$4^{\text {th }}$ Concept: The Energy density of Universe

The Universe is made up of three things:

VACUUM

MATTER
PHOTONS (radiation fields)
The total energy density of the universe is made up of the sum of the energy density of these three components.

$$
\varepsilon(t)=\varepsilon_{v a c}+\varepsilon_{\text {matter }}+\varepsilon_{r a d}
$$

From $\mathrm{t}=0$ to $\mathrm{t}=10^{9}$ years the universe has expanded by $R(t)$.

Energy Density of expanding box

volume R^{3}

N particles
particle mass m momentum p

energy $E=h v=\sqrt{m^{2} c^{4}+p^{2} c^{2}}=m c^{2}+\frac{p^{2}}{2 m}+\ldots$

Cold gas or Cold DM ($p \ll m c$)

$$
\begin{aligned}
& E \approx m c^{2}=\text { const } \\
& \varepsilon_{M} \approx \frac{N m c^{2}}{R^{3}} \propto R^{-3}
\end{aligned}
$$

COBE spectrum of CMB

A perfect Blackbody!

y see
of the
a light
attered

No spectral lines -- strong test of Big Bang. Expansion preserves the blackbody spectrum.

$$
T(z)=T_{0}(1+z) \quad T_{0} \sim 3000 K \quad z \sim 1100
$$

AS 4022 Cosmology

Acronyms in Cosmology

- Cosmic Background Radiation (CBR)

- Or CMB (microwave because of present temperature 3K)
- Tutorial: Argue about 10^{5} photons fit in a $10 \mathrm{~cm} \times 10 \mathrm{~cm} \times 10 \mathrm{~cm}$ microwave oven. [Hint: 3kT = h c / λ]

Last Scattering Epoch

As the Universe cooled, the free electrons and protons could finally bond togther to form hydrogen atoms. At the same time, the Universe went from a rich plasma to a gas of neutral hydrogen.

hydrogen plasma
atomic hydrogen
In a plasma, the mean free path of a photon is very short. In a gas of atomic hydrogen, the mean free path is very long, as long as the size of the Universe. Thus, the transition from the early plasma to atomic hydrogen is the epoch of last scattering, the point in time when the photons became free to travel without hindrance.

Cosmic Neutrino Background:

neutrinos (Hot DM) decouple from electrons (due to very weak interaction) while still hot (relativistic 0.5 $\mathbf{M e v} \sim \mathrm{kT}>$ mc $^{2} \sim 0.02-2 \mathrm{eV}$)
Presently there are 3×113 neutrinos and 452 CMB photons per cm^{3}. Details depend on
Neutrinos have 3 species of spin- $1 / 2$ fermions while photons are 1 species of spin-1 bosons
Neutrinos are a wee bit colder, 1.95 K vs. 2.7 K for photons [during freeze-out of electron-positions, more photons created]
Initially mass doesn' t matter in hot universe
relativistic (comparable to photon number density $\sim R^{-3} \sim T^{3}$),
frequent collisions with other species to be in thermal equilibrium and cools with photon bath.
Photon numbers (approximately) conserved, so is the number of relativistic massive particles

Concept: Particle-Freeze-Out?

Freeze-out of equilibrium means NO LONGER in thermal equilibrium.
Freeze-out temperature means a species of particles have the SAME TEMPERATURE as radiation up to this point, then they bifurcate.

Decouple $=$ switch off the reaction chain
= insulation = Freeze-out

a massive particle

CDM/WIMPs: Cold Dark Matter, weakly-interact massive particles

- If DM decoupled from photons at $\mathrm{kT} \sim 10^{14} \mathrm{~K} \sim 0.04 \mathrm{mc}^{2}$
- Then that dark particles were
- non-relativistic (v/c << 1), hence "cold".
- And massive ($\mathrm{m} \gg \mathrm{m}_{\text {proton }}=1 \mathrm{GeV}$)

Eq. of State for Expansion

 \& analogy of bakina breadVacuum~air holes in bread

Matter ~nuts in bread

Photons ~words painted

Verify expansion doesn' t change $\mathbf{N}_{\text {hole }}, \mathbf{N}_{\text {proton }}, \mathbf{N}_{\text {photon }}$

