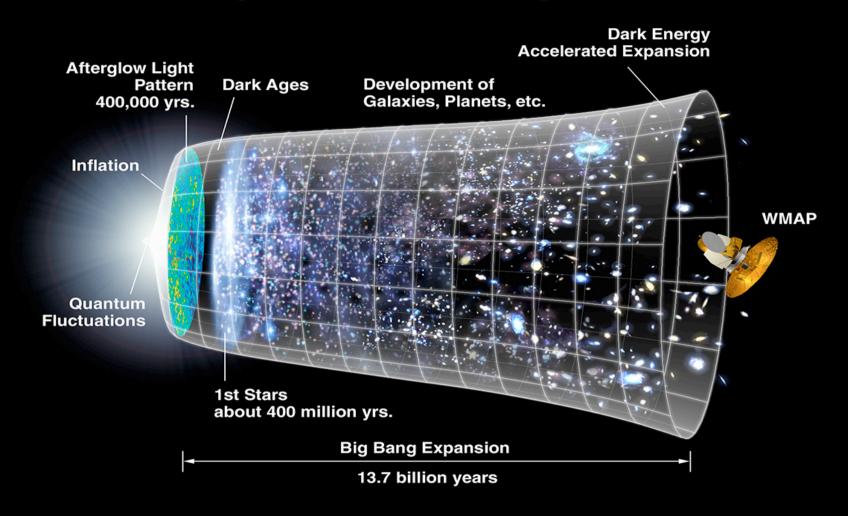
some 100 billion of them in the observable universe—form galaxy clusters bound by gravity as they journey through the void.

But the largest structures of all are superclusters,

each containing thousands of galaxies and stretching many hundreds of millions of light years. are arranged in filament or sheet-like structures, between which are gigantic voids of seemingly empty space.



Accelerating/Decelerating Expansion

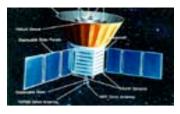


Introducing Gravity and DM (Key players)

These structures and their movements can't be explained purely by the expansion of the universe must be guided by the gravitational pull of matter.

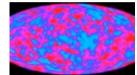
Visible matter is not enough

one more player into our hierarchical scenario: dark matter.



Cosmologists hope to answer these questions:

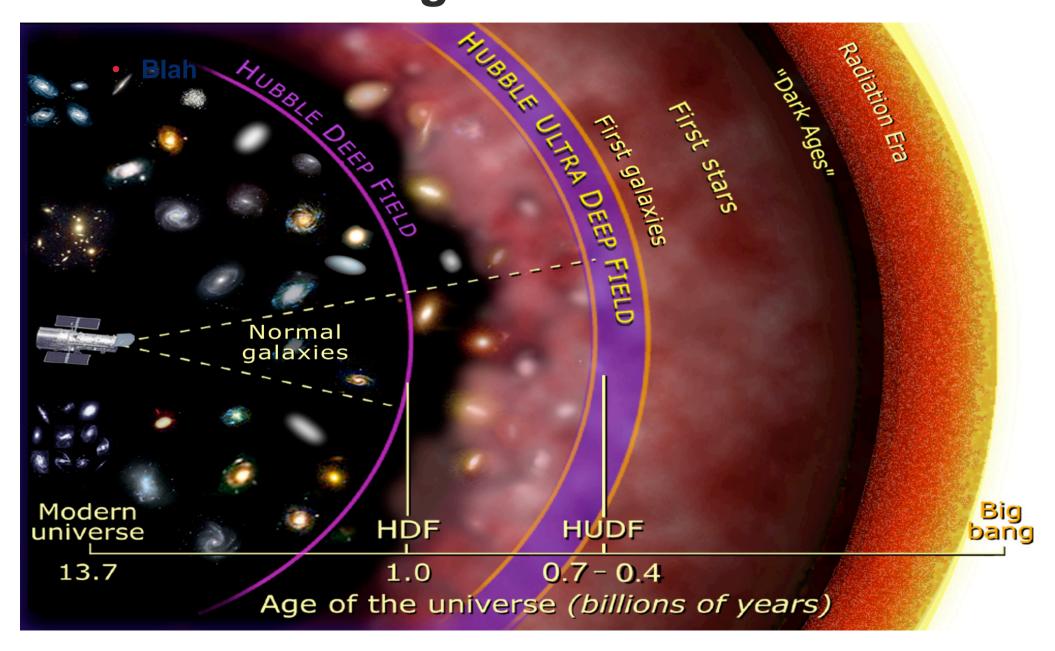
How old is the universe? H_0 Why was it so smooth? P(k), inflation



How did structures emerge from smooth? N-body How did galaxies form? Hydro

Will the universe expand forever? Omega, Lamda Or will it collapse upon itself like a bubble?

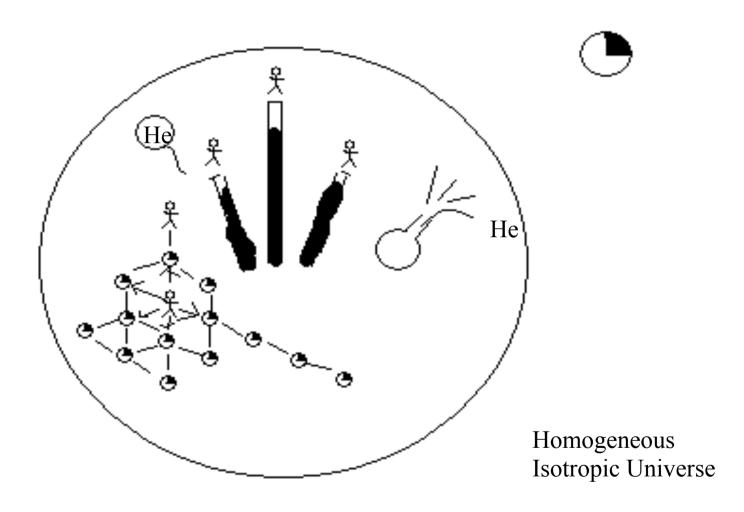
Looking Back in Time



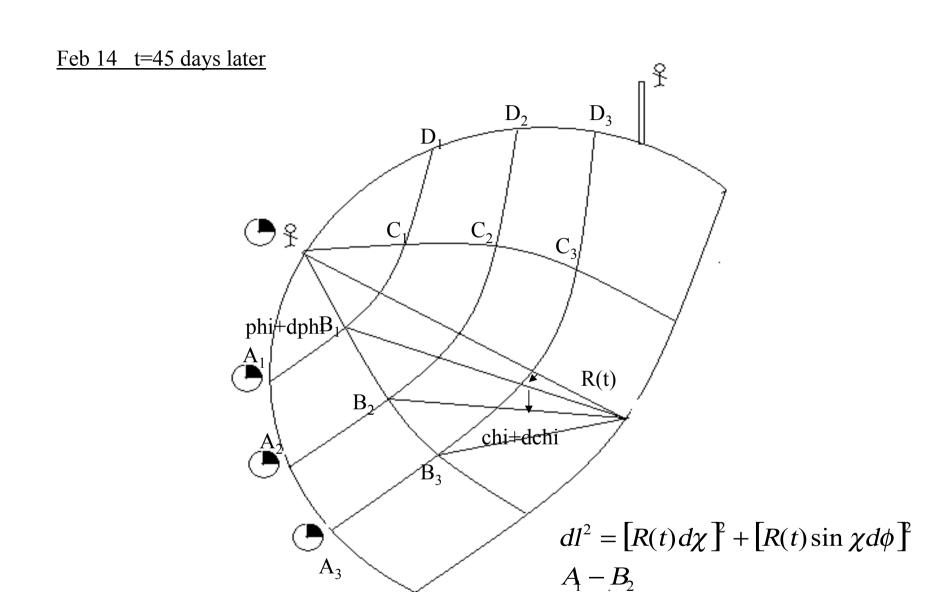
main concepts in cosmology

Expansion & Metric
Cosmological Redshift
Energy density

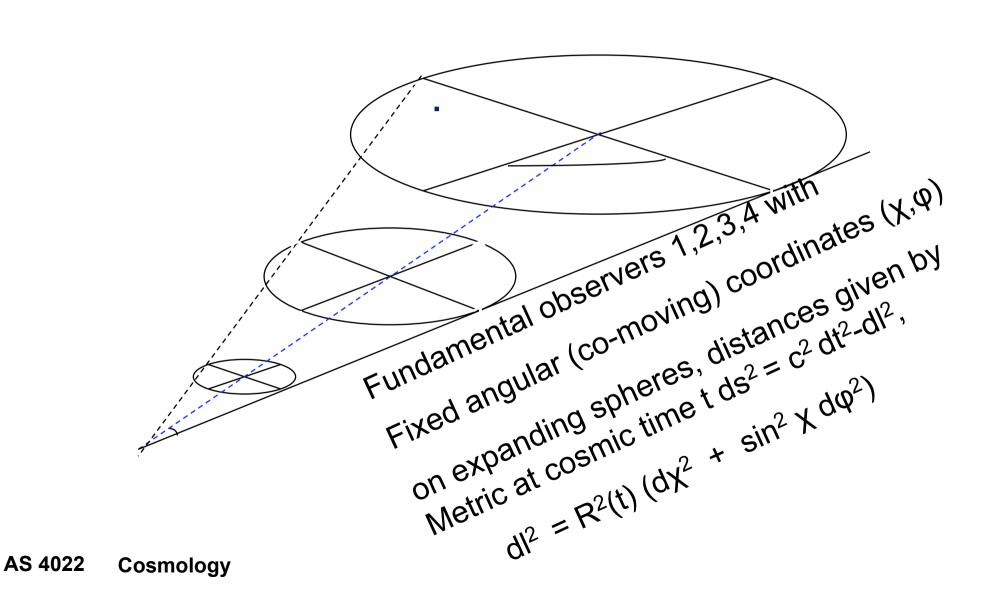
A few mins after New Year Celebration at Trafalgar Square



 $Walking \leftrightarrow Elevating \leftrightarrow Earth \ Radius \ Stretching \ R(t)$

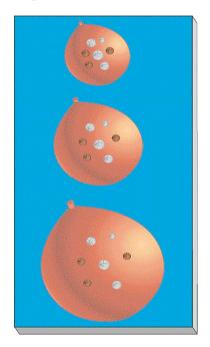


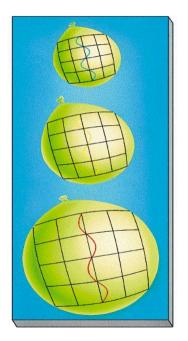
1st concept Metric: ant network on expanding sphere



Stretch of photon wavelength in expanding space

Emitted with intrinsic wavelength λ_0 from Galaxy A at time t<t_{now} in smaller universe R(t) < R_{now}

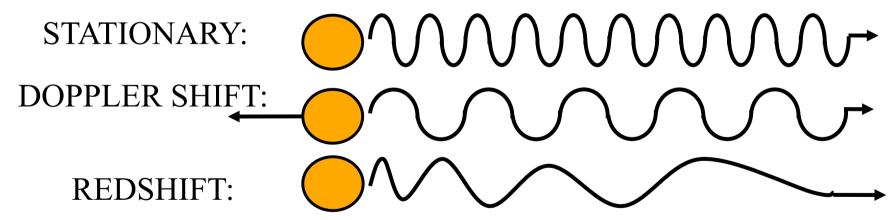




→ Received at Galaxy B now (t_{now}) with λ $\lambda / \lambda_0 = R_{now} / R(t) = 1 + z(t) > 1$

Redshift

- Expansion is a <u>stretching</u> of space.
- The more space there is between you and a galaxy, the faster it <u>appears</u> to be moving away.
- Expansion stretches the wavelength of light, causing a galaxy's spectrum to be REDSHIFTED:



REDSHIFT IS NOT THE SAME AS DOPPLER SHIFT

2nd main concept: Cosmological Redshift

The space/universe is expanding,

Galaxies (pegs on grid points) are receding from each other

As a photon travels through space, its wavelength becomes stretched gradually with time.

Photons wave-packets are like links between grid points

This redshift is defined by:

$$z \equiv \frac{\lambda - \lambda_o}{\lambda_o}$$

$$\frac{\lambda}{\lambda_o} = 1 + z$$

$$\frac{\lambda}{\lambda_o} = 1 + z$$

Galaxy Redshift Surveys

Large Scale Structure:

Empty voids

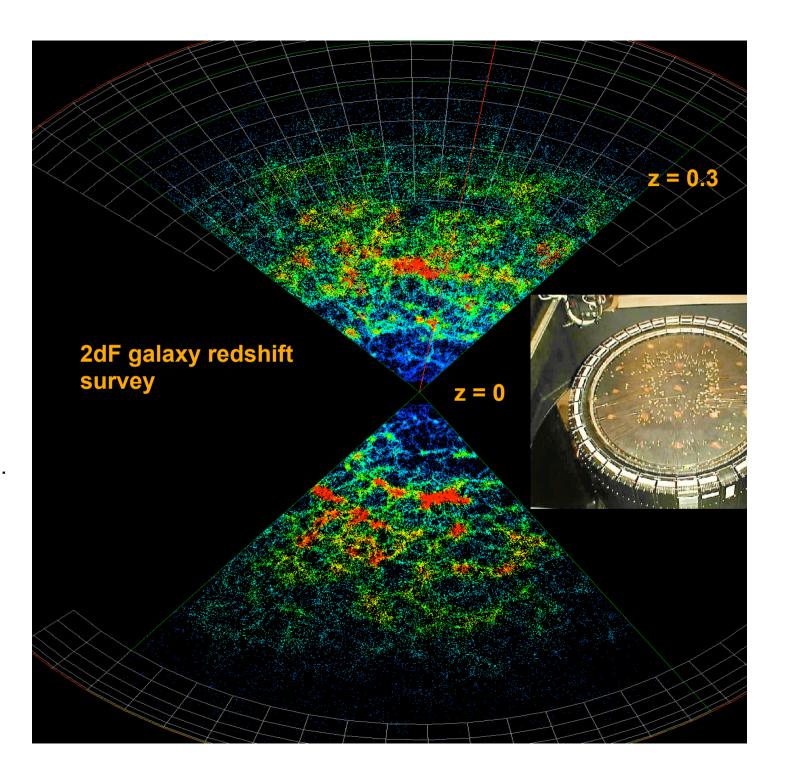
~50Mpc.

Galaxies are in

- 1. Walls between voids.
- 2. **Filaments** where walls intersect.
- 3. **Clusters** where filaments intersect.

Like Soap Bubbles!

AS 4022 Cosmology



E.g. Consider a quasar with redshift z=2. Since the time the light left the quasar the universe has expanded by a factor of 1+z=3. At the epoch when the light left the quasar,

the distance between us and Virgo (presently 15Mpc) was 5Mpc.

the CMB temperature then (presently 3K) was 9K.

the quasar appears receding with Doppler speed V=2c.

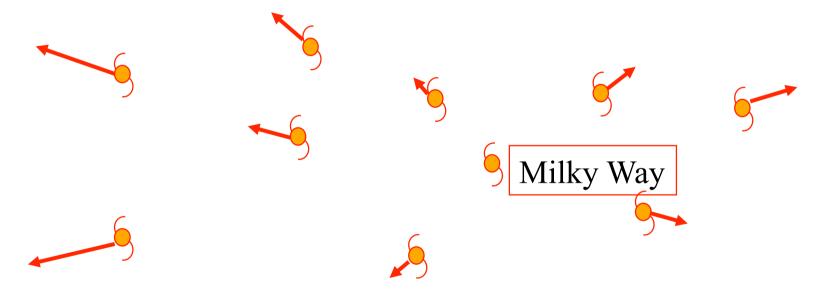
The quasar appears at a look-back "distance" d = [t(0)-t(z)] c, where the look-back time $[t(0)-t(z)] \sim z/H_0$ at small z <<1, $H_0^{-1}=$ Taylor expansion coeff.

$$1+z = \frac{\lambda_{now}}{\lambda(t)}$$
 (wavelength)
$$= \frac{R_{now}}{R(t)}$$
 (expansion factor)
$$= \frac{T(t)}{T_{now}}$$
 (Photon Blackbody T \infty 1/\lambda, why?)

Universal Expansion

Hubble's law appears to violate Copernican Principle. we at a special location?

The Are

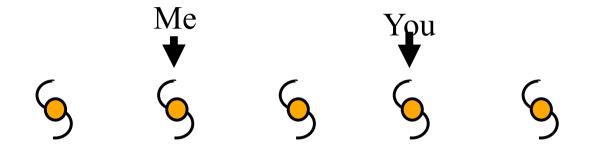


Is everything moving away from us?

Universal Expansion

Q: What is so special about our location?

A: Nothing!



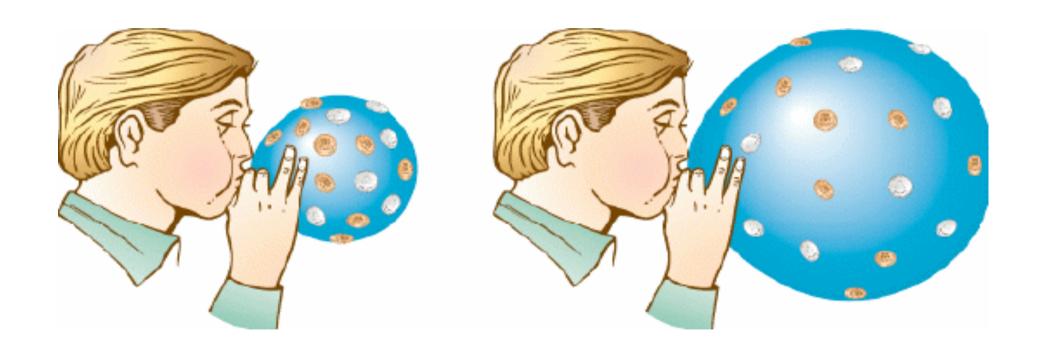
According to Hulyble's Law:



You see: 3v 5v 2v 5v 5v

The Universal Expansion

- An observer in any galaxy sees all other galaxies moving away, with the same Hubble law.
- Expansion (or contraction) produces a <u>centre-less</u> but dynamic Universe.

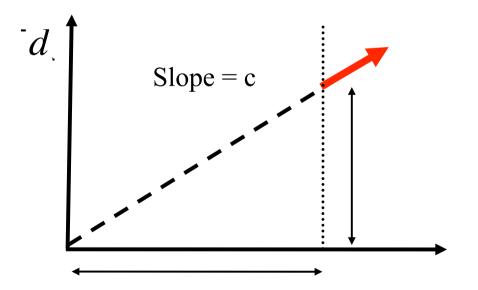


Hubble Law > typical age (at

$$Z=1$$
)
 $V = H_0 d$

$$t_0 \approx \frac{d}{V} = \frac{1}{H_0} = \left(\frac{1 \text{ Mpc}}{72 \text{ km/s}}\right) \left(\frac{3 \times 10^{19} \text{km}}{\text{Mpc}}\right) \left(\frac{1 \text{ yr}}{3 \times 10^7 \text{ s}}\right)$$

 $\approx 13 \times 10^9 \text{ yr} = 13 \text{ Gyr.}$



Convert H as a frequency Hertz, find an integer close to log10(H)? Multiple choices -30, -10, 0, 10, 30.

Look back t₀-t

3rd concept: The changing rate of expansion

Newtonian Analogy:

Consider a sphere of radius R(t),

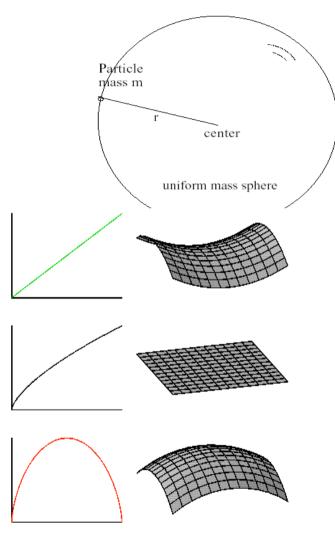
→ effective mass inside M = 4πρ R³/3 if energy density inside is e=ρ(t) c². On this expanding sphere, a test m Kin.E. + Pot.E. = const Energy

 \rightarrow m (dR/dt)²/2 – G m M/R = (-k/2)m c²

→ $(dR/dt)^2/(2c^2)$ – $(4\pi G/3)\rho R^2/c^2$ =-k/2 Unitless cst k <0, =0, >0 → 3 geometries

Newtonian expansion satisfies $H^2 = (dR/dt/R)^2 = (\rho + \rho_{cur}) (8\pi G/3)$ the cst k absorbed in "density" $\rho_{cur} (t) = -k(cH_0^{-1}/R)^2 (3H_0^2/8\pi G)$ $\sim -k R^{-2} * cst$

Now $H = H_0$



4th Concept: The Energy density of Universe

The Universe is made up of three things:

VACUUM

MATTER

PHOTONS (radiation fields)

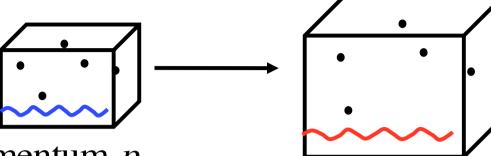
The total energy density of the universe is made up of the sum of the energy density of these three components.

$$\varepsilon(t) = \varepsilon_{vac} + \varepsilon_{matter} + \varepsilon_{rad}$$

From t=0 to t=10⁹ years the universe has expanded by R(t).