No Change with rest energy of a proton, changes energy of a photon

$$
\varepsilon(t)=\rho_{\text {eff }}(t) c^{2}
$$

$$
\frac{\varepsilon(t)}{c^{2}}=\rho_{e f f}(t)
$$

VACUUM ENERGY:

$$
\rho=\text { constant } \quad \Rightarrow \mathrm{E}_{v a c} \propto R^{3}
$$

MATTER:

$$
\rho R^{3}=\text { constant }, \Rightarrow m \approx \text { constant }
$$

RADIATION: number of photons $\mathrm{N}_{\text {ph }}=$ constant

$$
\begin{aligned}
\Rightarrow n_{p h} \approx \frac{N_{p h}}{R^{3}} & \text { Photons: } \mathrm{E}=\mathrm{h} v=\frac{\mathrm{hc}}{\lambda} \sim \frac{1}{R} \\
& \Rightarrow \varepsilon_{p h} \sim n_{p h} \times \frac{h c}{\lambda} \sim \frac{1}{R^{4}}
\end{aligned}
$$

Total Energy Density rhoc ${ }^{2}=$ epsilon

is given by:

Tutorial: Typical scaling of expansion

$$
\mathrm{H}^{2}=(\mathrm{dR} / \mathrm{dt})^{2} / \mathrm{R}^{2}=8 \pi \mathrm{G}\left(\rho_{\mathrm{cur}}+\rho_{\mathrm{m}}+\rho_{\mathrm{r}}+\rho_{\mathrm{v}}\right) / 3
$$

Assume domination by a component $\rho \sim R^{-n}$
Show Typical Solutions Are

$$
\rho \propto R^{-n} \propto t^{-2}
$$

$n=2$ (curvature constant dominate)
$n=3$ (matter dominate)
$n=4$ (radiation dominate)
$n \sim 0$ (vaccum dominate) $: \ln (R) \sim t$
Argue also $\mathrm{H}=(2 / \mathrm{n}) \mathrm{t}^{-1} \sim \mathrm{t}^{-1}$. Important thing is scaling!

Tutorial: Eternal Static ($\mathrm{R}=\mathrm{cst}$) and flat ($\mathrm{k}=0$) Universe

Einstein introduced Λ
to enable an eternal static universe.

$$
\begin{aligned}
R^{2} & =\left(\frac{8 \pi G \rho+\Lambda}{3}\right) R^{2}-k c^{2} \\
R^{2} & =0 \rightarrow \Lambda=\frac{3 k c^{2}}{R^{2}}-8 \pi G \rho
\end{aligned}
$$

Einstein's biggest blunder. (Or, maybe not.)
Static models unstable.
Fine tuning.

Density - Evolution - Geometry

E.g.,: Empty Universe without vacuum

$$
R^{2^{2}}=\left(\frac{8 \pi G \rho+\Lambda}{3}\right) R^{2}-k c^{2}
$$

Set $\rho=0, \quad \Lambda=0$. Then $R^{2}=-k c^{2}$
$\rightarrow \quad k=-1$ (negative curvature)

$$
R=c, \quad R=c t
$$

$$
H \equiv \frac{R}{R}=\frac{1}{t}
$$

age: $\quad t_{0}=\frac{R_{0}}{c}=\frac{1}{H_{0}}$

Negative curvature drives rapid expansion/flattening

Four Pillars of Hot Big Bang

Galaxies moving apart from each other
Redshift or receding from each other
Universe was smaller.
Helium production outside stars
Universe was hot, at least $3 \times 10^{9} \mathrm{~K}$ to fuse $4 \mathrm{H} \rightarrow \mathrm{He}$, to overcome a potential barrier of 1 MeV .

Nearly Uniform Radiation 3K Background (CMB)

Universe has cooled, hence expanded by at least a factor 10^{9}. Photons ($3 \mathrm{~K} \sim 10^{-5} \mathrm{eV}$) are only 10^{-3} of baryon energy density, so photon-toproton number ratio $\sim 10^{-3}\left(\mathrm{GeV} / 10^{-5} \mathrm{eV}\right) \sim 10^{9}$
Missing mass in galaxies and clusters (Cold DM)
Cluster potential well is deeper than the potential due to baryons.
CMB fluctuations: photons climb out of random potentials of DM.
If $1 / 10$ of the matter density in 1 GeV protons, $9 / 10$ in dark particles of e.g. 9GeV, then dark-to-proton number density ratio ~ 1

Cosmic Distance Ladder

H_{0} from the HST Key Project

$$
H_{0} \approx 72 \pm 3 \pm 7 \quad \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}
$$

Freedman, et al. 2001 ApJ 553,

Cosmology

Re-collapse or Eternal Expansion ?