Energy Density of expanding box

volume R^3 N particles



particle mass m momentum p

energy
$$E = hv = \sqrt{m^2c^4 + p^2c^2} = mc^2 + \frac{p^2}{2m} + \dots$$

Cold gas or Cold DM $(p \le mc)$

$$E \approx m c^2 = \text{const}$$

$$\mathcal{E}_{M} \approx \frac{N m c^{2}}{R^{3}} \propto R^{-3}$$

Radiation:
$$(m = 0)$$

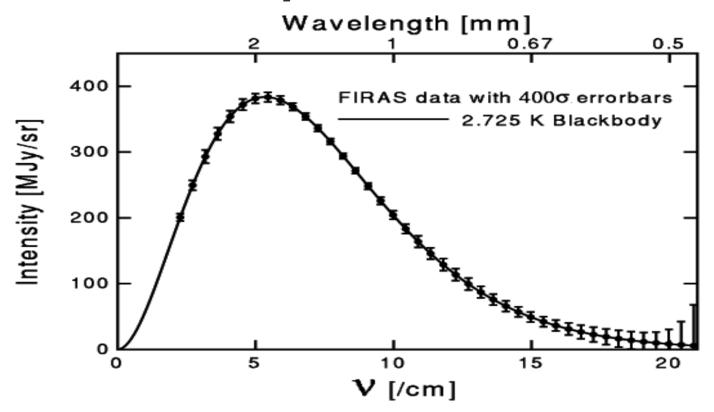
Hot neutrino:
$$(p \gg mc > 0)$$

$$\lambda \propto R$$
 (wavelengths stretch):

$$E = h \ v = \frac{h \ c}{\lambda} \propto R^{-1}$$

$$\varepsilon_R = \frac{N h \nu}{R^3} \propto R^{-4}$$

COBE spectrum of CMB



A perfect Blackbody!

No spectral lines -- strong test of Big Bang. Expansion preserves the blackbody spectrum.

$$T(z) = T_0 (1+z)$$
 $T_0 \sim 3000 \text{ K}$ $z \sim 1100$

Acronyms in Cosmology

- Cosmic Background Radiation (CBR)
 - Or CMB (microwave because of present temperature 3K)
 - Tutorial: Argue about 10⁵ photons fit in a 10cmx10cmx10cm
 microwave oven. [Hint: 3kT = h c / λ]

- CDM/WIMPs: Cold Dark Matter, weakly-interact massive particles
 - If DM decoupled from photons at kT ~ 10¹⁴K ~ 0.04 mc²
 - Then that dark particles were
 - non-relativistic (v/c << 1), hence "cold".</p>
 - And massive (m >> m_{proton} =1 GeV)

A general history of a massive particle

Initially mass doesn't matter in hot universe relativistic, dense (comparable to photon number density ~ R⁻³ ~ T³),

frequent collisions with other species to be in thermal equilibrium and cools with photon bath.

Photon numbers (approximately) conserved, so is the number of relativistic massive particles

Concept: Particle-Freeze-Out?

Freeze-out of equilibrium means NO LONGER in thermal equilibrium.

Freeze-out temperature means a species of particles have the SAME TEMPERATURE as radiation up to this point, then they bifurcate.

Decouple = switch off the reaction chain = insulation = Freeze-out

Neutrino: smallest cross-section and smallest mass

neutrinos (Hot DM) decouple from electrons (due to very weak interaction) while still hot (relativistic 0.5 Mev $\sim kT > mc^2 \sim 0.02-2$ eV)

Presently there are 3×113 neutrinos and 452 CMB photons per cm³. Details depend on

Neutrinos have 3 species of spin-1/2 fermions while photons are 1 species of spin-1 bosons

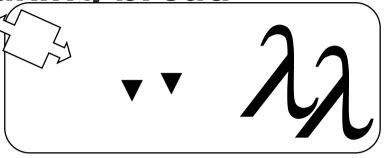
Neutrinos are a wee bit colder, 1.95K vs. 2.7K for photons [during freeze-out of electron-positions, more photons created]

Eq. of State for Expansion & analogy of baking bread

Vacuum~air holes in bread

Matter ~nuts in bread

Photons ~words painted



Verify expansion doesn't change N_{hole} , N_{proton} , N_{photon} No Change with rest energy of a proton, changes energy of a photon

$$\varepsilon(t) = \rho_{eff}(t)c^2$$

$$\frac{\varepsilon(t)}{c^2} = \rho_{eff}(t)$$
 vacuum energy:
$$\rho = {\rm constant} \quad \Rightarrow \; {\rm E}_{vac} \propto R^3$$

$$\rho$$
 = constant

$$\Rightarrow E_{vac} \propto R^3$$

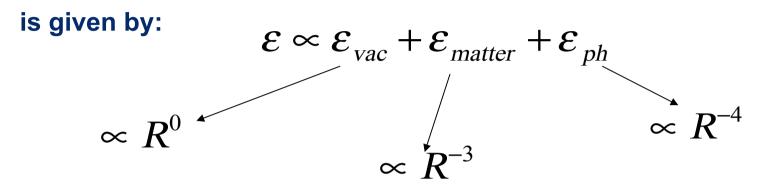
MATTER:

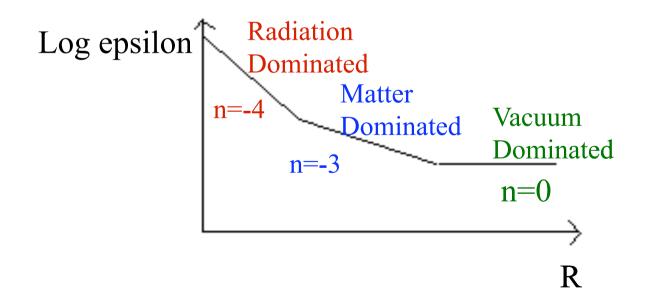
$$\rho R^3 = \text{constant}, \implies m \approx \text{constant}$$

RADIATION:number of photons N_{ph} = constant Wavelength stretches : $\lambda \sim R$

$$\Rightarrow n_{ph} \approx \frac{N_{ph}}{R^3} \qquad \text{Photons:E} = h \upsilon = \frac{hc}{\lambda} \sim \frac{1}{R}$$
$$\Rightarrow \varepsilon_{ph} \sim n_{ph} \times \frac{hc}{\lambda} \sim \frac{1}{R^4}$$

Total Energy Density rhoc2=epsilon





Tutorial: Typical scaling of expansion

$$H^2 = (dR/dt)^2/R^2 = 8\pi G (\rho_{cur} + \rho_m + \rho_r + \rho_v)/3$$

Assume domination by a component $\rho \sim R^{-n}$

Show Typical Solutions Are

$$\rho \propto R^{-n} \propto t^{-2}$$

n = 2(curvature constant dominate)

n = 3(matter dominate)

n = 4(radiation dominate)

 $n \sim 0$ (vaccum dominate): $ln(R) \sim t$

Argue also $H = (2/n) t^{-1} \sim t^{-1}$. Important thing is scaling!

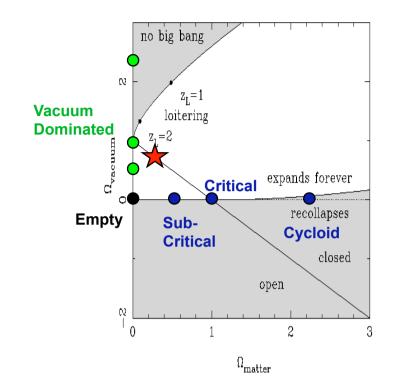
Tutorial: Eternal Static (R=cst) and flat (k=0) Universe

Einstein introduced Λ

to enable an eternal static universe.

$$R^{2} = \left(\frac{8\pi G \rho + \Lambda}{3}\right) R^{2} - k c^{2}$$

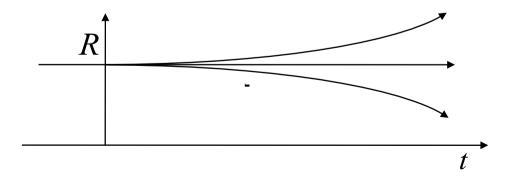
$$R = 0 \rightarrow \Lambda = \frac{3 k c^2}{R^2} - 8\pi G \rho$$



Einstein's biggest blunder. (Or, maybe not.)

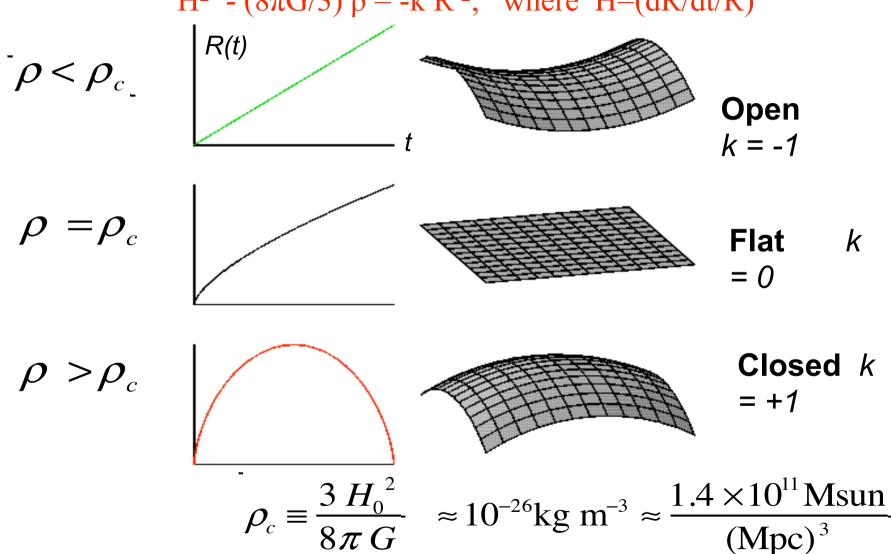
Static models unstable.

Fine tuning.



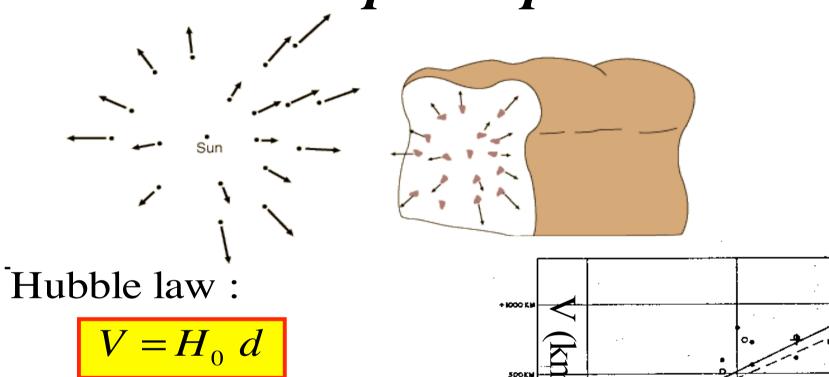
Density - Evolution - Geometry

 $H^2 - (8\pi G/3) \rho = -k R^{-2}$, where H = (dR/dt/R)



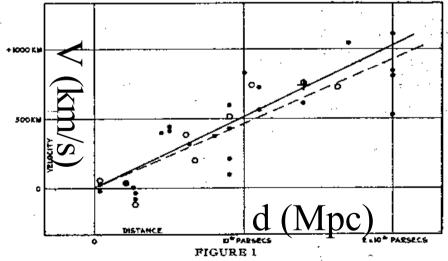
AS 4022 Cosmology

Isotropic Expansion



Hubble "constant":

$$H_0 \approx 500 \text{ km s}^{-1} \text{Mpc}^{-1}$$



Why WRONG? Extinction by interstellar dust was not then known, giving incorrect distances.

E.g.,: Empty Universe without vacuum

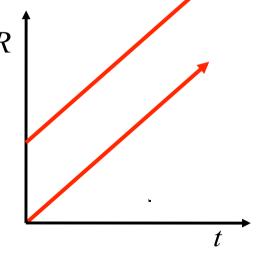
$$R^2 = \left(\frac{8\pi G \rho + \Lambda}{3}\right) R^2 - k c^2$$

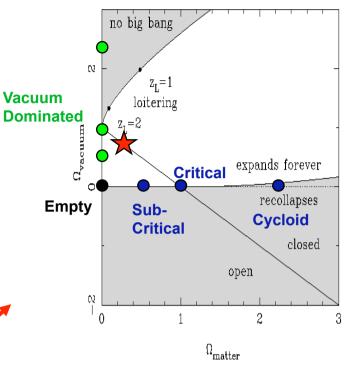
Set $\rho = 0$, $\Lambda = 0$. Then $R^2 = -k c^2$ $\rightarrow k = -1$ (negative curvature)

$$R = c, \quad R = c \ t$$

$$H = \frac{R}{r} = \frac{1}{r}$$

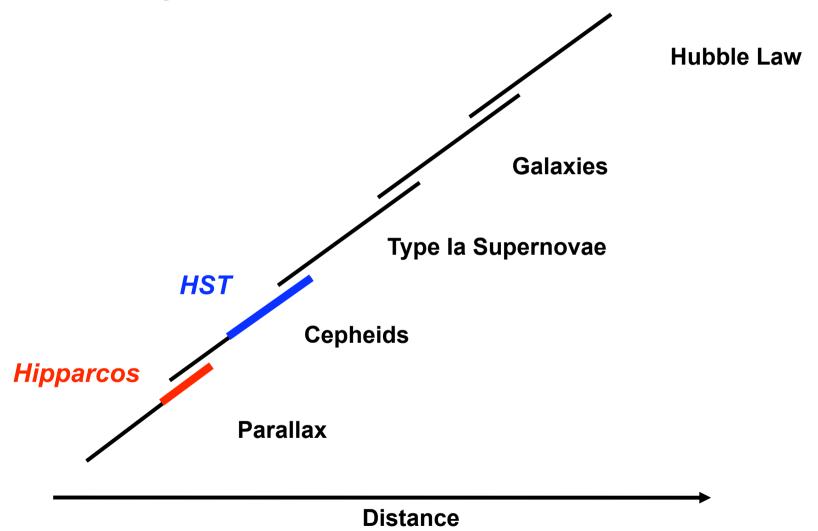
age:
$$t_0 = \frac{R_0}{c} = \frac{1}{H_0}$$





Negative curvature drives rapid expansion/flattening

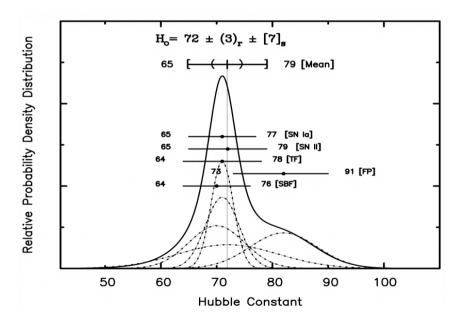
Cosmic Distance Ladder

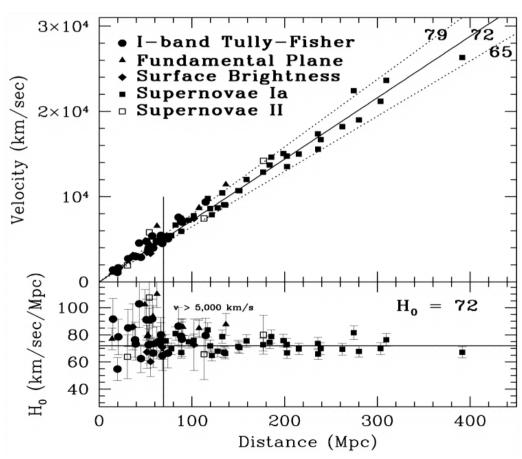


H₀ from the HST Key Project

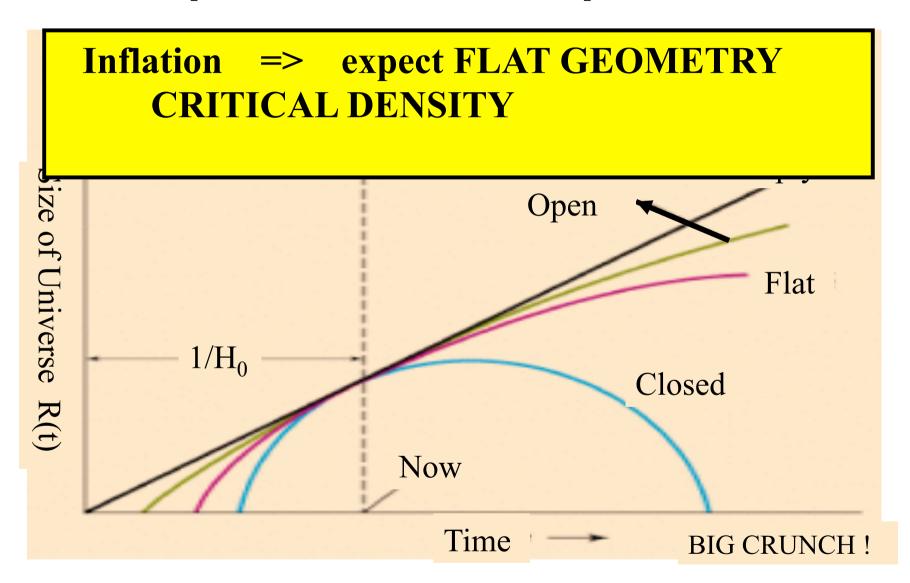
 $H_0 \approx 72 \pm 3 \pm 7$ km s⁻¹ Mpc⁻¹

Freedman, et al. 2001 ApJ 553, 47.





Re-collapse or Eternal Expansion?



Hubble Parameter Evolution -- H(z)

 $x = 1 + z = R_0 / R$ $\rho_c = \frac{3 H_0^2}{8\pi G}$

 $\Omega_{\Lambda} \equiv \frac{\rho_{\Lambda}}{\rho_{c}} = \frac{\Lambda}{3 H_{0}^{2}}$

$$H^{2} \equiv \left(\frac{R}{R}\right)^{2} = \frac{8\pi G}{3}\rho + \frac{\Lambda}{3} - \frac{k c^{2}}{R^{2}}$$

$$\frac{H^{2}}{H_{0}^{2}} = \Omega_{R}x^{4} + \Omega_{M}x^{3} + \Omega_{\Lambda} - \frac{k c^{2}}{H_{0}^{2}R_{0}^{2}}x^{2}$$

$$\text{evaluate at } x = 1 \quad \rightarrow \quad 1 = \Omega_{0} - \frac{k c^{2}}{H_{0}^{2}R_{0}^{2}}$$

$$\Omega_{M} \equiv \frac{\rho_{M}}{\rho_{c}}, \quad \Omega_{R} \equiv \frac{\rho_{R}}{\rho_{c}}$$

$$\Omega_{M} \equiv \frac{\rho_{M}}{\rho_{c}}, \quad \Omega_{R} \equiv \frac{\rho_{R}}{\rho_{c}}$$

Dimensionless Friedmann Equation:

Dimensionless Friedmann Equation:
$$\frac{H^2}{H_0^2} = \Omega_R x^4 + \Omega_M x^3 + \Omega_\Lambda + (1 - \Omega_0) x^2$$

$$\Omega_\Lambda \equiv \frac{\rho_\Lambda}{\rho_c} = \frac{\Lambda}{3 H_0^2}$$

$$\Omega_0 \equiv \Omega_M + \Omega_R + \Omega_\Lambda$$

Curvature Radius today:

$$R_0 = \frac{c}{H_0} \sqrt{\frac{k}{\Omega_0 - 1}} \quad \rightarrow \begin{cases} k = +1 & \Omega_0 > 1 \\ k = 0 & \Omega_0 = 1 \\ k = -1 & \Omega_0 < 1 \end{cases} \quad \begin{array}{l} \textit{Density} \\ \textit{determines} \\ \textit{Geometry} \end{cases}$$

Possible Universes

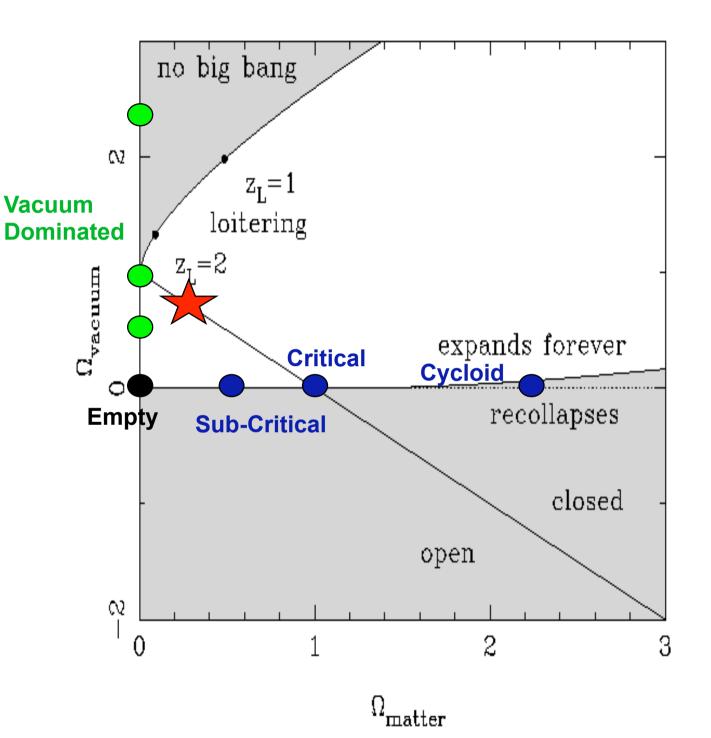
 $H_0 \approx 70 \frac{\text{km/s}}{\text{Mpc}}$

$$\Omega_{M} \sim 0.3$$

$$\Omega_{\Lambda} \sim 0.7$$

$$\Omega_R \sim 8 \times 10^{-5}$$

$$\Omega = 1.0$$



Precision Cosmology

$$h = 71 \pm 3$$

expanding

$$\Omega = 1.02 \pm 0.02$$

flat

$$\Omega_b = 0.044 \pm 0.004$$
 baryons

$$\Omega_M = 0.27 \pm 0.04$$
 Dark Matter

$$\Omega_{\Lambda} = 0.73 \pm 0.04$$
 Dark Energy

$$t_0 = 13.7 \pm 0.2 \times 10^9 \text{ yr}$$

now

$$t_* = 180^{+220}_{-80} \times 10^6 \text{ yr}$$
 $z_* = 20^{+10}_{-5}$ reionisation

$$z_* = 20^{+10}_{-5}$$

$$t_R = 379 \pm 1 \times 10^3 \text{ yr}$$

$$t_R = 379 \pm 1 \times 10^3 \text{ yr}$$
 $z_R = 1090 \pm 1 \text{ recombination}$

(From the WMAP 1-year data analysis)

Four Pillars of Hot Big Bang

Galaxies moving apart from each other

Redshift or receding from each other Universe was smaller.