Inflation => expect FLAT GEOMETRY CRITICAL DENSITY

Hubble Parameter Evolution -- H(z)

$$
\begin{aligned}
& H^{2} \equiv\left(\frac{R}{R}\right)^{2}=\frac{8 \pi G}{3} \rho+\frac{\Lambda}{3}-\frac{k c^{2}}{R^{2}} \\
& \frac{H^{2}}{H_{0}^{2}}=\Omega_{R} x^{4}+\Omega_{M} x^{3}+\Omega_{\Lambda}-\frac{k c^{2}}{H_{0}^{2} R_{0}^{2}} x^{2} \\
& \quad \text { evaluate at } x=1 \quad \rightarrow \quad 1=\Omega_{0}-\frac{k c^{2}}{H_{0}^{2} R_{0}^{2}}
\end{aligned}
$$

Dimensionless Friedmann Equation:

$$
\frac{H^{2}}{H_{0}{ }^{2}}=\Omega_{R} x^{4}+\Omega_{M} x^{3}+\Omega_{\Lambda}+\left(1-\Omega_{0}\right) x^{2}
$$

$$
\begin{aligned}
& x=1+z=R_{0} / R \\
& \rho_{c}=\frac{3 H_{0}^{2}}{8 \pi G} \\
& \Omega_{M} \equiv \frac{\rho_{M}}{\rho_{c}}, \Omega_{R} \equiv \frac{\rho_{R}}{\rho_{c}} \\
& \Omega_{\Lambda} \equiv \frac{\rho_{\Lambda}}{\rho_{c}}=\frac{\Lambda}{3 H_{0}^{2}} \\
& \Omega_{0} \equiv \Omega_{M}+\Omega_{R}+\Omega_{\Lambda} .
\end{aligned}
$$

Curvature Radius today:

$$
R_{0}=\frac{c}{H_{0}} \sqrt{\frac{k}{\Omega_{0}-1}} \rightarrow\left\{\begin{array}{lll}
k=+1 & \Omega_{0}>1 \\
k=0 & \Omega_{0}=1 \\
k=-1 & \Omega_{0}<1
\end{array} . \begin{array}{l}
\text { Density } \\
\text { determines } \\
\text { Geometry }
\end{array}\right.
$$

Possible Universes

$$
\begin{aligned}
& H_{0} \approx 70 \frac{\mathrm{~km} / \mathrm{s}}{\mathrm{Mpc}} \\
& \Omega_{M} \sim 0.3 \\
& \Omega_{\Lambda} \sim 0.7 \\
& \Omega_{R} \sim 8 \times 10^{-5} \\
& \Omega=1.0
\end{aligned}
$$

Precision Cosmology

$$
\begin{array}{ll}
h=71 \pm 3 & \text { expanding } \\
\Omega=1.02 \pm 0.02 & \text { flat } \\
\Omega_{b}=0.044 \pm 0.004 & \text { baryons } \\
\Omega_{M}=0.27 \pm 0.04 & \text { Dark Matter } \\
\Omega_{\Lambda}=0.73 \pm 0.04 & \text { Dark Energy }
\end{array}
$$

$$
\begin{array}{lll}
t_{0}=13.7 \pm 0.2 \times 10^{9} \mathrm{yr} & \text { now } \\
t_{*}=180_{-80}^{+220} \times 10^{6} \mathrm{yr} & z_{*}=20_{-5}^{+10} & \text { reionisation } \\
t_{R}=379 \pm 1 \times 10^{3} \mathrm{yr} & z_{R}=1090 \pm 1 & \text { recombination }
\end{array}
$$

(From the WMAP 1-year data analysis)

Cosmology Milestones

- 1925 Galaxy redshifts $\lambda=\lambda_{0}(1+z) \quad V=c z$.
- Isotropic expansion. (Hubble law $V=H_{0} d$)
- Finite age. ($t_{0}=13 \times 10^{9} \mathrm{yr}$)
- 1965 Cosmic Microwave Background (CMB)
- Isotropic blackbody. $T_{0}=2.7 \mathrm{~K}$
- Hot Big Bang $T=T_{0}(1+z)$
- 1925 General Relativity Cosmology Models :
- Radiation era: $R \sim t^{1 / 2} \quad T \sim t^{-1 / 2}$
- Matter era: $\quad R \sim t^{2 / 3} \quad T \sim t^{-2 / 3}$
- 1975 Big Bang Nucleosynthesis (BBN)
- light elements ($\left.{ }^{1} \mathrm{H} \ldots{ }^{7} \mathrm{Li}\right) \quad t \sim 3 \mathrm{~min} \quad T \sim 10^{9} \mathrm{~K}$
- nrimordial abundances $(75 \%$ H. $25 \% \mathrm{He}$) as observed!

Tutorial: 3 Eras: radiation-matter-vacuum

radiation : $\quad \rho_{R} \propto R^{-4}$ matter : $\quad \rho_{M} \propto R^{-3}$
vacuum: $\quad \rho_{\Lambda}=$ const
$a \equiv \frac{R}{R_{0}}=\frac{1}{1+z}$
$\rho=\frac{\rho_{R, 0}}{a^{4}}+\frac{\rho_{M, 0}}{a^{3}}+\rho_{\text {A }}$

$$
\begin{array}{ll}
\rho_{R}=\rho_{M} & \text { at } a \sim 10^{-4} \\
\rho_{M}=\rho_{\Lambda} & t \sim 10^{4} \mathrm{yr} \\
\text { at } a \sim 0.7 & t \sim 10^{10} \mathrm{yr}
\end{array}
$$

Presently vacuum is twice the density of matter.

$5^{\text {th }}$ concept: Equation of State w

Equation of state :

$$
\begin{aligned}
& \rho \propto R^{-n} \quad n=3(1+w) \\
& w \equiv \frac{\text { pressure }}{\text { energy density }}=\frac{p}{\rho c^{2}}=\frac{n}{3}-1
\end{aligned}
$$

Radiation: $(n=4, w=1 / 3) \quad d[$ energy $]=$ work

$$
p_{R}=\frac{1}{3} \rho_{R} c^{2}
$$

Matter: $\quad(n=3, w=0)$

$$
p_{M} \sim \rho_{M} c_{S}^{2} \ll \rho_{M} c^{2}
$$

Vacuum: $\quad(n=0, w=-1)$

$$
p_{\Lambda}=-\rho_{\Lambda} c^{2}
$$

$$
\begin{aligned}
& \left.d_{[} \rho c^{2} R^{3}\right]=-p d\left[R^{3}\right] \\
& \rho c^{2}\left(3 R^{2} d R\right)+R^{3} c^{2} d \rho=-p\left(3 R^{2} d R\right) \\
& 1+\frac{R d \rho}{3 \rho d R}=-\frac{p}{\rho c^{2}}=-w \\
& w=-\frac{1}{3} \frac{d[\ln \rho]}{d[\ln R]}-1 \\
& \dot{w}=\frac{n}{3}-1
\end{aligned}
$$

Negative Pressure! ?

AS 4022 Cosmology

Current Mysteries from Observations

Dark Matter ?

Holds Galaxies together Triggers Galaxy formation

Dark Energy ?

Drives Cosmic Acceleration and negative w.

Modified Gravity ?
 General Relativity wrong?

Density Parameters

critical density : density parameters (today) :

$$
\rho_{c} \equiv \frac{3 H_{0}^{2}}{8 \pi G} \quad \Omega_{R} \equiv \frac{\rho_{R}}{\rho_{c}} \quad \Omega_{M} \equiv \frac{\rho_{M}}{\rho_{c}} \quad \Omega_{\Lambda} \equiv \frac{\rho_{\Lambda}}{\rho_{c}}=\frac{\Lambda}{3 H_{0}{ }^{2}}
$$

total density parameter today :

$$
\Omega_{0} \equiv \Omega_{R}+\Omega_{M}+\Omega_{\Lambda}
$$

density at a past/future epoch in units of today' s critical density :

$$
\Omega \equiv \frac{\rho}{\rho_{c}}=\sum_{w} \Omega_{w} x^{3(1+w)}=\Omega_{R} x^{4}+\Omega_{M} x^{3}+\Omega_{\Lambda}
$$

$$
x \equiv 1+z=R_{0} / R
$$

in units of critical density at the past/future epoch :

$$
\Omega(x) \equiv \frac{8 \pi G \rho}{3 H^{2}}=\frac{H_{0}^{2}}{H^{2}} \sum_{w} \Omega_{w} x^{3(1+w)}=\frac{\Omega_{R} x^{4}+\Omega_{M} x^{3}+\Omega_{\Lambda}}{\Omega_{R} x^{4}+\Omega_{M} x^{3}+\Omega_{\Lambda}+\left(1-\Omega_{0}\right) x^{2}}
$$

Note: radiation dominates at high z, can be neglected at lower z.