Helium production outside stars

Universe was hot, at least 3x10⁹K to fuse 4H → He, to overcome a potential barrier of 1MeV.

Nearly Uniform Radiation 3K Background (CMB)

Universe has cooled, hence expanded by at least a factor 10⁹. Photons (3K~10⁻⁴eV) are only 10⁻³ of baryon energy density, so photon-to-proton number ratio ~ 10⁻³(GeV/10⁻⁴eV) ~ 10⁸

Missing mass in galaxies and clusters (Cold DM)

Cluster potential well is deeper than the potential due to baryons.

CMB fluctuations: photons climb out of random potentials of DM.

If 1/10 of the matter density in 1GeV protons, 9/10 in dark particles of e.g. 9GeV, then dark-to-proton number density ratio ~ 1

Cosmology Milestones

- 1925 Galaxy redshifts $\lambda = \lambda_0 (1+z)$ V = c z
 - Isotropic expansion. (Hubble law $V = H_0 d$)
 - Finite age. ($t_0 = 13 \times 10^9 \text{ yr}$)
- 1965 Cosmic Microwave Background (CMB)
 - Isotropic blackbody. $T_0 = 2.7 \text{ K}$
 - Hot Big Bang $T = T_0(1+z)$
- 1925 General Relativity Cosmology Models:
 - Radiation era: $R \sim t^{1/2}$ $T \sim t^{-1/2}$
 - Matter era: $R \sim t^{2/3}$ $T \sim t^{-2/3}$
- 1975 Big Bang Nucleosynthesis (BBN)
 - light elements (${}^{1}\text{H} \dots {}^{7}\text{Li}$) $t \sim 3 \text{ min}$ $T \sim 10^{9} \text{ K}$
 - primordial abundances (75% H. 25% He) as observed!

Tutorial: 3 Eras: radiation-matter-vacuum

 $ho_R \propto R^{-4}$ $ho_M \propto R^{-3}$ radiation:

matter:

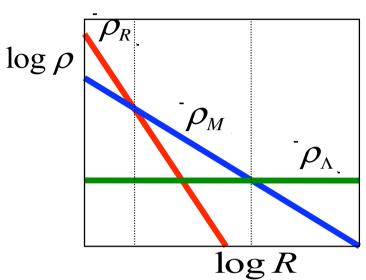
 $\rho_{\wedge} = \text{const}$ vacuum:

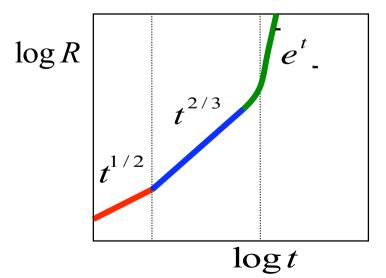
$$a \equiv \frac{R}{R_0} = \frac{1}{1+z}$$

$$\rho = \frac{\rho_{R,0}}{a^4} + \frac{\rho_{M,0}}{a^3} + \rho_{\Lambda}$$

$$\rho_R = \rho_M$$
 at $a \sim 10^{-4}$ $t \sim 10^4$ yr

$$\rho_M = \rho_\Lambda$$
 at $a \sim 0.7$ $t \sim 10^{10} \text{ yr}$





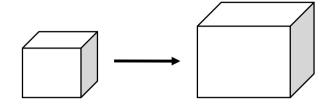
Presently vacuum is twice the density of matter.

5th concept: Equation of State w

Equation of state:

$$\rho \propto R^{-n} \quad n = 3(1+w)$$

$$w \equiv \frac{\text{pressure}}{\text{energy density}} = \frac{p}{\rho c^2} = \frac{n}{3} - 1$$



Radiation:
$$(n = 4, w = 1/3)$$

$$p_R = \frac{1}{3}\rho_R \ c^2$$

Matter:
$$(n = 3, w = 0)$$

$$p_{\scriptscriptstyle M} \sim \rho_{\scriptscriptstyle M} \ c_{\scriptscriptstyle S}^{\ 2} << \rho_{\scriptscriptstyle M} \ c^{\,2}$$

$$\underline{\text{Vacuum}}$$
: $(n=0, w=-1)$

$$p_{\Lambda} = -\rho_{\Lambda} c^2$$

Negative Pressure!?

$$d[energy] = work$$

$$d[\rho c^2 R^3] = -p d[R^3]$$

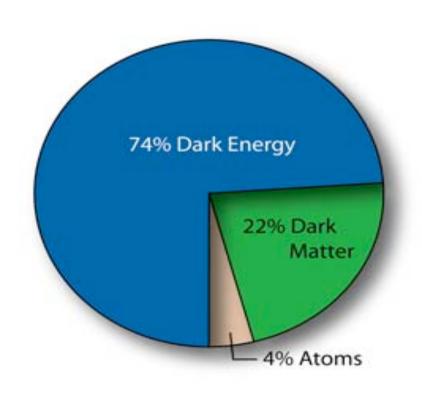
$$\rho c^2 (3R^2dR) + R^3 c^2d\rho = -p(3R^2dR)$$

$$1 + \frac{R d\rho}{3\rho dR} = -\frac{p}{\rho c^2} \equiv -w$$

$$w = -\frac{1}{3} \frac{d[\ln \rho]}{d[\ln R]} - 1$$

$$w = \frac{n}{3} - 1$$

Current Mysteries from Observations



Dark Matter?

Holds Galaxies together Triggers Galaxy formation

Dark Energy?

Drives Cosmic Acceleration and negative w.

Modified Gravity?

General Relativity wrong?

Density Parameters

critical density: density parameters (today):

$$\rho_c \equiv \frac{3 H_0^2}{8\pi G}$$

$$\rho_c \equiv \frac{3 H_0^2}{8\pi G} \qquad \qquad \Omega_R \equiv \frac{\rho_R}{\rho_c} \quad \Omega_M \equiv \frac{\rho_M}{\rho_c} \qquad \Omega_\Lambda \equiv \frac{\rho_\Lambda}{\rho_c} = \frac{\Lambda}{3 H_0^2}$$

total density parameter today:

$$\Omega_0 \equiv \Omega_R^{} + \Omega_M^{} + \Omega_\Lambda^{}$$

density at a past/future epoch in units of today's critical density:

$$\Omega = \frac{\rho}{\rho_c} = \sum_{w} \Omega_w x^{3(1+w)} = \Omega_R x^4 + \Omega_M x^3 + \Omega_\Lambda \qquad x = 1 + z = R_0 / R$$

$$x \equiv 1 + z = R_0 / R$$

in units of critical density at the past/future epoch:

$$\Omega(x) = \frac{8\pi G\rho}{3H^2} = \frac{H_0^2}{H^2} \sum_{w} \Omega_{w} x^{3(1+w)} = \frac{\Omega_{R} x^4 + \Omega_{M} x^3 + \Omega_{\Lambda}}{\Omega_{R} x^4 + \Omega_{M} x^3 + \Omega_{\Lambda} + (1-\Omega_0) x^2}$$

Note: radiation dominates at high z, can be neglected at lower z.

Key Points

- Scaling Relation among
 - Redshift: z,
 - expansion factor: R
 - Distance between galaxies
 - Temperature of CMB: T
 - Wavelength of CMB photons: lambda
- Metric of an expanding 2D+time universe
 - Fundamental observers
 - Galaxies on grid points with fixed angular coordinates
- Energy density in
 - vacuum, matter, photon
 - How they evolve with R or z
- If confused, recall the analogies of
 - balloon, bread, a network on red giant star, microwave oven

Sample a wide range of topics Theoretical and Observational

Universe of uniform density

Metrics ds, Scale R(t) and Redshift EoS for mix of vacuum, photon, matter, geometry, distances

Thermal history

Freeze-out of particles, Neutrinos, CDM wimps Nucleo-synthesis He/D/H

Structure formation

Inflation and origin of perturbations
Growth of linear perturbation
Relation to CMB peaks, sound horizon

Quest of H0 (obs.)

Applications of expansion models Distances Ladders

Cosmic Background

COBE/MAP/PLANCK etc.

Parameters of cosmos

Quest for Omega (obs.)

Galaxy and SNe surveys Luminosity Functions

(thanks to slides from K. Horne)

6th concept: Distances in Non-Euclidean Curved Space

How Does Curvature affect Distance Measurements?

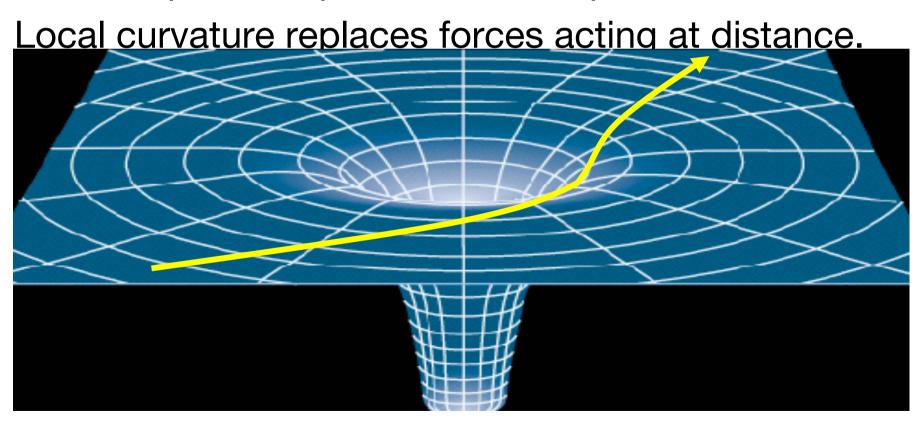
Is the universe very curved?

Geodesics

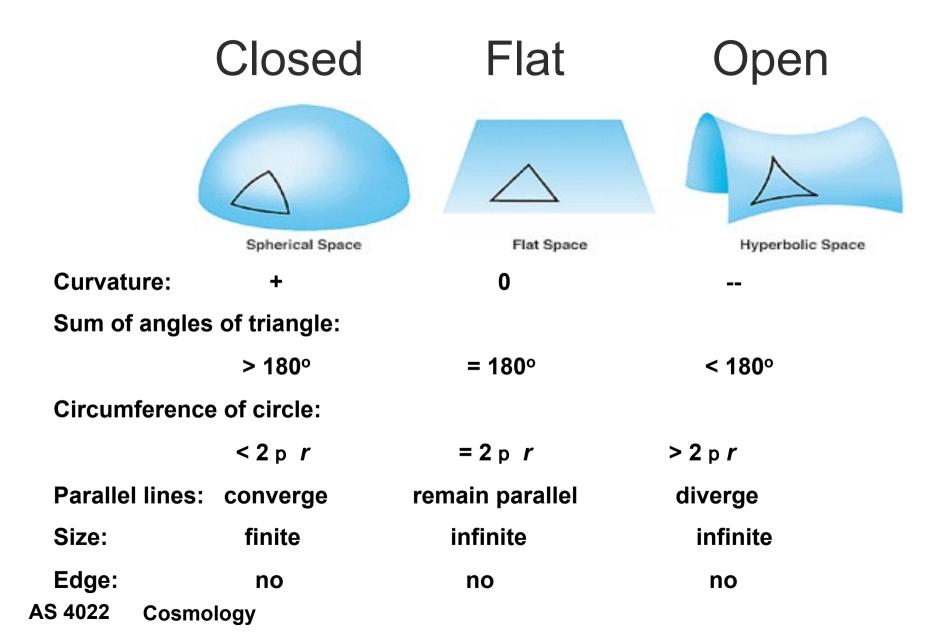
Gravity = curvature of space-time by matter/energy.

Freely-falling bodies follow **geodesic trajectories**.

Shortest possible path in curved space-time.



Is our Universe Curved?



Distance Methods

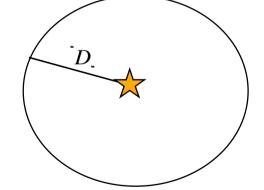
Standard Rulers ==> Angular Size Distances

$$heta = rac{l}{D}$$
 $D_A = rac{l}{ heta}$

(for small angles << 1 radian)

Standard Candles ==> Luminosity Distances

$$F = \frac{\text{energy/time}}{\text{area}} = \frac{L}{4 \pi D^2}$$



$$D_L = \left(\frac{L}{4\pi F}\right)^{1/2}$$

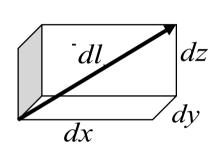
• Light Travel Time $t = \frac{\text{distance}}{\text{velocity}} = \frac{2D}{c}$

$$D_t = \frac{c}{2t}$$

(e.g. within solar system)

Flat Space: Euclidean Geometry

Cartesian coordinates:



$$1 D: dl^2 = dx^2$$

2 D:
$$dl^2 = dx^2 + dy^2$$

3 D:
$$dl^2 = dx^2 + dy^2 + dz^2$$

4 D:
$$dl^2 = dw^2 + dx^2 + dy^2 + dz^2$$

<u>Metric tensor</u>: coordinates - > distance

$$dl^{2} = (dx \quad dy \quad dz) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} dx \\ dy \\ dz \end{pmatrix}$$

Orthogonal coordinates <--> diagonal metric

$$g_{xx} = g_{yy} = g_{zz} = 1$$

$$g_{xy} = g_{xz} = g_{yz} = 0$$

symmetric:
$$g_{ij} = g_{ji}$$

Summation convention:

$$dl^2 = g_{ij} dx^i dx^j \equiv \sum_i \sum_j g_{ij} dx^i dx^j$$

Polar Coordinates

Radial coordinate r, angles ϕ , θ , α ,...

1 D:
$$dl^2 = dr^2$$

2 D:
$$dl^2 = dr^2 + r^2 d\theta^2$$

3 D:
$$dl^2 = dr^2 + r^2 (d\theta^2 + \sin^2\theta d\phi^2)$$

4 D:
$$dl^2 = dr^2 + r^2 \left[d\theta^2 + \sin^2\theta \left(d\phi^2 + \sin^2\phi \, d\alpha^2 \right) \right]$$

$$dl^2 = dr^2 + r^2 d\psi^2$$
 generic angle: $d\psi^2 = d\theta^2 + \sin^2\theta d\phi^2 + ...$

$$dl^{2} = (dr \quad d\theta \quad d\phi) \begin{pmatrix} 1 & 0 & 0 \\ 0 & r^{2} & 0 \\ 0 & 0 & r^{2} \sin^{2}\theta \end{pmatrix} \begin{pmatrix} dr \\ d\theta \\ d\phi \end{pmatrix}$$

$$g_{rr} = ?$$
 $g_{r\theta} = ?$ $g_{\theta\theta} = ?$ $g_{\phi\phi} = ?$ $g_{\phi\phi} = ?$ $g_{\phi\phi} = ?$

dl

dr

reading: Embedded Spheres

R = radius of curvature

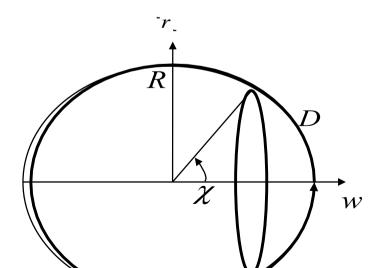
1-D:
$$R^2 = x^2$$

$$2 - D$$
: $R^2 = x^2 + y^2$

3-D:
$$R^2 = x^2 + y^2 + z^2$$

4-D:
$$R^2 = x^2 + y^2 + z^2 + w^2$$
 3-D surface of 4 - sphere

1-D circle



Reading: Non-Euclidean Metrics

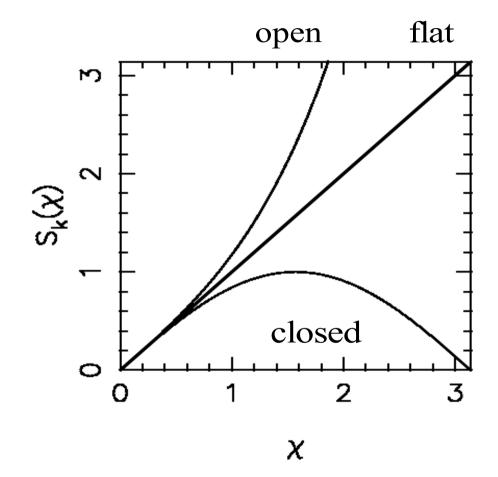
$$k = -1, 0, +1$$
 (open, flat, closed)

$$dl^{2} = \frac{dr^{2}}{1 - k (r/R)^{2}} + r^{2} d \psi^{2}$$

dimensionless radial coordinates:

$$u = r/R = S_k(\chi)$$

$$dl^{2} = R^{2} \left(\frac{du^{2}}{1 - k u^{2}} + u^{2} d\psi^{2} \right)$$
$$= R^{2} \left(d\chi^{2} + S_{k}^{2} (\chi) d\psi^{2} \right)$$



$$S_{-1}(\chi) \equiv \sinh(\chi)$$
, $S_{0}(\chi) \equiv \chi$, $S_{+1}(\chi) \equiv \sin(\chi)$

Reading: Circumference

W

metric:

$$dl^{2} = \frac{dr^{2}}{1 - k \left(r/R \right)^{2}} + r^{2} d\theta^{2}$$

radial distance (for k = +1):

$$D = \int_{0}^{r} \frac{dr}{\sqrt{1 - k (r/R)^{2}}} = R \sin^{-1}(r/R)$$

circumference:

$$C = \int_{0}^{2\pi} r \, d\theta = 2\pi \, r$$

"circumferencial" distance: $r = \frac{C}{2\pi} = R S_k(D/R) = R S_k(\chi)$

If k = +1, coordinate r breaks down for r > R AS 4022 Cosmology

Reading: Circumference

metric:

$$dl^2 = R^2 (d\chi^2 + S_k^2(\chi) d\theta^2)$$

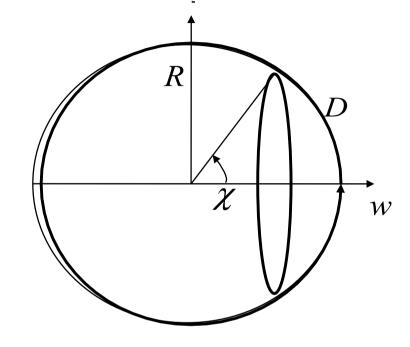
radial distance:

$$D = \int \sqrt{g_{\chi\chi}} d\chi = \int_{0}^{\chi} R d\chi = R \chi$$

circumference:

$$C = \oint \sqrt{g_{\theta\theta}} \, d\theta = \int_{0}^{2\pi} R \, S_k(\chi) \, d\theta = 2\pi \, R \, S_k(\chi)$$

$$= 2\pi \, D \, \frac{S_k(\chi)}{\chi}$$
Same result for any choose and the second in stage.



Same result for any choice of coordinates.