Key Points

- Scaling Relation among
- Redshift: z,
- expansion factor: \mathbf{R}
- Distance between galaxies
- Temperature of CMB: T
- Wavelength of CMB photons: lambda
- Metric of an expanding 2D+time universe
- Fundamental observers
- Galaxies on grid points with fixed angular coordinates
- Energy density in
- vacuum, matter, photon
- How they evolve with R or z
- If confused, recall the analogies of
- balloon, bread, a network on red giant star, microwave oven

Sample a wide range of topics Theoretical and Observational

Universe of uniform density
Metrics ds, Scale R(t) and Redshift
EoS for mix of vacuum, photon, matter, geometry, distances

Thermal history
Freeze-out of particles,
Neutrinos, CDM wimps
Nucleo-synthesis He/D/H

Structure formation
Inflation and origin of perturbations
Growth of linear perturbation
Relation to CMB peaks, sound horizon

Quest of H0 (obs.)
Applications of expansion models
Distances Ladders

Cosmic Background
COBE/MAP/PLANCK etc.
Parameters of cosmos

Quest for Omega (obs.)
Galaxy and SNe surveys
Luminosity Functions
(thanks to slides from K. Horne)

$6^{\text {th }}$ concept:
 Distances in Non-Euclidean Curved Space

How Does Curvature affect Distance Measurements ?

Is the universe very curved?

Geodesics

Gravity = curvature of space-time by matter/energy.
Freely-falling bodies follow geodesic trajectories.
Shortest possible path in curved space-time.
Local curvature replaces forces acting at distance.

Is our Universe Curved?

Closed

Spherical Space
Curvature:
Sum of angles of triangle:
$>180^{\circ}$
$=180^{\circ}$
$<180^{\circ}$
Circumference of circle:

	$<2 p r$	$=2 p r$	$>2 p r$
Parallel lines:	converge	remain parallel	diverge
Size:	finite	infinite	infinite
Edge:	no	no	no

Distance Methods

- Standard Rulers ==> Angular Size Distances

$$
\begin{equation*}
\theta=\frac{l}{D} \quad l \quad D_{A}=\frac{l}{\theta} \tag{}
\end{equation*}
$$

(for small angles << 1 radian)

- Standard Candles ==> Luminosity Distances

$$
F=\frac{\text { energy/time }}{\text { area }}=\frac{L}{4 \pi D^{2}}
$$

$$
D_{L}=\left(\frac{L}{4 \pi F}\right)^{1 / 2}
$$

-. Light Travel Time

$$
t=\frac{\text { distance }}{\text { velocity }}=\frac{2 D}{c}
$$

$$
D_{t}=\frac{c}{2 t}
$$

(e.g. within solar system)

Olber's Paradox

Why is the sky dark at night ?

Flux from all stars in the sky :

$$
\begin{aligned}
F= & \int n_{*} F_{*} \mathrm{~d}(\mathrm{Vol})=\int_{0}^{\chi_{\max }} n_{*}\left(\frac{L_{*}}{A(\chi)}\right)(A(\chi) R d \chi) \\
& =n_{*} L_{*} R \chi_{\max } \\
& \Rightarrow \infty \text { for flat space, } R \rightarrow \infty .
\end{aligned}
$$

A dark sky may imply :
(1) an edge (we don't observe one)
(2) a curved space (finite size)
(3) expansion $(R(t)=>$ finite age, redshift)

Minkowski Spacetime Metric

$$
\begin{aligned}
& \mathrm{d} s^{2}=-c^{2} \mathrm{~d} t^{2}+\mathrm{d} l^{2} \\
& \mathrm{~d} \tau^{2}=\mathrm{d} t^{2}-\frac{\mathrm{d} l^{2}}{c^{2}}=\mathrm{d} t^{2}\left(1-\frac{1}{c^{2}}\left(\frac{\mathrm{~d} l}{\mathrm{~d} t}\right)^{2}\right) .
\end{aligned}
$$

Proper time (moving clock):

World line of massive particle at rest.