Reading: Angular Diameter

metric:

$$dl^2 = R^2 \left(d\chi^2 + S_k^2(\chi) d\theta^2 \right)$$

radial distance:

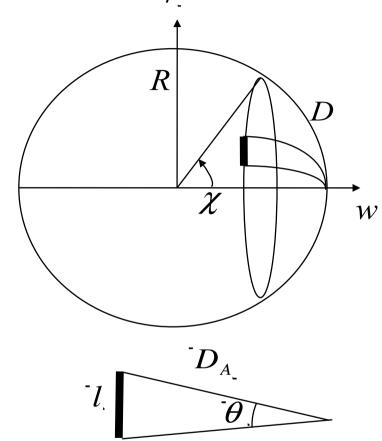
$$D = \int \sqrt{g_{\chi\chi}} d\chi = \int_{0}^{\chi} R d\chi = R \chi$$

linear size : $(l \ll D)$

$$l = \int \sqrt{g_{\theta\theta}} \ d\theta = R \ S_k(\chi) \ \theta$$

angular size:

$$\theta = \frac{l}{D_A}$$
 $D = R \chi = \text{Radial Distance}$
 $D_A = R S_k(\chi) = \text{Angular Diameter Distance}$



Reading: Area of Spherical Shell

radial coordinate χ , angles θ , ϕ :

$$dl^{2} = R^{2} \left[d\chi^{2} + S_{k}^{2}(\chi) \left(d\theta^{2} + \sin^{2}\theta \ d\phi^{2} \right) \right]$$

area of shell:

$$A = \int \sqrt{g_{\theta\theta}} d\theta \sqrt{g_{\phi\phi}} d\phi$$

$$= R^2 S_k^2(\chi) \int_0^{\pi} d\theta \sin \theta \int_0^{2\pi} d\phi$$

$$= 4\pi R^2 S_k^2(\chi)$$

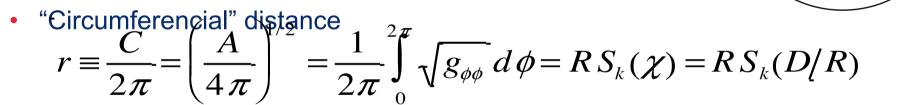
flux:

$$F = \frac{L}{A} = \frac{L}{4\pi D_L^2}$$
 $D_L = R S_k(\chi) = \text{Luminosity Distance}$

[we will work with flats only] Curved Space Summary

• The **metric** converts coordinate steps (grids) to physical lengths.

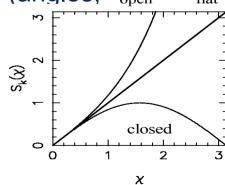
$$D \equiv \int \sqrt{g_{rr}} \, dr = R \, \chi$$



"Observable" distances, defined in terms of local observables (angles, open flat fluxes), give r, not D.

fluxes), give r, not D.
$$D_A \equiv \frac{l}{\theta} = r \qquad D_L \equiv \left(\frac{L}{4\pi F}\right)^{1/2} = r$$

• r < D (positive curvature, $S_{+1}(x)=\sin x$) • negative $S_{+1}(x)=\sinh x$) or r=D (flat, $S_{0}(x)=x$)



Olber's Paradox

Why is the sky dark at night?

Flux from all stars in the sky:

$$F = \int n_* F_* d(\text{Vol}) = \int_0^{\chi_{\text{max}}} n_* \left(\frac{L_*}{A(\chi)}\right) (A(\chi) R d\chi)$$
$$= n_* L_* R \chi_{\text{max}}$$
$$\Rightarrow \infty \text{ for flat space, } R \to \infty.$$

A dark sky may imply:

- (1) an edge (we don't observe one)
- (2) a curved space (finite size)
- (3) expansion (R(t) => finite age, redshift)

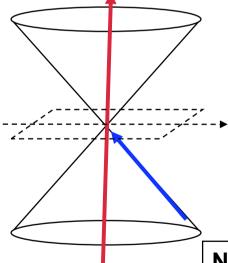
Minkowski Spacetime Metric

$$ds^2 = -c^2 dt^2 + dl^2$$

$$d\tau^2 = dt^2 - \frac{dl^2}{c^2} = dt^2 \left(1 - \frac{1}{c^2} \left(\frac{dl}{dt} \right)^2 \right)$$

Time-like intervals: $ds^2 < 0$, $d\tau^2 > 0$ Inside light cone. Causally connected.

Proper time (moving clock):



Space-like intervals: $ds^2 > 0$, $d\tau^2 < 0$

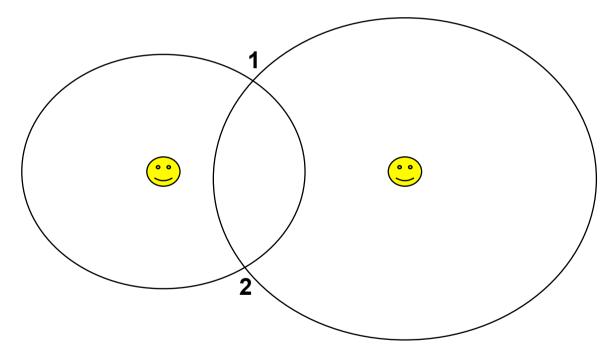
Outside light cone.
Causally disconnected.

World line of massive particle at rest.

Null intervals light cone: v = c. $ds^2 = 0$

Photons arrive from our past light cone.

Cosmological Principle (assumed) Isotropy (observed) => Homogeneity



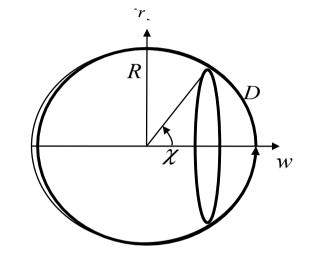
 $\rho_1 = \rho_2$ otherise not isotropic for equidistant fidos

7th Concept: Robertson-Walker metric uniformly curved, evolving spacetime

$$ds^{2} = -c^{2}dt^{2} + R^{2}(t) \left(d\chi^{2} + S_{k}^{2}(\chi) d\psi^{2}\right)$$

$$= -c^{2}dt^{2} + R^{2}(t) \left(\frac{du^{2}}{1 - k u^{2}} + u^{2} d\psi^{2}\right)$$

$$= -c^{2}dt^{2} + a^{2}(t) \left(\frac{dr^{2}}{1 - k (r/R_{0})^{2}} + r^{2} d\psi^{2}\right)$$



$$S_{k}(\chi) = \begin{cases} \sin \chi & (k = +1) \text{ closed} \\ \chi & (k = 0) \text{ flat} \\ \sinh \chi & (k = -1) \text{ open} \end{cases}$$

$$d\psi^{2} \equiv d\theta^{2} + \sin^{2}\theta \, d\phi^{2}$$

$$a(t) \equiv R(t)/R_{0}$$

$$R_{0} \equiv R(t_{0})$$

radial distance $= D(t) = R(t) \chi$ circumference $= 2\pi r(t)$ $r(t) = a(t) r = R(t) u = R(t) S_k(\chi)$

coordinate systems

Distance varies in time:

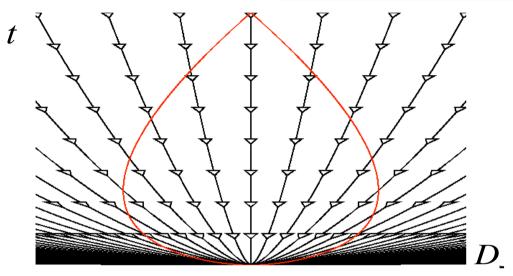
"Fiducial observers" (Fidos)

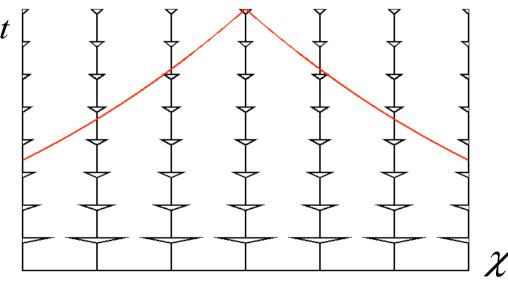
$$D(t) = R(t) \chi$$

"Co-moving" coordinates

$$\chi$$
 or $D_0 \equiv R_0 \chi$

Labels the Fidos





Distances-Redshift relation

• We observe the **redshift**:
$$z = \frac{\lambda - \lambda_0}{\lambda_0} = \frac{\lambda}{\lambda_0} - 1$$
 $\lambda = \text{observed}$,

t(z) = ?

$$\lambda = \text{observed},$$

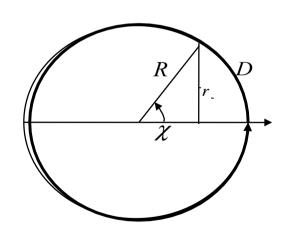
 $\lambda_0 = \text{emitted (rest)}$

Hence we know the expansion factor:

$$x \equiv 1 + z = \frac{\lambda}{\lambda_0} = \frac{\lambda(t_0)}{\lambda(t)} = \frac{R(t_0)}{R(t)} = \frac{R_0}{R(t)}$$

- Need the time of light emitted
- Need coordinate of the source H_0 Ω_M Ω_Λ
- Need them as functions of

• Distances
$$D(t,\chi) = R(t)\chi$$
 $D_A = r_0(\chi)/(1+z)$ $C_L = r_0(\chi)(1+z)$



E.g. D_L is 4 x D_A for an object at z=1.

Tutorial: Time -- Redshift relation

$$x = 1 + z = \frac{R_0}{R}$$

$$\frac{dx}{dt} = -\frac{R_0}{R^2} \frac{dR}{dt}$$

$$= -\frac{R_0}{R} \frac{R}{R}$$

$$= -x \ H(x)$$

Memorise this derivation!

Hubble parameter:
$$H \equiv \frac{R}{R}$$

$$\therefore dt = \frac{-dx}{x H(x)} = \frac{-dz}{(1+z) H(z)}$$

Tutorial:

Time and Distance vs Redshift $x = 1 + z = \frac{R_0}{R}$ $\rightarrow dt = \frac{Ldx}{xH(x)}$

$$\frac{d}{dt}\left(x = 1 + z = \frac{R_0}{R}\right) \rightarrow dt = \frac{-dx}{x H(x)}$$

Look - back time:

$$t(z) = \int_{t}^{t_0} dt = \int_{1+z}^{t} \frac{-dx}{x H(x)} = \int_{1}^{1+z} \frac{dx}{x H(x)}$$

Age: $t_0 = t(z \rightarrow \infty)$

Distance: $D = R \chi$ $r = R S_{\nu}(\chi)$

$$\chi(z) = \int d\chi = \int_{t}^{t_0} \frac{c \, dt}{R(t)} = \frac{c}{R_0} \int_{1}^{1+z} \frac{R_0}{R(t)} \frac{dx}{x \, H(x)} = \frac{c}{R_0} \int_{1}^{1+z} \frac{dx}{H(x)}$$

 $\chi_{H} = \chi(z \to \infty)$ Horizon:

Einstein's General Relativity

- 1. Spacetime geometry tells matter how to move
 - gravity = effect of <u>curved spacetime</u>
 - free particles follow geodesic trajectories

```
-ds^2 < 0 v < c time-like massive particles
```

- $-ds^2 = 0$ v = c null massless particles (photons)
- $-ds^2 > 0$ v > c space-like tachyons (not observed)
- 2. Matter (+energy) tells spacetime how to curve
 - Einstein field equations
 - nonlinear
 - second-order derivatives of metric

with respect to space/time coordinates

8th concept: Einstein Field Equations

$$G_{\mu\nu} \equiv R_{\mu\nu} - \frac{1}{2} R^{\alpha}{}_{\alpha} g_{\mu\nu} = \frac{8\pi G}{c^2} T_{\mu\nu} - \Lambda g_{\mu\nu}$$

 $g_{\mu\nu}$ = spacetime metric ($ds^2 = g_{\mu\nu} dx^{\mu} dx^{\nu}$)

 $G_{\mu\nu}$ = Einstein tensor (spacetime curvature)

 $R_{\mu\nu}$ = Ricci curvature tensor

 R^{α}_{α} = Ricci curvature scalar

G = Netwon's gravitational constant

 $T_{\mu\nu}$ = energy - momentum tensor

 $\Lambda = cosmological constant$

Homogeneous perfect fluid

density ρ pressure p

Einstein field equations:

$$G_{\mu\nu} = rac{8\pi G}{c^2} egin{pmatrix}
ho \, c^2 & 0 & 0 & 0 \ 0 & p & 0 & 0 \ 0 & 0 & p & 0 \ 0 & 0 & 0 & p \end{pmatrix} - \Lambda egin{pmatrix} -c^2 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{pmatrix}$$

---> Friedmann equations :

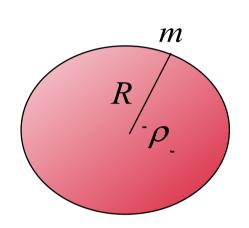
$$R^{2} = \left(\frac{8\pi G \rho + \Lambda}{3}\right)R^{2} - k c^{2}$$
 energy
$$R^{2} = -\frac{4\pi G}{3c^{2}}(\rho c^{2} + 3p)R + \frac{\Lambda}{3}R$$
 momentum

Note: energy density and pressure decelerate, Λ accelerates.

Reading: Newtonian Analogy

$$E = \frac{m}{2}R^{2} - \frac{GMm}{R} \qquad M = \frac{4\pi}{3}R^{3}\rho$$

$$R^{2} = \frac{8\pi G}{3}\rho R^{2} + \frac{2E}{m}$$



Friedmann equation:

$$R^{2} = \left(\frac{8\pi G \rho + \Lambda}{3}\right)R^{2} - k c^{2}$$

same equation if
$$\rho \to \rho + \frac{\Lambda}{8\pi G}$$
, $\frac{2E}{m} \to -k c^2$

Reading: Local Conservation of Energy

$$d[\rho c^{2}R^{3}] = -p d[R^{3}]$$

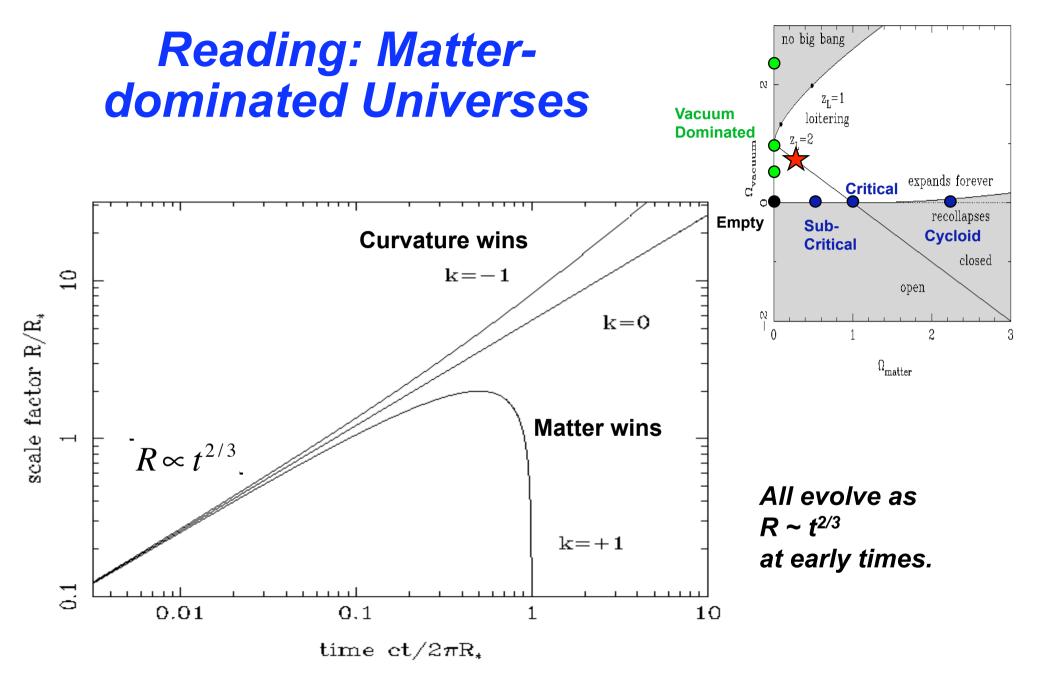
$$\rho c^{2}R^{3} + \rho c^{2} (3R^{2}R) = -p (3R^{2}R)$$

$$\rho = -3\left(\rho + \frac{p}{c^{2}}\right)\frac{R}{R} \qquad p = p(\rho) = \text{equation of state}$$
Friedmann 1: $R^{2} = \frac{8\pi G}{3}\rho R^{2} + \frac{\Lambda}{3}R^{2} - kc^{2}$

$$(2RR) = \frac{8\pi G}{3}(\rho R^{2} + 2RR\rho) + \frac{\Lambda}{3}(2RR)$$

$$R = \frac{8\pi G}{3}\left(\rho R^{2} + R\rho\right) + \frac{\Lambda}{3}R$$

$$R = -\frac{4\pi G}{3}\left(\rho + \frac{3p}{c^{2}}\right)R + \frac{\Lambda}{3}R = \text{Friedmann 2}$$



Critical Universe (Einstein - de Sitter)

$$\Omega_{\rm M} \equiv \frac{\rho_{M}}{\rho_{c}} = 1$$

$$\Omega_R = \Omega_{\Lambda} = 0 \quad \rightarrow \quad k = 0 \quad (\text{flat})$$

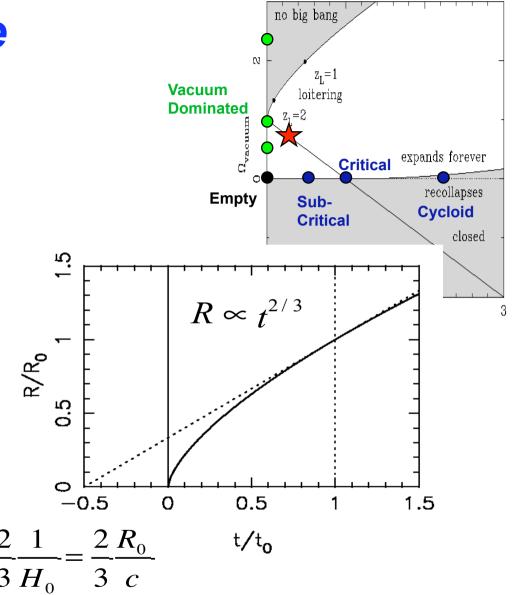
$$\rho = \frac{3 H_0^2}{8\pi G} \left(\frac{R_0}{R}\right)^3$$

$$R^{2} = \frac{8\pi G}{3} \rho R^{2} = \frac{H_{0}^{2} R_{0}^{3}}{R}$$

$$dR R^{1/2} = H_0 R_0^{3/2} dt$$

$$\frac{2}{3}R^{3/2} = H_0 R_0^{3/2} t$$

$$\frac{R}{R_0} = \left(\frac{t}{t_0}\right)^{2/3}$$
, age: $t_0 = \frac{2}{3} \frac{1}{H_0} = \frac{2}{3} \frac{R_0}{c}$



Matter decelerates expansion.

-Ω_Λ Reading: Possible Universes $\cosh(t)$ $\exp(t)$ sinh(t) $\Omega_M + \Omega_{\Lambda} = 1$

AS 4022 Cosmology

Reading: Rad. => Matter => Vacu.

$$\Omega(z) = \Omega_R x^4 + \Omega_M x^3 + \Omega_\Lambda = \sum_i \Omega_i x^{3(w_i + 1)}$$

$$x \equiv 1 + z = R_0 / R \equiv a^{-1} \qquad w \equiv p / \rho c^2$$

$$\log \rho$$

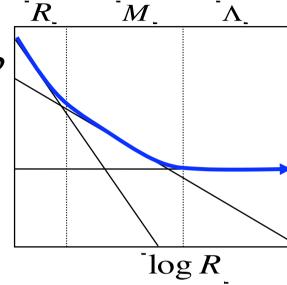
$$\Omega_R x^4 = \Omega_M x^3 \rightarrow x = \Omega_M / \Omega_R$$

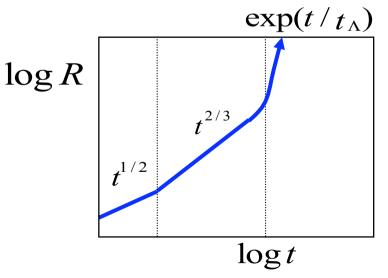
$$\rightarrow z = \left(\frac{\Omega_M}{\Omega_R}\right) - 1 = \frac{0.3}{8.4 \times 10^{-5}} \approx 3600$$

$$\Omega_{M} x^{3} = \Omega_{\Lambda} \rightarrow x^{3} = \Omega_{\Lambda} / \Omega_{M}$$

$$\rightarrow z = \left(\frac{\Omega_{\Lambda}}{\Omega_{M}}\right)^{\frac{1}{3}} - 1 = \left(\frac{0.7}{0.3}\right)^{\frac{1}{3}} - 1 \approx 0.33$$

$$t^{1}$$





Tutorial: What observations justify the "Concordance" Parameters?

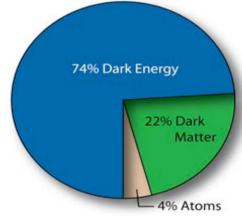
$$H_0 \equiv 100 \ h \ \frac{\text{km/s}}{\text{Mpc}} \approx 70 \frac{\text{km/s}}{\text{Mpc}} \qquad h \approx 0.7$$

$$\Omega_R \approx 4.2 \times 10^{-5} \, h^{-2} \approx 8.4 \times 10^{-5} \, (CMB \, photons + neutrinos)$$

$$\Omega_B \sim 0.02 \, h^{-2} \sim 0.04 \quad (baryons)$$

$$\Omega_{_M} \sim 0.3 \quad (Dark\ Matter)$$

$$\Omega_{\Lambda} \sim 0.7 \quad (Dark Energy)$$



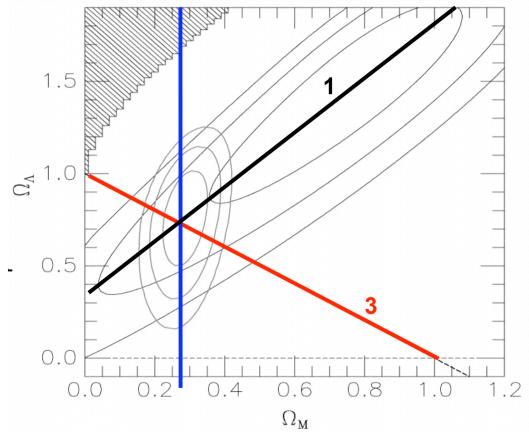
$$\Omega_0 \equiv \Omega_R + \Omega_M + \Omega_{\Lambda} = 1.0 \rightarrow Flat Geometry$$

9th Concept: "Concordance" Model

Three main constraints:

- 1. Supernova Hubble Diagram
- 2. Galaxy Counts + M/L ratios $\Omega_{\rm M} \sim 0.3$
- 3. Flat Geometry (inflation, CMB fluctuations) $\Omega_0 = \Omega_M + \Omega_\Lambda = 1$

2



concordance model

$$H_0 \approx 72$$
 $\Omega_M \approx 0.3$ $\Omega_{\Lambda} \approx 0.7$

Beyond H₀

- Globular cluster ages: t < t₀ --> acceleration
- Radio jet lengths: $D_A(z)$ --> deceleration
- Hi-Redshift Supernovae: D_L(z) --> acceleration
- Dark Matter estimates --->

$$\Omega_M \sim 0.3$$

$$\Omega_0 \approx 1.0$$

- Inflation ---> Flat Geometry
- CMB power spectra
- "Concordance Model"

$$\Omega_M \sim 0.3 \quad \Omega_{\Lambda} \sim 0.7$$

$$\Omega_0 = \Omega_M + \Omega_{\Lambda} \approx 1.0$$

Deceleration parameter

$$a(t) = \frac{R(t)}{R_0} = 1 + H_0 (t - t_0) - \frac{q_0}{2} H_0^2 (t - t_0)^2 + \dots$$

Friedmann momentum equation:

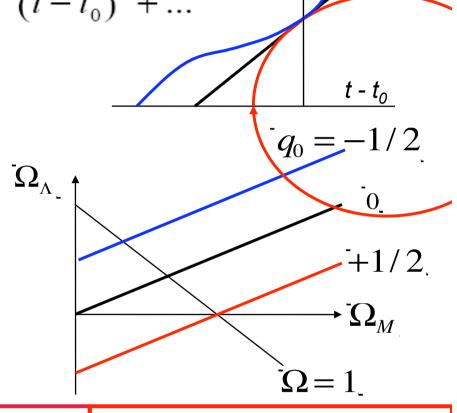
$$R = -\frac{4\pi G}{3} \left(\rho + \frac{3p}{c^2} \right) R + \frac{\Lambda}{3} R$$

$$\frac{R}{H_0^2 R} = -\frac{4\pi G}{3H_0^2} \rho (1+3w) + \frac{\Lambda}{3H_0^2}$$

 $\rho, p > 0$ decelerate, $\Lambda > 0$ accelerates

Equation of state : $p = \sum_{i} w_i \rho_i c^2$

$$w_R = \frac{1}{3} \quad w_M = 0 \quad w_{\Lambda} = -1$$



$$q_0 = -\left(\frac{R}{RH^2}\right)_0 = \sum_i \left(\frac{1+3 w_i}{2}\right) \Omega_i = \Omega_R + \frac{\Omega_M}{2} - \Omega_\Lambda$$

$$q_0 > 0 \Rightarrow$$
 deceleration

$$q_0 = 0 = > constant velocity$$

$$q_0 < 0 \Rightarrow$$
 acceleration

Deceleration Parameter

$$q_0 \equiv -\left(\frac{RR}{R^2}\right)_0 = \frac{\Omega_M}{2} - \Omega_M$$

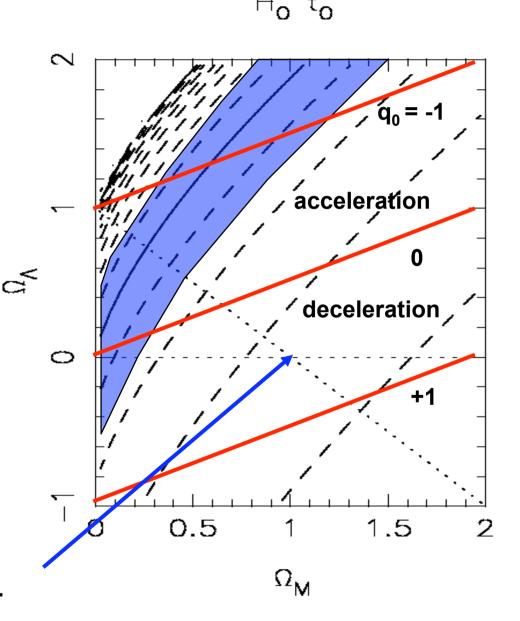
Matter decelerates

Vacuum (Dark) Energy accelerates

Measure q_0 via:

- 1. D_A(z)(e.g. radio jet lengths)
- 2. D_L(z)(curvature of Hubble Diagram)

Critical density matter-only --> $q_0=1/2$.



Tutorial: Observable Distances

angular diameter distance:

$$\theta = \frac{l}{D_A}$$
 $D_A = \frac{r_0}{(1+z)} = \frac{c z}{H_0} \left(1 - \frac{q_0 + 3}{2} z + \dots \right)$

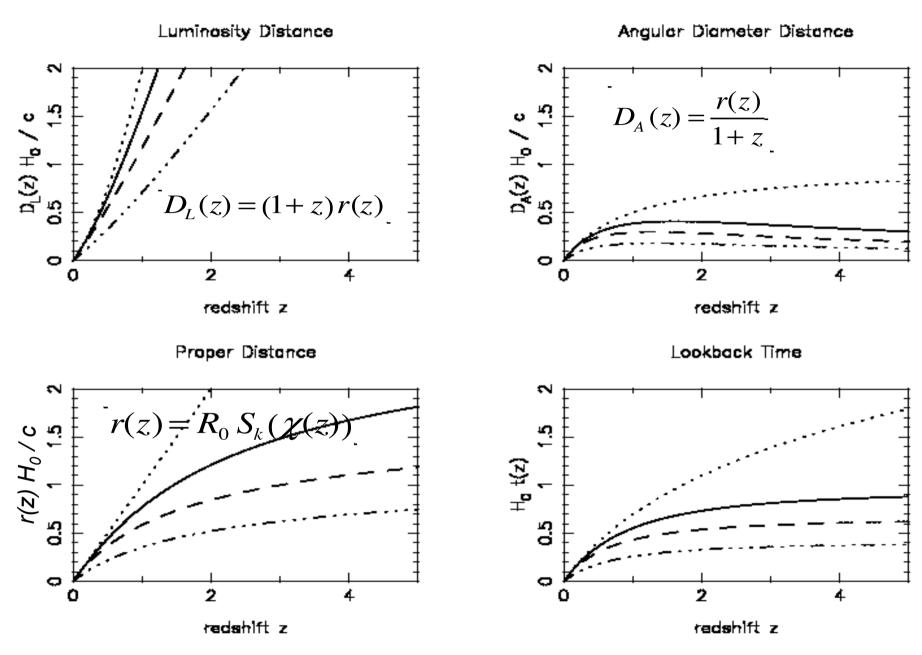
luminosity distance:

$$F = \frac{L}{4\pi D_L^2} \qquad D_L = r_0 (1+z) = \frac{c z}{H_0} \left(1 + \frac{1-q_0}{2} z + \dots \right)$$

deceleration parameter:

$$q_0 = \frac{\Omega_M}{2} - \Omega_{\Lambda}$$

Verify these low-z expansions.



AS 4022 Cosmology

Reading: Hubble Diagram

$$m = M + 5 \log \left(\frac{D_L(z)}{\text{Mpc}}\right) + 25$$
$$+ A + K(z)$$

m = apparent mag

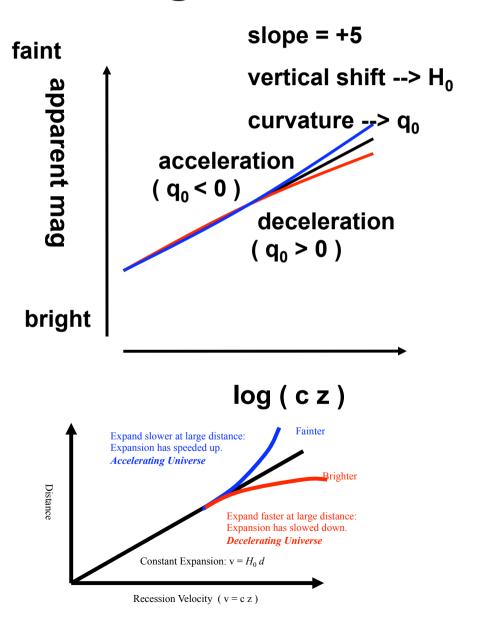
M = absolute mag

A =extinction (dust in galaxies)

K(z) = K correction

(accounts for redshift of spectra relative to observed bandpass)

$$D_L(z) = \frac{c z}{H_0} \left(1 + \frac{1 - q_0}{2} z + \dots \right)$$

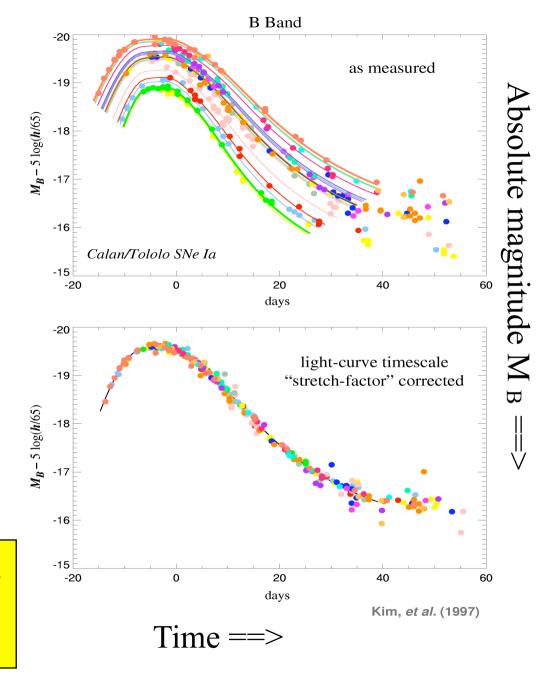


Calibrating "Standard Bombs"

- 1. Brighter ones decline more slowly.
- 2. Time runs slower by factor (1+z).

AFTER correcting:
Constant peak brightness $M_B = -19.7$

Observed peak magnitude: m = M + 5 log (d/Mpc) + 25 gives the distance!

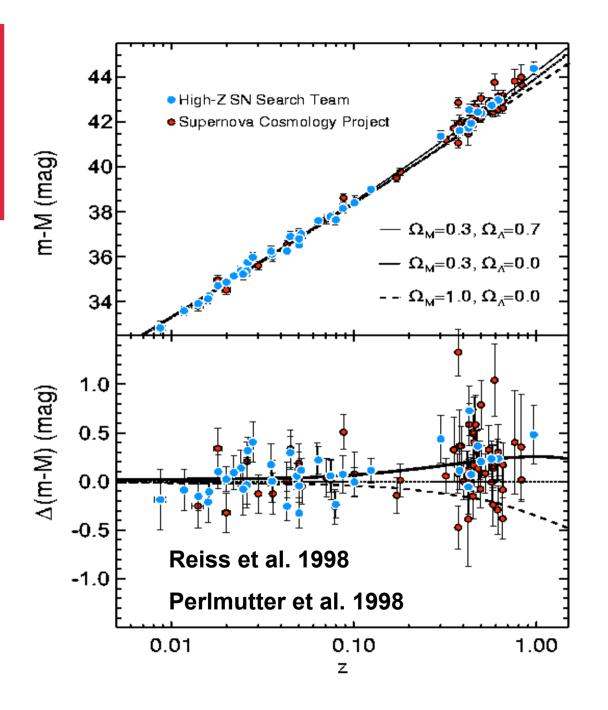


SN la at z ~ 0.8 are ~25% fainter than expected

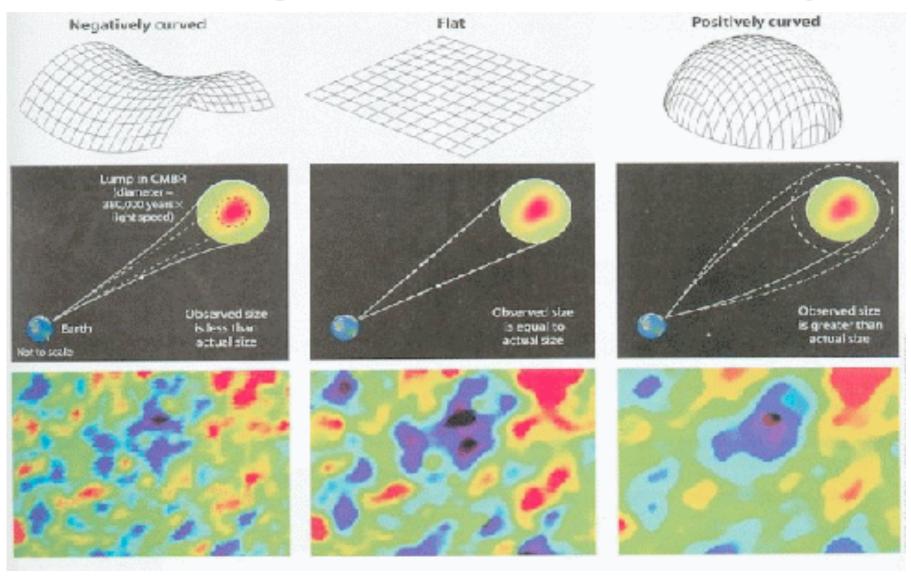
Acceleration (!?)

- 1. Bad Observations?
 - -- 2 independent teams agree
- 1. Dust?
 - -- corrected using reddening
- 2. Stellar populations?
 - -- earlier generation of stars
 - -- lower metalicity
- 3. Lensing?
 - -- some brighter, some fainter

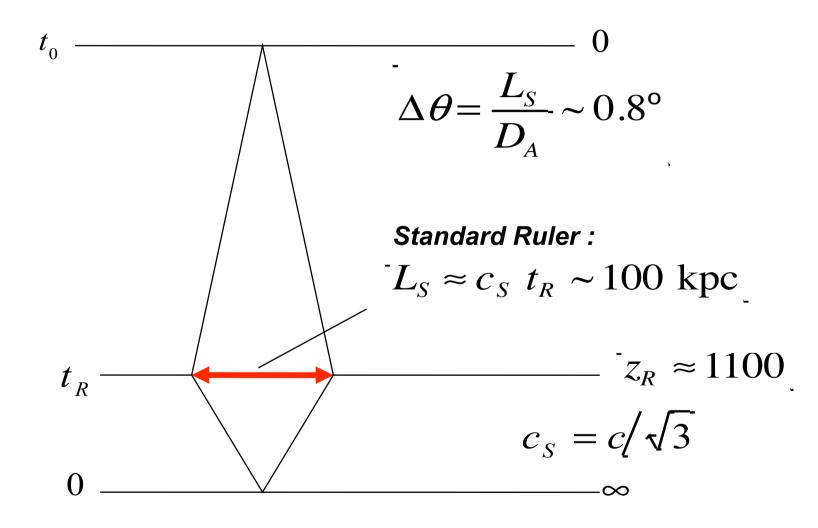
AS 4022 Cosmology ~ 0.8



CMB Angular scale --> Geometry



10th Concept: Sound Horizon at z = 1100



Tutorial: Sound Horizon at z=1100

distance travelled by a sound wave

$$c_s dt$$

recombination at z = 1100

$$x \equiv 1 + z = \frac{R_0}{R(t)}$$

expand each step by factor $R(t_R)/R(t)$:

$$dt = \frac{-dx}{x H(x)}$$

$$L_{S}(t_{R}) = R(t_{R}) \int_{0}^{t_{R}} \frac{c_{S} dt}{R(t)}$$

$$dt = -dt$$
 $R(t) = -dt$

sound speed

$$= \frac{R_0}{1+z} \int_{1+z}^{\infty} \frac{x}{R_0} \frac{c_S dx}{x H(x)}$$

$$dt = - dx / x H(x)$$

$$R(t) = R_0 / x$$

$$c_S \approx \frac{c}{\sqrt{3}}$$

$$=\frac{c_S}{(1+z)}\int_{1+z}^{\infty}\frac{dx}{H(x)}$$

H(x) from Friedmann Eqn.

$$= \frac{c_{S}}{(1+z)H_{0}} \int_{1+z}^{\infty} \frac{dx}{\sqrt{x^{4} \Omega_{R} + x^{3} \Omega_{M} + \Omega_{\Lambda} + (1-\Omega_{0}) x^{2}}}$$

$$\approx \frac{c_S}{(1+z) H_0} \int_{1+z}^{\infty} \frac{dx}{\sqrt{x^4 \Omega_R + x^3 \Omega_M}}$$

keep 2 largest terms.

Sound Horizon at z = 1100

$$\begin{split} L_{S}(t_{R}) &= \frac{c_{S}}{(1+z)} \int_{1+z}^{\infty} \frac{dx}{H(x)} \approx \frac{c_{S}}{(1+z) H_{0}} \int_{1+z}^{\infty} \frac{dx}{\sqrt{x^{4} \Omega_{R} + x^{3} \Omega_{M}}} \\ &= \frac{c_{S}}{(1+z) H_{0} \sqrt{\Omega_{R}}} \int_{1+z}^{\infty} \frac{dx}{\sqrt{x^{3} (x+x_{0})}} \qquad x_{0} \equiv \frac{\Omega_{M}}{\Omega_{R}} \approx 3500 \left(\frac{\Omega_{M}}{0.3}\right) \\ &= \frac{c_{S}}{(1+z) H_{0} \sqrt{\Omega_{R}}} \left(-\frac{2}{x_{0}} \sqrt{1+\frac{x_{0}}{x}}\right)_{1+z}^{\infty} \\ &= \frac{2c_{S}}{(1+z) H_{0} \sqrt{\Omega_{M} x_{0}}} \left(\sqrt{1+\frac{x_{0}}{1+z}} - 1\right) \qquad c_{S} = \frac{c}{\sqrt{3}} \\ &= \frac{c}{H_{0}} \frac{2(\sqrt{4.6} - 1)}{1100 \sqrt{3 \times 0.3 \times 3500}} \\ &= 3.4 \times 10^{-5} \frac{c}{H_{0}} \approx 110 \left(\frac{0.7}{h} \left(\frac{0.3}{\Omega_{M}}\right)^{1/2} \text{ kpc} \right) \end{split}$$
Expands by factor 1
+ z = 1100
-120 Mpc today.

120 Mpc today.

Reading: Angular scale $\rightarrow W_0$

sound horizon:

angular diameter distance:

$$L_S(z) = \frac{1}{1+z} \int_{1+z}^{\infty} \frac{c_S dx}{H(x)}$$

$$D_A(z) = \frac{R_0 S_K(\chi)}{1+z}$$

$$L_{S}(z) = \frac{1}{1+z} \int_{1+z}^{\infty} \frac{c_{S} dx}{H(x)} \qquad D_{A}(z) = \frac{R_{0} S_{K}(\chi)}{1+z} \qquad \chi = \int_{t}^{t_{0}} \frac{c dt}{R(t)} = \frac{c}{R_{0}} \int_{1}^{t_{0}} \frac{dx}{H(x)}$$

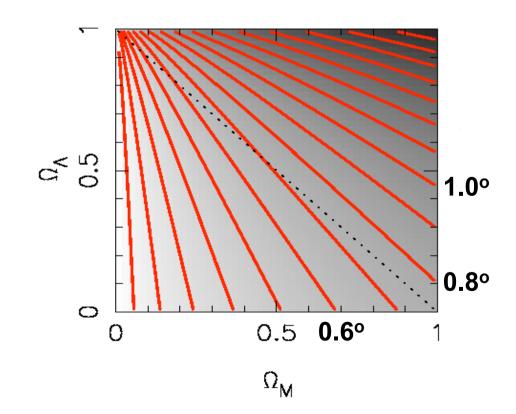
angular scale

$$\theta = \frac{L_{S}(z)}{D_{A}(z)} = \frac{\int_{1+z}^{\infty} \frac{c_{S} dx}{H(x)}}{R_{0} S_{k} \left(\frac{c}{R_{0}} \int_{1}^{1+z} \frac{dx}{H(x)}\right)}$$

Angular scale depends mainly on the curvature.