Photons arrive from our past light cone.

AS 4022 Cosmology

Flat Space: Euclidean Geometry

Cartesian coordinates:

$$
\begin{array}{ll}
1 \mathrm{D}: & d l^{2}=d x^{2} \\
2 \mathrm{D}: & d l^{2}=d x^{2}+d y^{2} \\
3 \mathrm{D}: & d l^{2}=d x^{2}+d y^{2}+d z^{2} \\
4 \mathrm{D}: & d l^{2}=d w^{2}+d x^{2}+d y^{2}+d z^{2}
\end{array}
$$

Metric tensor : coordinates $->$ distance

$$
d l^{2}=\left(\begin{array}{lll}
d x & d y & d z
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
d x \\
d y \\
d z
\end{array}\right)
$$

Summation convention :

$$
d l^{2}=g_{i j} d x^{i} d x^{j} \equiv \sum_{i} \sum_{j} g_{i j} d x^{i} d x^{j}
$$

Orthogonal coordinates <--> diagonal metric
$g_{x x}=g_{y y}=g_{z z}=1$
$g_{x y}=g_{x z}=g_{y z}=0$
symmetric : $g_{i j}=g_{j i}$.

Polar Coordinates

Radial coordinate r, angles $\phi, \theta, \alpha, \ldots$

$$
\begin{array}{ll}
1 \mathrm{D}: & d l^{2}=d r^{2} \\
2 \mathrm{D}: & d l^{2}=d r^{2}+r^{2} d \theta^{2}
\end{array}
$$

$3 \mathrm{D}: \quad d l^{2}=d r^{2}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)$
$4 \mathrm{D}: d l^{2}=d r^{2}+r^{2}\left[d \theta^{2}+\sin ^{2} \theta\left(d \phi^{2}+\sin ^{2} \phi d \alpha^{2}\right)\right]$
$d l^{2}=d r^{2}+r^{2} d \psi^{2} \quad$ generic angle : $d \psi^{2}=d \theta^{2}+\sin ^{2} \theta d \phi^{2}+\ldots$

$$
d l^{2}=\left(\begin{array}{lll}
d r & d \theta & d \phi
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & r^{2} & 0 \\
0 & 0 & r^{2} \sin ^{2} \theta
\end{array}\right)\left(\begin{array}{l}
d r \\
d \theta \\
d \phi
\end{array}\right) \quad \begin{aligned}
& g_{r r}=? g_{r \theta}=? \\
& g_{\theta \theta}=? \\
& g_{\phi \phi}=? \\
& g_{\alpha \alpha}=?
\end{aligned}
$$

AS 4022 Cosmology

metric of space embedded in Sphere of radius R

$R=$ radius of curvature

$$
\begin{array}{lll}
1-\mathrm{D}: & R^{2}=x^{2} & 0-\mathrm{D} 2 \text { points } \\
2-\mathrm{D}: & R^{2}=x^{2}+y^{2} & 1-\mathrm{D} \text { circle } \tag{array}\\
3-\mathrm{D}: & R^{2}=x^{2}+y^{2}+z^{2} & 2-\mathrm{D} \text { surface of } 3-\text { sphere } \\
4-\mathrm{D}: & R^{2}=x^{2}+y^{2}+z^{2}+w^{2} & 3-\mathrm{D} \text { surface of } 4-\text { sphere }
\end{array}
$$

coordinate systems

Distance varies in time:

$$
D(t)
$$

"Fiducial observers" (Fidos)

$$
D(t)=R(t) \chi
$$

"Co-moving" coordinates
$\chi \quad$ or $D_{0} \equiv R_{0} \chi$.
Labels the Fidos

Reading: Non-Euclidean Metrics

${ }^{\circ} k=-1,0,+1 \quad$ (open, flat, closed)

$$
d l^{2}=\frac{d r^{2}}{1-k(r / R)^{2}}+r^{2} d \psi^{2}
$$

dimensionless radial coordinates :

$$
\begin{gathered}
u=r / R=S_{k}(\chi) \\
d l^{2}=R^{2}\left(\frac{d u^{2}}{1-k u^{2}}+u^{2} d \psi^{2}\right) \\
=R^{2}\left(d \chi^{2}+S_{k}^{2}(\chi) d \psi^{2}\right)
\end{gathered}
$$

$$
S_{-1}(\chi) \equiv \sinh (\chi), \quad S_{0}(\chi) \equiv \chi, \quad S_{+1}(\chi) \equiv \sin (\chi)
$$