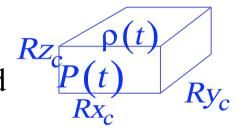
Gives theta~ 0.8° for flat geometry, Omega =1

$$\Omega_{R} = 0.000086$$



Evolution of Sound Speed

Expand a box of fluid



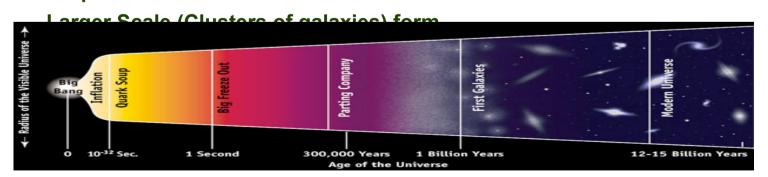
$$C_{s}^{2} \equiv \frac{\partial P/\partial (vol)}{\partial \rho/\partial (vol)},$$
$$= \frac{\partial P/\partial R}{\partial \rho/\partial R}$$

$$Vol = R^3 (t) x_c y_c z_c$$

$$\propto R^3(t)$$

Brief History of Universe

- Inflation
 - Quantum fluctuations of a tiny region
 - Expanded exponentially
- Radiation cools with expansion T ~ 1/R ~t^{-2/n}
 - He and D are produced (lower energy than H)
 - lonized H turns neutral (recombination)
 - Photon decouple (path no longer scattered by electrons)
- Dark Matter Era
 - Slight overdensity in Matter can collapse/cool.
 - Neutral transparent gas
- Lighthouses (Galaxies and Quasars) form
 - UV photons re-ionize H



Coupled radiation-baryon relativistic fluid

Matter

Where fluid density
$$\rho(t)$$
=

$$\rho_r$$

$$\rho_m$$

Fluid pressure
$$P(t) =$$

$$\frac{c^2}{3}$$
 ρ_r

$$\frac{\rho_m}{\mu} \cdot KT_m$$

Matter number density

Random motion energy Non-Relativistic

Note
$$\rho_r \propto R^{-4}$$
 density Non-Relativistic IDEAL GAS

$$\rho_m \sim R^{-3} \qquad \qquad Neglect \frac{1}{\mu} KT_m << c^2$$

Tutorial: Show
$$C_s^2 = c^2/3 / (1+Q)$$
, $Q = (3 \rho_m) / (4 \rho_r)$, $\rightarrow C_s$ drops

from c/sqrt(3) at radiation-dominated era

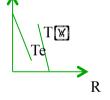
to c/sqrt(Y) at dark-matter-radiation equality

Reading: Sound Speed & Gas Temperature: $Cs^2 \sim T \sim T_{ph} \sim 1500K*(z/500)$ before decouple.

But After decoupling (z<500), Cs \sim 6 (1+z) m/s because

 $\underline{d}^{3}\underline{P} \ \underline{d}_{x}^{3}$ invarient phase space volume

So:
$$P \propto x^{-1} \propto R^{-1}$$
 $\frac{3}{2} \times T_e = mv^2 / 2 \propto R^{-2}$ $Te \sim 1500 K? \left(\frac{1+z}{500}\right)^2$



$$T_e \propto C_s^2 \propto R^{-2}$$

Except reionization $z \sim 10$ by stars quasars

What have we learned?

What determines the patterns of CMB at last scattering

Analogy as patterns of fine sands on a drum at last hit.

Heading to: origins of perturbations: inflation brings patches in contact Creates a flat universe naturally.

11th Concept: Inflation in Early Universe

Consider universe goes through a phase with

$$\rho(t) \sim R(t)^{-n}$$

$$R(t) \sim t^q$$
 where q=2/n

Problems with normal expansion theory (n=2,3,4):

What is the state of the universe at $t \rightarrow 0$? scalar field?

Pure E&M field (radiation) or exotic

Why is the initial universe so precisely flat?

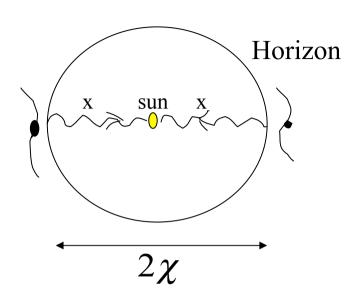
What makes the universe homogeneous/similar in opposite directions of horizon?

Solutions: Inflation, i.e., n=0 or n<2

Maybe the horizon can be pushed to infinity?

Maybe there is no horizon?

Maybe everything was in Causal contact at early times?



Why are these two galaxies so similar without communicating yet?

$$\frac{\mathcal{E}_K(z)}{\mathcal{E}(z)} = \frac{\mathcal{E}_K(0) \times R^{-2}}{\mathcal{E}(0) \times R^{-n}} \sim R^{n-2} \sim 0 \text{ at } t = 0 \text{ Why is the curvature term so small (universe so flat)}$$
at early universe if radiation dominates n=4 >2?

Inflation broadens Horizon

Light signal travelling with speed c on an expanding sphere R(t), e.g., a fake universe R(t)=1 lightyr $(t/1 \text{yr})^q$

Emitted from time t_i

By time t=1yr will spread across (co-moving coordinate) angle c_c

Horizon in co-moving coordinates

$$x_{c} = \int_{t_{i}}^{1} \frac{\text{cdt}}{\text{R(t)}} = \int_{t_{i}}^{1} \frac{\text{cdt}}{\text{t}^{q}} = \frac{(1^{1-q} - t_{i}^{1-q})}{(1-q)}$$

Normally $x_c < \frac{1}{(1-q)}$ is finite if q=2/n<1

(e.g., n=3 matter-dominate or n=4 photon-dominate)

INFLATION phase $x_c = \frac{(t_i^{1-q} - 1)}{(q-1)}$ can be very large for very small t_i if q=2/n>1

(e.g., $t_i = 0.01, q = 2, x_c = 99 \gg \pi$, Inflation allows we see everywhere)

Tutorial: Inflation dilutes any initial curvature of a quantum universe

$$\frac{\varepsilon_K(R)}{\varepsilon(R)} = \frac{\varepsilon_K(R_i)}{\varepsilon(R_i)} \left(\frac{R}{R_i}\right)^{n-2} \sim 0 \text{ (for n<2) sometime after R>>R}_i$$

even if initially the universe is curvature-dominated $\frac{\varepsilon_K(R_i)}{\varepsilon(R_i)} = 1$

E.g.

If a toy universe starts with $\frac{\varepsilon_K(R_i)}{\varepsilon(R_i)} = 0.1$ inflates from $t_i = 10^{-40}$ sec to $t_f = 1$ sec with n = 1,

and then expand normally with n=4 to t=1 year,

SHOW at this time the universe is far from curvature-dominated.

Exotic Pressure drives Inflation

$$P = -\frac{d(\rho c^{2} R^{3})}{d(R^{3})}$$
=>
$$\frac{\rho}{3} + \frac{P}{c^{2}} = -\frac{d(\rho R^{2})}{3RdR} = \frac{n-2}{3}\rho \text{ if } \rho \sim R^{-n}$$
=>
$$P/\rho c^{2} = (n-3)/3$$

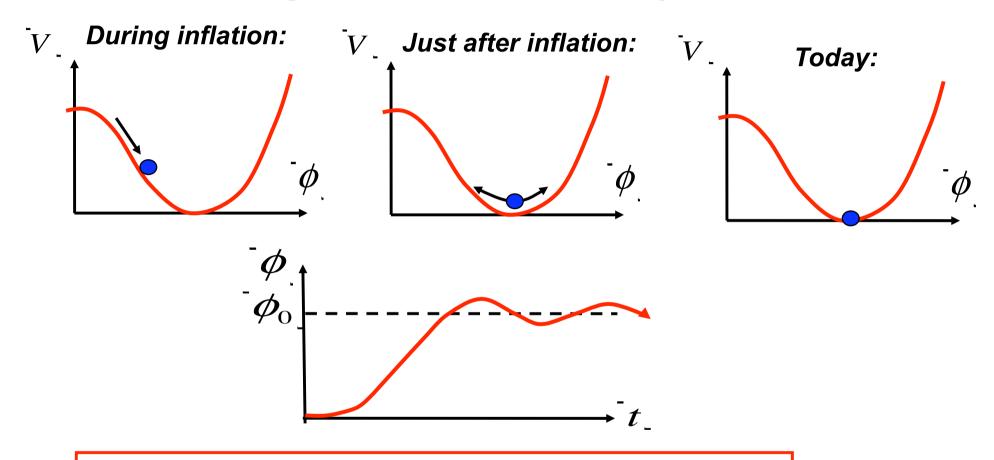
Inflation n < 2 requires exotic (negative) pressure, define $w=P/\rho c^2$, then w = (n-3)/3 < 0,

Verify negligble pressure for cosmic dust (matter), Verify for radiation $P=\rho c^2/3$ Verify for vaccum $P=-\rho c^2$

Reading: 1980: Inflation (Alan Guth)

- Universe born from "nothing"?
- A quantum fluctuation produces a tiny bubble of "False Vacuum".
- High vacuum energy drives exponential expansion, also known as "inflation."
- Universe expands by huge factor in tiny fraction of second, as false vacuum returns to true vacuum.
- Expansion so fast that virtual particle-antiparticle pairs get separated to become real particles and anti-particles.
- Stretches out all structures, giving a flat geometry and uniform T and r, with tiny ripples.
- Inflation launches the Hot Big Bang!

Reading: Scalar Field Dynamics



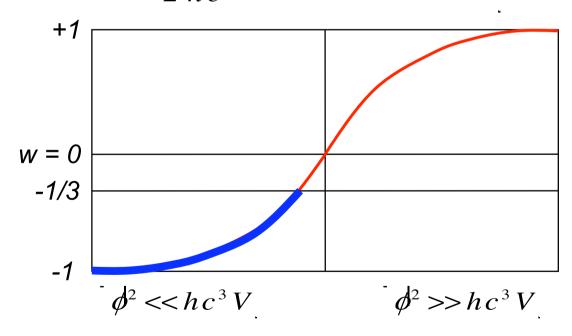
Kinetic energy of the oscillations is damped. Re-heats the Universe, creating all types of particleantiparticle pairs, launching the Hot Big Bang.

Reading: Scalar Field Equation of

Equation of State: $w = p / \mathbb{Z}$ State
Uniform field: $c^2 (\nabla \phi)^2 << \phi^2$

$$p_{\phi} = \frac{1}{2} \frac{1}{\hbar c^{3}} (\phi^{2} + c^{2} \nabla \varphi^{2}) - V(\phi)$$

$$\varepsilon_{\phi} = \frac{1}{2} \frac{1}{hc^3} (\phi^2 + c^2 \nabla \varphi^2) + V(\phi)$$



Required for inflation:

$$w = \frac{p}{\varepsilon} = \frac{\phi^2 - 2hc^3V}{\phi^2 + 2hc^3V} < -\frac{1}{3}$$

$$\varepsilon + 3p = 4(\phi^2 - hc^3V) < 0$$

Terminal velocity:

$$\phi \Rightarrow \frac{hc^3}{3H} \frac{\partial V}{\partial \phi}$$

$$\left(\frac{\partial V}{\partial \phi}\right)^2 < \frac{9H^2}{\hbar c^3}V$$

Need a long slow roll over a nearly flat potential.

Tutorial: ants on a sphere

Consider a micro-cosmos of N-ants inhabiting an expanding spherical surface of radius $R=R_0$ (t/t₀)^a, where presently we are at t=t₀=1min, $R=R_0$ =1lightsecond. Let a=1/2, N=100. What is the present rate of expansion dR/dt/R = in units of 1/min? How does the ant surface density change as function of cosmic time? [due 6Mar]

Light emitted by ant-B travels a half circle and reaches ant-A now, what redshift was the light emitted? What is the angular diameter distance to the emission redshift? [due 10Apr]

Let each ant conserve its random angular momentum per unit mass J=(1lightsecond)*(1m/min) with respect to the centre of the sphere. Estimate the age of universe when the ants were moving relativistic. How far has ant B travelled since the emission and since the beginning of the universe?

What have we learned?

Where are we heading?

Inflation as origin of perturbation, flatness, horizon.

Sound speed of gas before/after decoupling, and sound horizon.

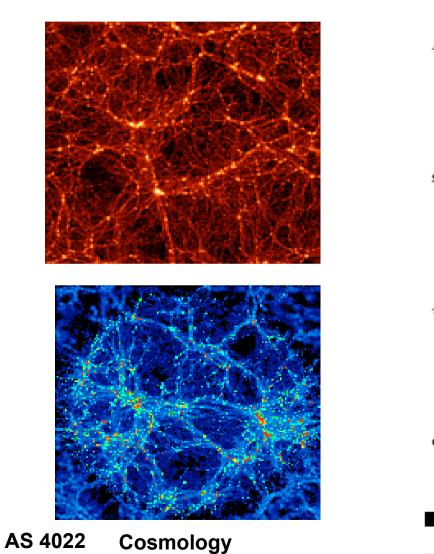
Topics Next:

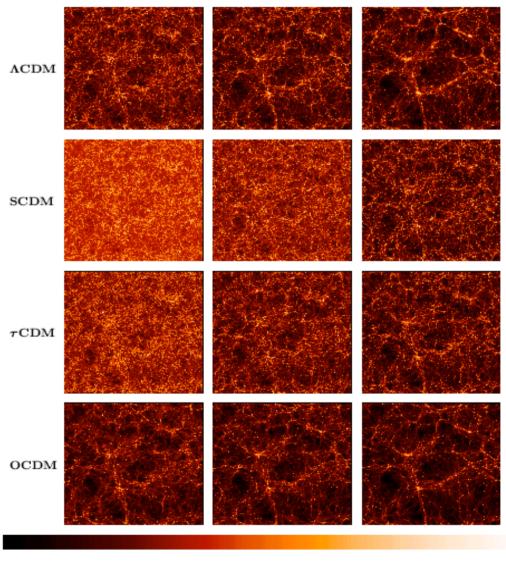
Growth of [bankruptcy of uniform universe]

Density Perturbations (how galaxies form by N-body simulations) peculiar velocity (how galaxies move and merge)

CMB fluctuations (temperature variation in CMB)

Reading: Supercomputer Simulations





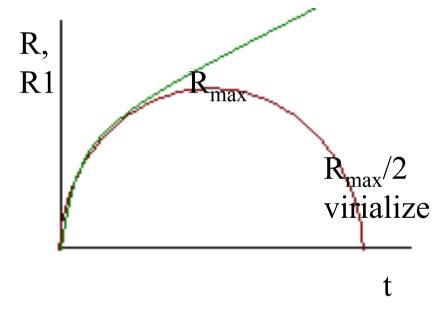
z=0

Non-linear Collapse of an Overdense Sphere

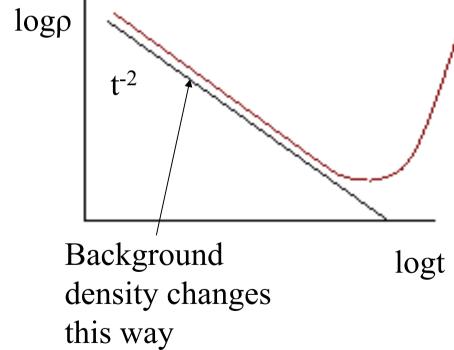
An overdense sphere is a very useful non linear model as it behaves in exactly the same way as a closed sub-universe.

Any spherically symmetric perturbation will clearly evolve at a given radius in the same way as a uniform sphere containing the same amount of mass.

$$\rho_b$$
 $\rho_b + \delta \rho$



$$\rho_b = \frac{1}{6\pi G t^2}$$



reading: Gradual Growth of perturbation

$$\rightarrow \frac{\delta \rho}{\rho} = \frac{3c^2}{8\pi G} \frac{1}{\rho R^2} \propto \begin{cases} R^2 \text{ (mainly radiation } \rho \propto R^{-4}) \\ R \text{ (mainly matter } \rho \propto R^{-3}) \end{cases}$$

Perturbations Grow!

E.g., δ changes by a factor of 10 between z=10 and z=100 (matter era), and a factor of 100 between z=10⁵ and z=10⁶ (Radiation Era)

reading: Peculiar Motion

The motion of a galaxy has two parts:

$$\vec{v} = \frac{d}{dt} \left[R(t)\theta(t) \right]$$
Proper length vector
$$= \dot{R}(t).\theta + R(t)\dot{\theta}(t)$$
Uniform
expansion \vec{v}_0
Peculiar motion \vec{w}

reading: Damping of peculiar motion (in the absence of overdensity)

Generally peculiar velocity drops with expansion.

$$R^2\dot{\theta} = R^*(R\dot{\theta}) = \text{constant} \sim \text{"Angular Momentum"}$$

Similar to the drop of (non-relativistic) sound speed with expansion

$$\delta v = R(t)\dot{x}_c = \frac{\text{constant}}{R(t)}$$

Reading: Equations governing Fluid Motion

$$\nabla^{2}\phi = 4\pi G\rho \qquad \text{(Poissons Equation)}$$

$$\frac{1}{\rho} \frac{d\rho}{dt} = \frac{d \ln \rho}{dt} = -\vec{\nabla}.\vec{v} \quad \text{(Mass Conservation)}$$

$$\frac{dv}{dt} = -\vec{\nabla}\phi - \frac{c_{s}^{2}}{\nabla} \ln \rho \quad \text{(Equation of motion)}$$

$$\frac{\nabla P}{\rho} \quad \text{since } \partial P = c_{s}^{2} \partial \rho$$

Reading: Decompose into unperturbed + perturbed

Let

$$\rho = \rho_o + \delta \rho$$

$$v = v_o + \delta v = \dot{R} \chi_c + R \dot{\chi}_c$$

$$\phi = \phi_o + \delta \phi$$

We define the Fractional Density Perturbation:
$$\delta = \frac{\partial \vec{p}}{\partial r} = \delta(t) \exp(-i\vec{k} \cdot \vec{x}),$$

$$|\vec{k}| = 2\pi / \lambda, \text{ where } \lambda = R(t)\lambda_c$$

$$\vec{k} \cdot \vec{x} = \vec{k}_c \cdot \vec{x}_c \qquad x(t) = R(t)\chi_c$$

Reading: Motion driven by gravity:

$$\vec{g}_o(t) + \vec{g}_1(\theta, t)$$

due to an overdensity:

$$\rho(t) = \rho_o(1 + \delta(\theta, t))$$

Gravity and overdensity by Poisson's equation:

$$-\vec{\nabla} \bullet g_1 = 4\pi G \rho_o \delta$$

Continuity equation:

$$-\vec{\nabla} \bullet \delta \vec{v} = \frac{d}{dt} \left(\delta(\theta, t) \right)$$
The over density will rise if there is an inflow of matter

Peculiar motion δv and peculiar gravity g_1 both scale with δ and are in the same direction.

12th Concept: THE equation for structure formation

In matter domination

Equation becomes

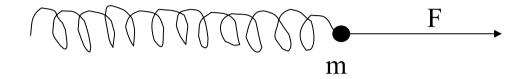
$$-c_s^2k^2$$

$$\frac{\partial^2 \delta}{\partial t^2} + 2 \frac{\dot{R}}{R} \frac{\partial \delta}{\partial t} = (4\pi G \rho_o + c_s^2 \nabla^2) \delta$$

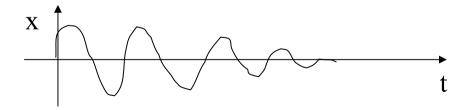
Gravity has the tendency to make the density perturbation grow exponentially on large scale.

Pressure makes it oscillate on small scale.

Each eq. is similar to a forced spring



$$\frac{d^2x}{dt^2} = \frac{F}{m} - \frac{d^2x}{dt^2} - \frac{dx}{dt}$$
Term due to friction
$$\frac{d^2x}{dt^2} + \mu \frac{dx}{dt} + \omega^2 x = \frac{F(t)}{m}$$
(Displacement for Harmonic Oscillator)



e.g., Nearly Empty Pressure-less Universe

$$\rho \sim 0$$

$$\frac{\partial^2 \delta}{\partial t^2} + \frac{2}{t} \frac{\partial \delta}{\partial t} = 0, \quad H = \frac{\dot{R}}{R} = \frac{1}{t} \quad (R \propto t)$$

$$\delta \propto t^0 = \text{constant}$$

$$\to \text{no growth}$$

Reading: Jeans Instability (no expansion)

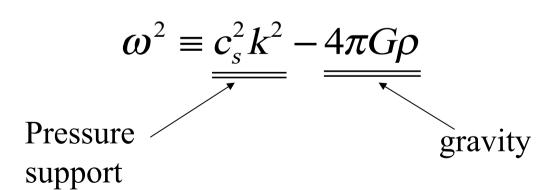
Case 1- no expansion

- the density contrast **W** has a wave-like form

$$\dot{R} = 0$$

for the harmonic oscillator expation $\delta = \delta_o \exp(i\vec{k} \cdot \vec{r} - i\omega t)$

where we have the dispersion relation $\frac{\partial^2 \delta}{\partial t^2} + 2 * 0 * \frac{\partial \delta}{\partial t} = -\omega^2 \delta$



Reading: At the (proper) JEANS LENGTH scale we switch from

Oscillations for shorter wavelength modes to the exponential growth of perturbations for longer wavelength

$$\lambda_J = c_s \tau$$
, where timescale $\tau = \sqrt{\frac{\pi}{G\rho}}$

 $[X] < [X]_J$, $[X]^2 > 0 \rightarrow$ oscillation of the perturbation.

$$\mathbb{W} \mathbb{W}_{J}$$
, $\mathbb{W}^{2} \mathbb{W}^{0} \rightarrow \text{exponential growth/decay}$ where $\Gamma = \sqrt{-\omega^{2}}$

reading: Jeans Instability

Case 2: on very large scale $\mathbb{W} >> \mathbb{W}_{J} = c_{s}$ t of an Expanding universe

Neglect Pressure (restoring force) term

Grow as delta $\sim R \sim t^{2/3}$ for long wavelength mode if Omega_m=1 universe.

$$c_s^2 k^2 \ll 4\pi G \rho = c_s^2 k_J^2$$

$$\frac{\partial^2 \delta}{\partial t^2} + 2H \frac{\partial \delta}{\partial t} = \frac{4\pi G \rho_m \delta}{2/(3t)}$$

$$\frac{2/(3t)}{2}$$

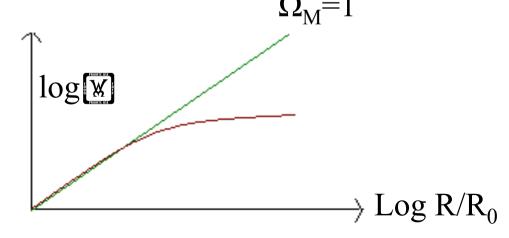
Reading: E.g.,

Einstein de Sitter Universe

$$\Omega_M = 1, H = \frac{R}{R} = \frac{2}{3t}$$

Verify Growth Solution $\delta \propto R \propto t^{\frac{2}{3}} \propto \frac{1}{1+z}$ $\Omega_{\rm M}=1$

Generally



reading: Case III: Relativistic (photon) Fluid

equation governing the growth of perturbations being:

$$\Rightarrow \frac{d^2\delta}{dt^2} + \frac{1/t}{2H} \frac{d\delta}{dt} = \delta \cdot \left(\frac{32\pi G\rho}{3} - k^2 c_s^2 \right)$$

Oscillation solution happens on small scale $2\pi/k = \lambda < \lambda_J$

On larger scale, growth as

$$\Rightarrow \delta \propto t \propto R^2$$
 for length scale $\lambda \gg \lambda_J \sim c_s t$

Where are we heading?

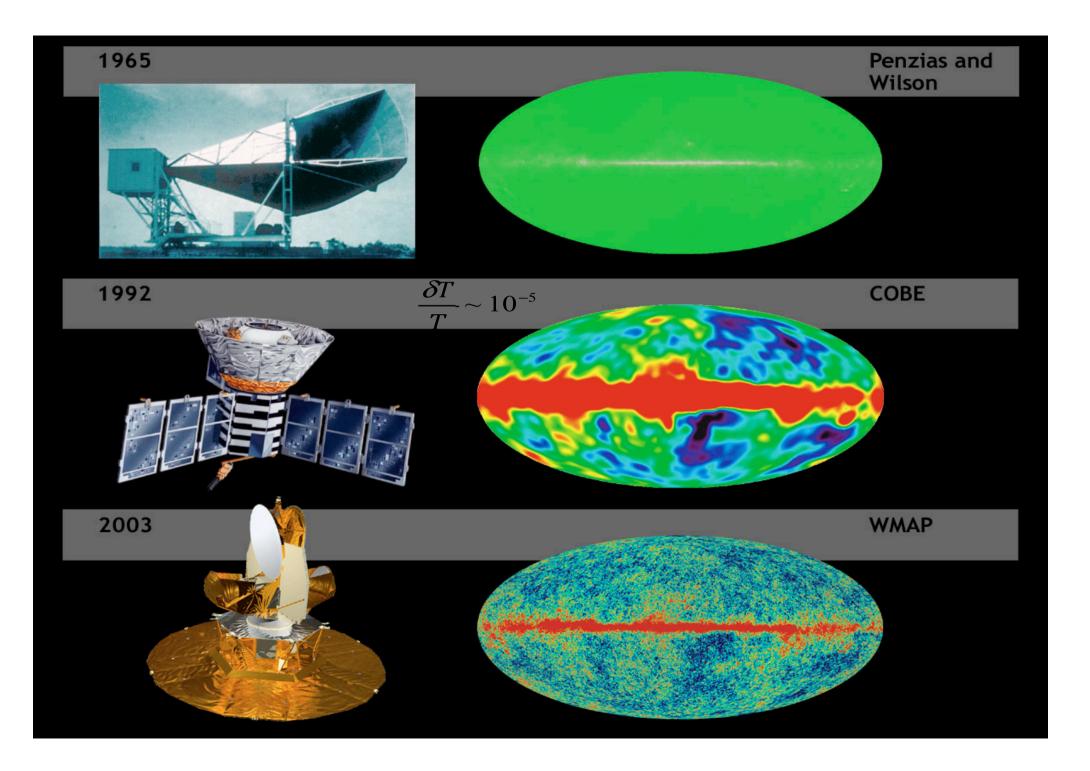
Large scale OverDensity grows as

R (matter dominated) or R² (radiation dominated)

Peculiar velocity points towards overdensity.

*Small scale oscillation if baryon-radiation dominated.

Topics Next: CMB equations



Recombination Epoch (z~1100)

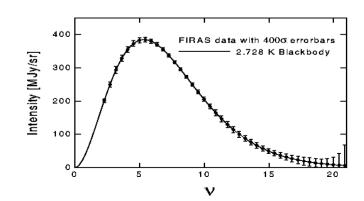
- ionised plasma --> neutral gas
- Redshift z > 1100
- Temp T > 3000 K
- H ionised
- electron -- photon Thompson scattering

- z < 1100
- T < 3000 K
- H recombined
- almost no electrons
- neutral atoms
- photons set free

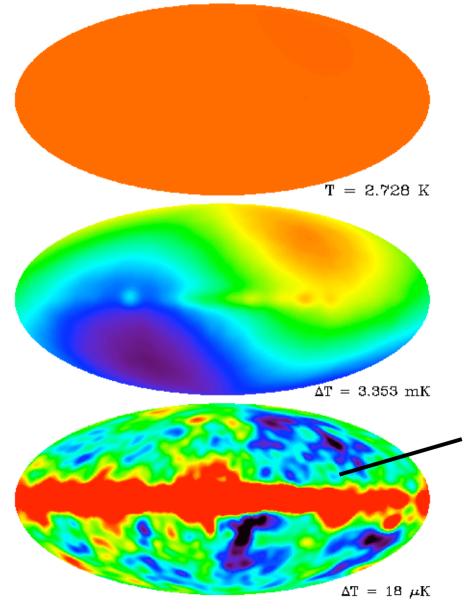
e - scattering optical depth

$$\tau(z) \approx \left(\frac{z}{1080}\right)^{13}$$

thin surface of last scattering AS 4022 Cosmology



Cosmic Microwave Background



Almost isotropic

$$T = 2.728 \text{ K}$$

Dipole anisotropy

$$\frac{V}{c} = \frac{\Delta \lambda}{\lambda} = \frac{\Delta T}{T} \approx 10^{-3}$$

Our velocity:

$$V \approx 600 \text{ km/s}$$

Milky Way sources

+ anisotropies
$$\frac{\Delta T}{T} \sim 10^{-5}$$

Theory of CMB Fluctuations

Linear theory of structure growth predicts that the perturbations:

$$\delta_{\scriptscriptstyle D}$$
 in dark matter $\frac{\delta \rho_{\scriptscriptstyle \mathrm{D}}}{\rho_{\scriptscriptstyle \mathrm{D}}}$

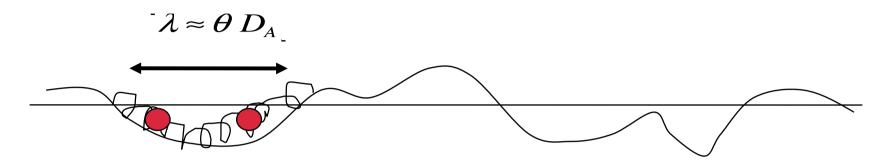
$$oldsymbol{\delta}_{\scriptscriptstyle B}$$
 in baryons $rac{\delta\!
ho_{\scriptscriptstyle
m B}}{
ho_{\scriptscriptstyle
m B}}$

$$\delta_B$$
 in baryons $\frac{\delta \rho_{\rm B}}{\rho_{\rm B}}$

$$\delta_r \text{ in radiation } \frac{\delta \rho_{\rm r}}{\rho_r} \quad \text{Or} \qquad \widetilde{\delta}_r = \frac{3}{4} \delta_r = \frac{\delta n_{\gamma}}{n_{\gamma}}$$

will follow a set of coupled Harmonic Oscillator equations.

Acoustic Oscillations



Dark Matter potential wells - many sizes.

photon-electron-baryon fluid

fluid falls into DM wells

photon pressure pushes it out again

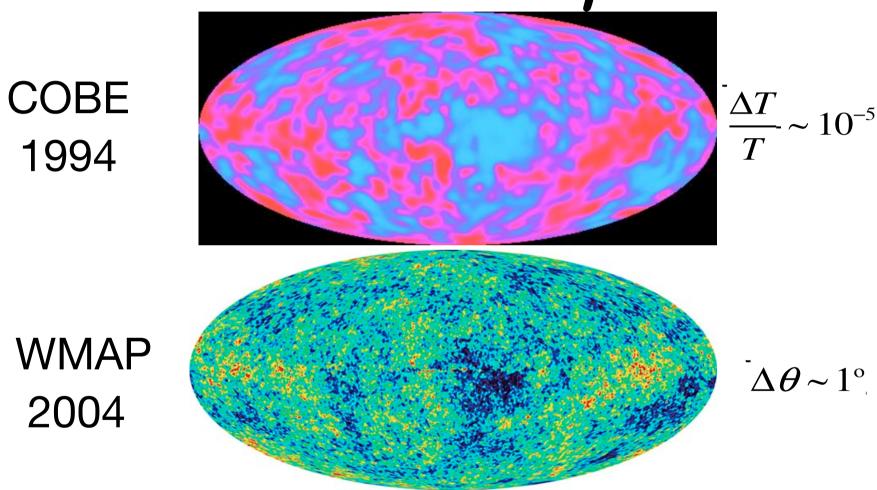
oscillations starting at t = 0 (post-inflation)

stopping at z = 1100 (recombination)

The solution of the Harmonic Oscillator [within sound horizon] is: $\delta(t) = A \cos kc_s t + A_2 \sin kc_s t + A_3$

Amplitude is sinusoidal function of $k c_s t$ if k=constant and oscillate with t [evolution] or t=0.3Myr and oscillate with k (CMB peaks)

CMB Anisotropies



Snapshot of Universe at z = 1100Seeds that later form galaxies.

Resonant Oscillations

size of potential well λ

oscillation period
$$P \approx \frac{\lambda}{c_s}$$

sound speed
$$c_s = \frac{c}{\sqrt{3}}$$

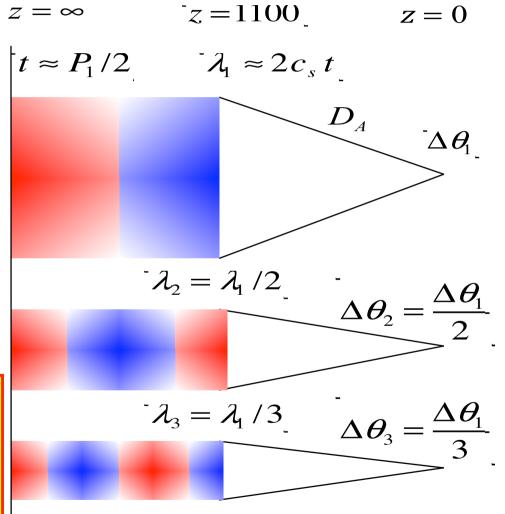
temperature oscillations

$$\Delta T(t) = \Delta T(0) \cos(2\pi t/P)$$

$$\max |\Delta T|$$
 at $t = \frac{nP}{2} \sim \frac{n\lambda}{2c_s}$

angular size

$$\Delta \theta_n = \frac{\lambda_n}{D_A} = \frac{\Delta \theta_1}{n} \quad \Delta \theta_1 \approx \frac{2 c_s t}{D_A} \sim 0.8^{\circ}$$



Smaller wells oscillate faster.

We don't observe the baryon overdensity directly

-- what we actually observe is temperature fluctuations.

$$\frac{\Delta T}{T} = \frac{\Delta n_{\gamma}}{3n_{\gamma}} \qquad n_{\gamma} \sim R^{-3} \propto T^{3}$$

$$\epsilon_{\gamma} \sim n_{\gamma} k T \propto T^{4}$$

$$\epsilon_{\gamma} \sim n_{\gamma} k T \propto T^{4}$$

The driving force is due to dark matter over densities.

The observed temperature also depends on how fast the Baryon Fluid is moving.

Velocity Field
$$\nabla v = -\frac{d\delta_B}{dt}$$

$$\left(\frac{\Delta T}{T}\right)_{obs} = \frac{\delta_B}{3} + \frac{\psi}{c^2} \pm \frac{v}{c}$$
Doppler Term

Tutorial: perturbation questions

The edge of the void are lined up by galaxies. What direction is their peculiar gravity and peculiar motion? A patch of void is presently cooler in CMB by 3 micro Kelvin than average. How much was it cooler than average at the last scattering (z=1000)? Argue that a void in universe now originates from an under-dense perturbation at z=10¹⁰ with δ about 10^{-17} .

List of keys

Scaling relations among

Redshift z, wavelength, temperature, cosmic time, energy density, number density, sound speed

Definition formulae for pressure, sound speed, horizon

Metrics in simple 2D universe.

Describe in words the concepts of

Fundamental observers

thermal decoupling

Common temperature before,

Fixed number to photon ratio after

Hot and Cold DM.

gravitational growth.

Over-density,

direction of peculiar motion driven by over-density, but damped by expansion pressure support vs. gray collapse

Expectations

Remember basic concepts (or analogies)

See list

Can apply various scaling relations to do some of the short questions at the lectures.

See list

Relax.

thermal history, structure formation, DM counting are advanced subjects, just be able to recite the big picture.

Why Analogies in Cosmology

Help you memorizing

Cosmology calls for knowledge of many areas of physics. Analogies help to you memorize how things move and change in a mind-boggling expanding 4D metric.

Help you reason, avoid "more equations, more confusions".

If unsure about equations, e.g. at exams, the analogies *help you recall* the right scaling relations, and get the big picture right.

Years after the lectures,

Analogies go a long way

Look back, Look forward?

Have done: Malcolm S. Longair's "Galaxy Formation" 2nd edition [Library]

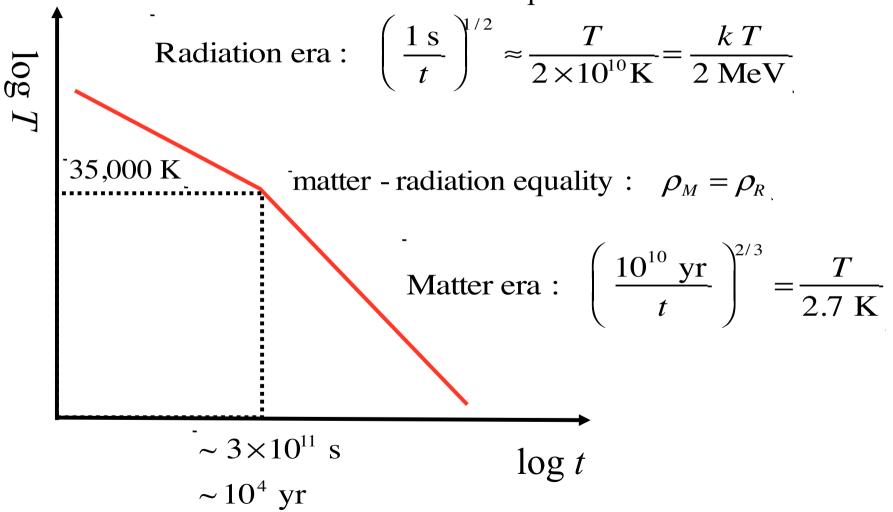
Chpt 1-2,5-8: expanding metrics, energy density, curvature, distances

Chpt 11,15,20: Structure growth, inflation Heading to:

Chpt 4,9-10,13: Thermal History of Particle Reaction, Neutrinos, WIMPs, DM budget

Tutorial: Cooling History T(t)

Derive with concordance parameters



Reading: A busy schedule for the universe

Universe crystalizes with a sophisticated schedule, much more confusing than simple expansion!

many bosonic/fermionic players changing (numbers conserved except in phase transition!)

$$p + p^- <-> g+g$$
 (baryongenesis)
 $e + e^+ <-> g+g$, $v + e <-> v + e$ (neutrino decouple)
 $n <\rightarrow p + e^- + v$, $p + n <\rightarrow D + g$ (BBN)
 $H^+ + e^- <\rightarrow H + g$, $g + e <-> g + e$ (recombination)

$$n + 3H n = -\langle \sigma v \rangle (n^2 - n_T^2)$$

Reading: Significant Events

Event	Т	kT	g_{eff}	Z	t
Now	2.7 K	0.0002 eV	3.3	0	13 Gyr
First Galaxies	16 K	0.001 eV	3.3	5	1 Gyr
Recombination	3000 K	0.3 eV	3.3	1100	300,000 yr
Equal $r_M = r_R$	9500 K	0.8 eV	3.3	3500	50,000 yr
e⁺ e⁻ pairs	10 ^{9.7} K	0.5 MeV	11	10 ^{9.5}	3 s
Nucleosynthesis	10 ¹⁰ K	1 MeV	11	10 ¹⁰	1 s
Nucleon pairs	$10^{13}{\rm K}$	1 GeV	70	10 ¹³	10 ^{-6.6} s
E-W unification	$10^{15.5}\mathrm{K}$	250 GeV	100	10 ¹⁵	10 ⁻¹² s
Quantum gravity	ngle out some	rules of thumb.	100(?)	10 ³²	10 ⁻⁴³ s

We will caution where the formulae are not valid, exceptions.

You are not required to reproduce many details, but might be asked for general ideas.

Reading: Big Bang Nuclear Fusion Big Bang + 3 minutes T ~ 10° K st atomic nuclei forged. Calculations predict: 75% H and 25% He

Big Bang + 3 minutes

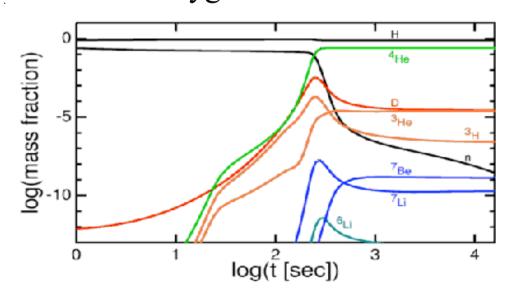
First atomic nuclei forged.

AS OBSERVED!

+ traces of light elements D, ³H, ³He, ⁷Be, ⁷Li

=> normal matter only 4% of critical density.

Oxygen abundance =>



AS 4022 Cosmology

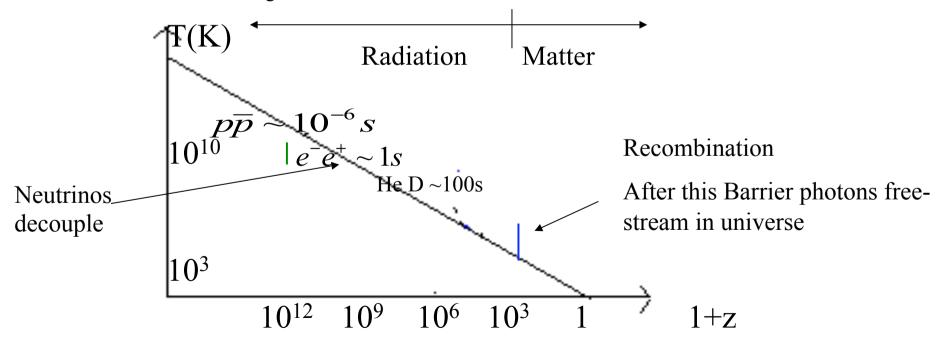
Reading: Thermal Schedule of Universe

At very early times, photons are typically energetic enough that they interact strongly with matter so the whole universe sits at a temperature dictated by the radiation.

The energy state of matter changes as a function of its temperature and so a number of key events in the history of the universe happen according to a schedule dictated by the temperature-time relation.

Crudely

$$(1+z)\sim 1/R \sim (T/3) \sim 10^9 \ (t/100s)^{(-2/n)} \sim 1000 \ (t/0.3 Myr)^{-2/n}, \ H\sim 1/t,$$
 where n~4 during radiation domination



Reading: Competition of two processes

Interactions keeps equilibrium:

E.g., a particle A might undergo the annihilation reaction:

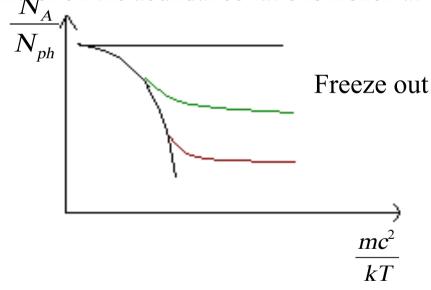
$$A + \overline{A} \rightarrow \gamma + \gamma$$

Decouples because of the increasing gap of space between particles due to Hubble expansion $H \sim t^{-1}$.

e.g., equilibrium process dominates at small time; Hubble expansion process dominates later because it falls slower.

Reading: Rule of thumb survival of the weakest particle

While in equilibrium, $n_A/n_{ph} \sim \exp(-q)$. $q = mc^2/kT \rightarrow (Heavier is rarer)$ At decoupling, $n_A = H_{decouple} / (\mathbb{W}_A \mathbb{W}_A)$, $n_{ph} \sim T^3_{decoupl}$, Later on the abundance ratio is frozen at this value n_A/n_{ph} ,



M_A W LOW→ smallest interaction, early freeze-out while relativistic, Hot Matter

M_A HIGH→ later freeze-out at lower T, reduced abundance, Cold Matter

Question: why frozen while n_A , n_{ph} both drop as $T^3 \sim R^{-3}$. Energy density of species A $\sim n_{ph}/(\mathbb{W}_A\mathbb{W})$, if $m \sim kT_{freeze}$

reading: number ratio of non-relativistic particles to photons are const except for sudden reduction by certain transitions.

Reduction factor ~ exp(-y), y=mc²/kT, which drops sharply for heavier particles.

Non-relativistic particles (relic) become *much rarer* by exp(-y) as universe cools below mc²/y, y~10-25.

So rare that infrequent collisions can no longer maintain coupled-equilibrium.

Reading: for example,

Antiprotons freeze-out t=10⁻⁶ sec, earlier than positrons freeze-out t=1sec:

Because: anti-proton is ~1000 times heavier than positron.

Hence factor of 1000 hotter in freeze-out temperature

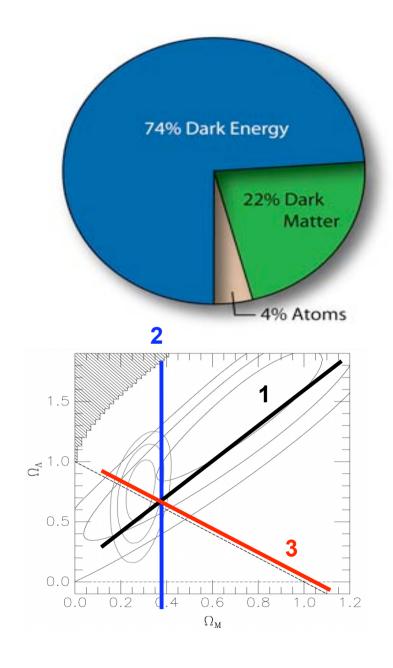
t goes as T² in radiation-dominated regime

Dark Matter Evidences?

Galaxies: $(r \sim 20 \text{ Kpc})$ Flat Rotation V $\sim 200 \text{ km/s}$ Galaxy Clusters: $(r \sim 200 \text{ Kpc})$ Galaxy velocities V $\sim 1000 \text{ km/s}$ X-ray Gas $T \sim 10^8 \text{ K}$ Giant Arcs

$$\Omega_{M} \sim 0.3$$

$$\Omega_{b} \approx 0.04$$



reading: Dark Matter in Galaxy Clusters

Probes gravity on 10x larger scales



$$z = 0.0767$$

$$d \approx \frac{c z}{H_0}$$

= 320 Mpc

X-ray Optical Chandra X-ray Image of Abell 2029

The galaxy cluster Abell 2029 is composed of thousands of galaxies enveloped in a gigantic cloud of hot gas, and an amount of **dark matter** equivalent to more than **a hundred trillion Suns**. At the center of this cluster is an enormous, elliptically shaped galaxy that is thought to have been formed from the mergers of many smaller galaxies.

reading: Cluster Masses from X-ray Gas

hydrostatic equilibrium:

$$\frac{dP}{dr} = -\rho g = -\rho \frac{G M(< r)}{r^2}$$

gas law:

$$P = \frac{\rho k T}{\mu m_H}$$

X - ray emission from gas gives : T(r), $n_e(r) \rightarrow \rho(r)$, P(r)

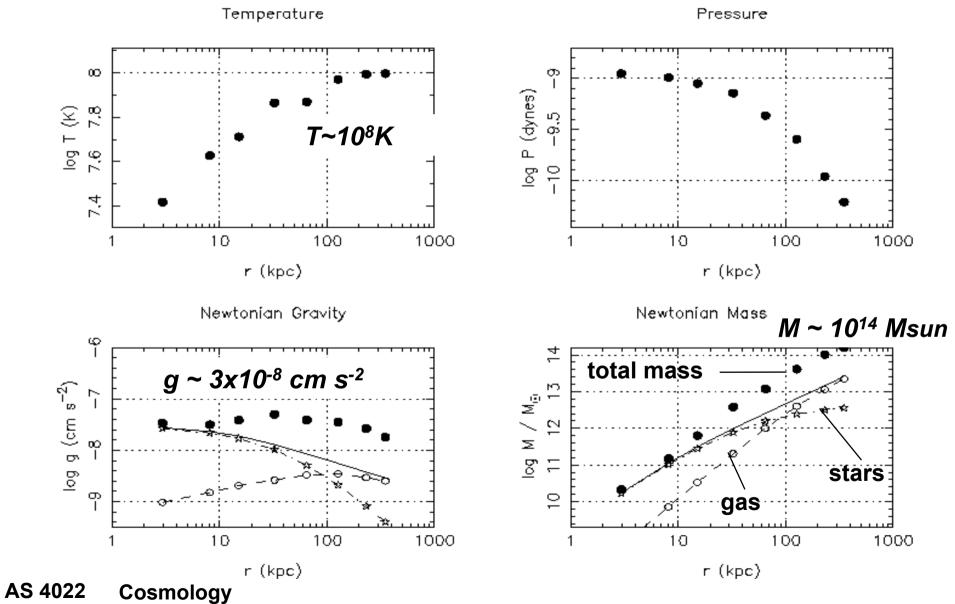
$$M(< r) = -\frac{r^2}{G \rho(r)} \frac{dP}{dr}$$

Coma Cluster:

 $M(gas)\sim M(stars)\sim 3x10^{13} Msun$ often M(gas) > M(stars)

M/L~100-200

Reading: Cluster Mass from fitting X-ray Gas

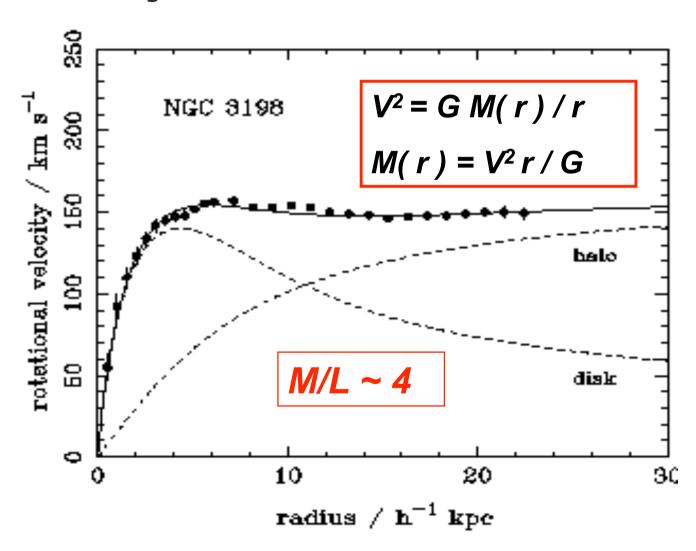


reading: Galaxy Rotation Curves

HI velocities
Flat rotation curves
Dark Matter Halos

Spirals, Ellipticals:
M/L~4-10

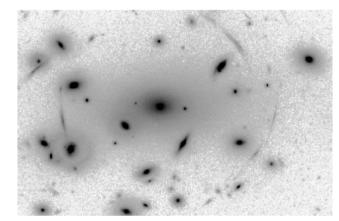
Some dwarf galaxies:
M/L ~ 100.



Reading: Masses from Gravitational Lensing

$$\theta_E = \frac{R_E}{D_L} = \left(\frac{4 G M}{c^2} \frac{D_{LS}}{D_L D_S}\right)^{1/2}$$

$$\frac{M}{10^{11} M_{sun}} = \frac{D_L D_S / D_{LS}}{Gpc} \left(\frac{\theta_E}{arcsec}\right)^2$$



Use redshifts, z_L, z_S ,

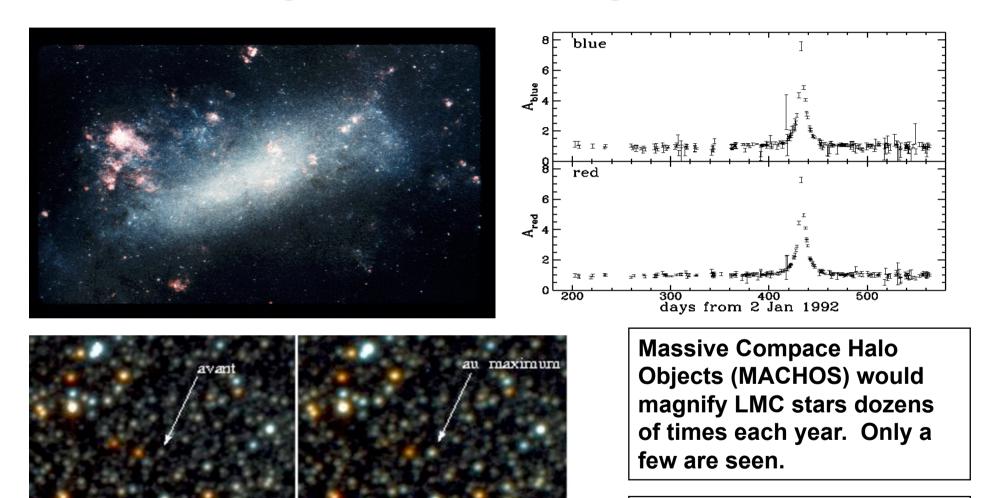
for the angular diameter distances.

General agreement with Virial Masses.

Dark Matter Candidates

- MACHOS = Massive Compact Halo Objects
 - Black holes
 - Brown Dwarfs
 - Loose planets
 - Ruled out by gravitational lensing experiments.
- WIMPS = Weakly Interacting Massive Particles
 - Massive neutrinos
 - Supersymmetry partners
 - Might be found soon by Large Hadron Collider in CERN

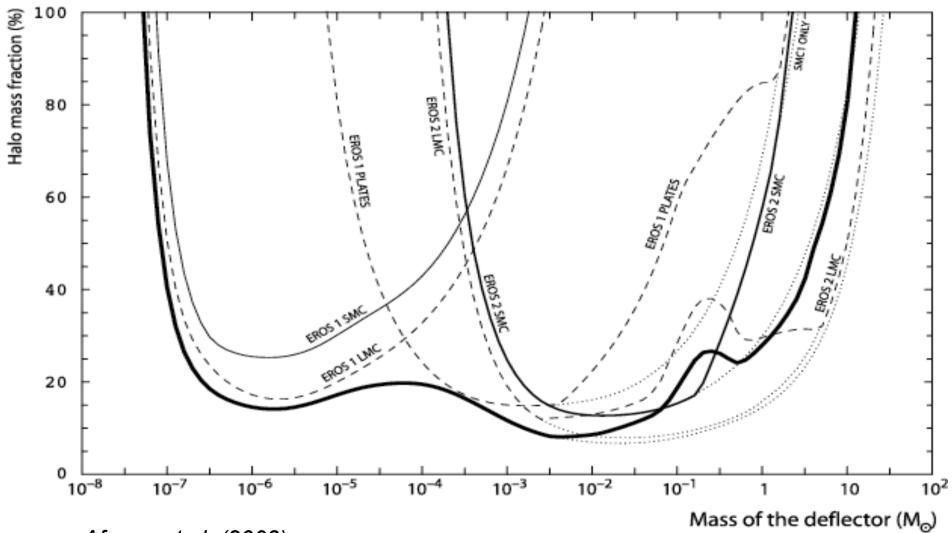
reading: Microlensing in the LMC



AS 4022 Cosmology

Long events -> high mass
Short events -> low mass

Reading: LMC Microlensing says NO to MACHOs



Afonso et al. (2003) AS 4022 Cosmology

reading: Mass Density by Direct Counting

- Add up the mass of all the galaxies per unit volume
 - Volume calculation as in Tutorial problem.
- Need representative volume > 100 Mpc.
- Can't see faintest galaxies at large distance. Use local Luminosity Functions to include fainter ones.
- Mass/Light ratio depends on type of galaxy.
- Dark Matter needed to bind Galaxies and Galaxy Clusters dominates the normal matter (baryons).
- Hot x-ray gas dominates the baryon mass of Galaxy Clusters.

reading: Schechter Luminosity Function

3 Schechter parameters:

$$\alpha$$
 L^* Φ^*

luminosity of a typical big galaxy

$$L^* \approx 10^{11} \text{ L}_{\text{sun}}$$

luminosity of any galaxy:

$$L = x L^*$$
 $x \equiv \frac{L}{L^*}$

number of galaxies per unit luminosity

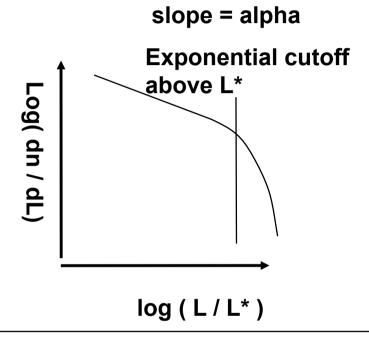
$$\Phi(x) \equiv \frac{dn}{dx} = \Phi^* \ x^{\alpha} \ e^{-x}$$

add up the luminosities

$$\rho_L = \int_0^\infty L \frac{dn}{dx} dx = L^* \Phi^* \int_0^\infty x^{\alpha+1} e^{-x} dx$$

add up the mass (need mass/light ratio)

$$\rho_{M} = \int_{0}^{\infty} \frac{M}{L} L \frac{dn}{dx} dx = \left\langle \frac{M}{L} \right\rangle \rho_{L}$$



Measure Schechter parameters using:

galaxy clusters

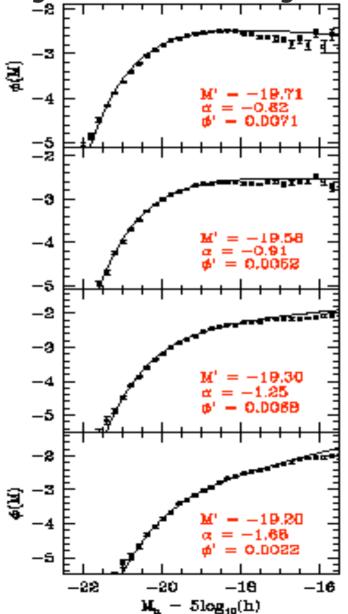
galaxy redshift surveys

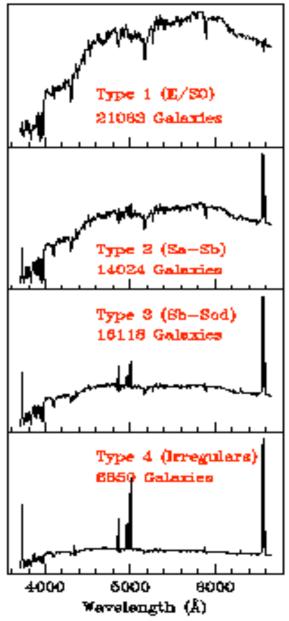
Measure M/L for:

Nearby galaxies, galaxy clusters

Reading: Galaxy Luminosity Function

Schechter parameters depend on galaxy type.





reading: 14th Concept: Mass / Light galaxy luminosity distribution ratios

$$\frac{dn}{dL} = \Phi(L) = \Phi^* \left(\frac{L}{L^*}\right)^{\alpha} \exp\left(-\frac{L}{L^*}\right)$$

luminosity density $\rho_L = \int L \Phi(L) dL$

e.g. blue light $\approx 2 \pm 0.7 \times 10^8 h L_{sun} \text{ Mpc}^{-3}$

mass density $\rho_M = \int \left(\frac{M}{L}\right) L \Phi(L) dL$

 $= \Omega_M \rho_{crit} = 2.8 \times 10^{11} \Omega_M h^2 M_{sun} \text{ Mpc}^{-3}$

Universe: $M/L = 1400 \Omega_M h^2 \sim 200 (\Omega_M / 0.3) (h/0.7)^2$

Sun: M/L = 1 (by definition)

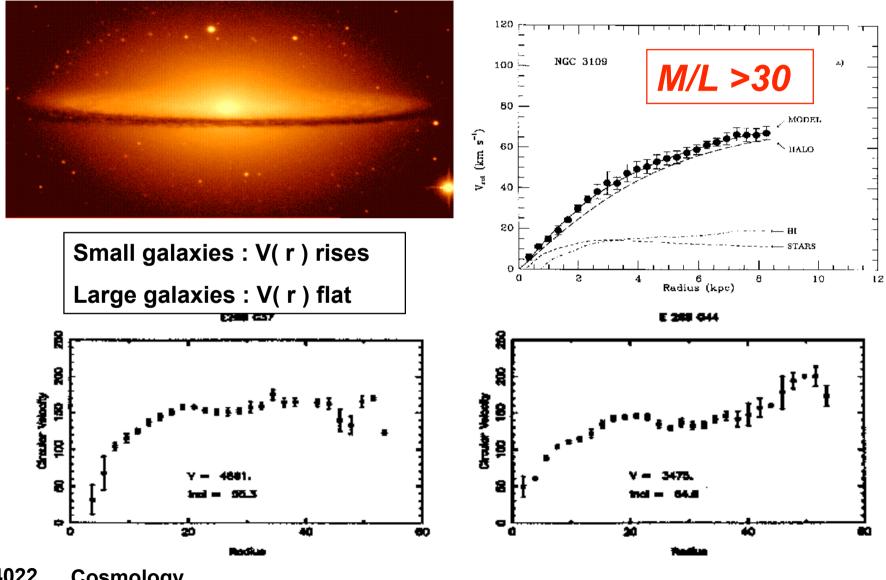
main sequence stars : $M/L \propto M^{-3}$ (since $L \propto M^4$)

comets, planets: $M/L \sim 10^{9-12}$

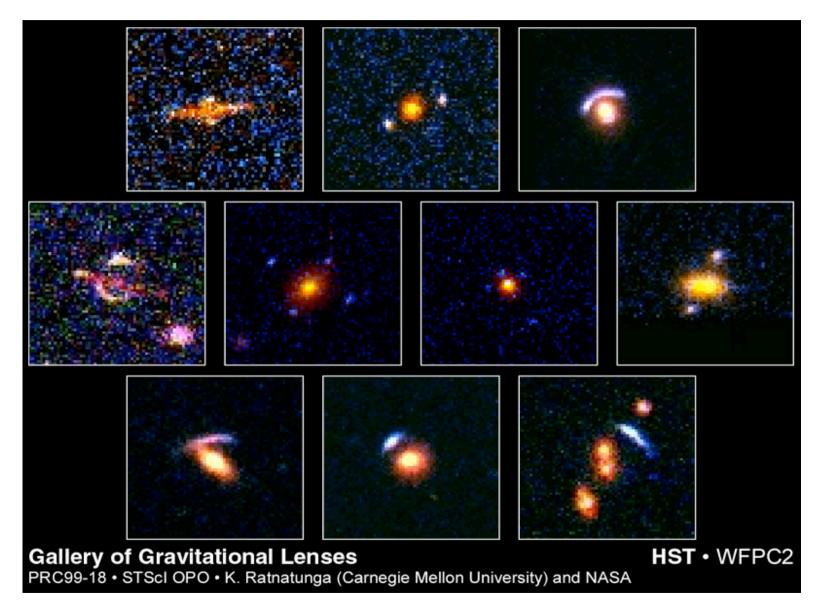
Is our Dark Matter halo filled with MACHOs? Gravitational Lensing results rule them out.

NO.

reading: Galaxy Rotation Curves



Quasars Lensed by Galaxies



Some formulae to remember

$$R(t) d\chi = c dt, \quad c dt = \frac{-c dz}{(1+z) H(z)}, D_A = \frac{R_0}{(1+z)} \cdot S_k(\chi), D_L = (1+z) R_0 \cdot S_k(\chi)$$

$$\rho_{i} = \frac{3 H_{0}^{2}}{8 \pi G} \Omega_{i} (1+z)^{n_{i}}, H(z)^{2} = \sum_{i=m, r, v, c} \frac{8 \pi G \rho_{i}}{3};$$

$$c_s^{-} = \frac{dP}{d\rho}, P = w \rho c^2, P = -\frac{d(\rho c^2 R^3)}{d(R^3)};$$