Reading: Circumference

metric :

$$
d l^{2}=\frac{d r^{2}}{1-k(r / R)^{2}}+r^{2} d \theta^{2}
$$

radial distance (for $k=+1$):

$$
D=\int_{0}^{r} \frac{d r}{\sqrt{1-k(r / R)^{2}}}=R \sin ^{-1}(r / R)
$$

circumference :

$$
C=\int_{0}^{2} r d \theta=2 \pi r
$$

"circumferencial" distance : $r \equiv \frac{C}{2 \pi}=R S_{k}(D / R)=R S_{k}(\chi)$
If $k=+1$, coordinate r breaks down for $r>R$ AS 4022 Cosmology

Reading: Circumference

-metric :

$$
d l^{2}=R^{2}\left(d \chi^{2}+S_{k}^{2}(\chi) d \theta^{2}\right)
$$

radial distance :

$$
D=\int \sqrt{g_{\chi x}} d \chi=\int_{0}^{\chi} R d \chi=R \chi
$$

circumference :

$$
\begin{aligned}
& C=\oint \sqrt{g_{\theta \theta}} d \theta=\int_{0}^{2 \pi} R S_{k}(\chi) d \theta=2 \pi R S_{k}(\chi) \\
&=2 \pi D \frac{S_{k}(\chi)}{\chi} \\
& \begin{array}{l}
\text { Same result for any choice } \\
\text { of coordinates. }
\end{array}
\end{aligned}
$$

Reading: Angular Diameter

metric :

$$
d l^{2}=R^{2}\left(d \chi^{2}+S_{k}^{2}(\chi) d \theta^{2}\right)
$$

radial distance :

$$
D=\int \sqrt{g_{x \chi}} d \chi=\int_{0}^{\chi} R d \chi=R \chi
$$

linear size : $(l \ll D)$

$$
l=\int \sqrt{g_{\theta \theta}} d \theta=R S_{k}(\chi) \theta
$$

angular size :

$$
\theta=\frac{l}{D_{A}} \quad \begin{gathered}
D=R \quad \chi=\text { Radial Distance } \\
D_{A}=R S_{k}(\chi)=\text { Angular Diameter Distance }
\end{gathered}
$$

Reading: Area of Spherical Shell

radial coordinate χ, angles θ, ϕ :

$$
d l^{2}=R^{2}\left[d \chi^{2}+S_{k}^{2}(\chi)\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)\right]
$$

area of shell :

$$
\begin{aligned}
A & =\int \sqrt{g_{\theta \theta}} d \theta \sqrt{g_{\phi \phi}} d \phi \\
& =R^{2} S_{k}^{2}(\chi) \int_{0}^{\pi} d \theta \sin \theta \int_{0}^{2 \pi} d \phi \\
& =4 \pi R^{2} S_{k}^{2}(\chi)
\end{aligned}
$$

flux :
$F=\frac{L}{A}=\frac{L}{4 \pi D_{L}^{2}} \quad D_{L}=R S_{k}(\chi)=$ Luminosity Distance

[we will work with flats only] Curved Space Summary

- The metric converts coordinate steps (grids) to physical lengths.
- Use the metric to compute lengths, areas, volumes, ...
- Radial distance:

$$
D \equiv \int \sqrt{g_{r r}} d r=R \chi
$$

$$
\begin{aligned}
& \text { - "Gircumferencial" disptąnce } \\
& \left.r \equiv \frac{C}{2 \pi}=\left(\frac{A}{4 \pi}\right)^{2}=\frac{1}{2 \pi} \int_{0}^{T} \sqrt{g_{\phi \phi}} d \phi=R S_{k}(\chi)=R S_{k}(D / R)\right) .
\end{aligned}
$$

- "Observable" distances, defined in terms of local observables (angles fluxes), give r, not D.

$$
D_{A} \equiv \frac{\eta}{\theta}=r \quad D_{L} \equiv\left(\frac{L}{4 \pi F}\right)^{1 / 2}=r
$$

- $r<D$ (positive curvature, $\left.S_{+1}(x)=\sin x\right)$

$7^{\text {th }}$ Concept: Robertson-Walker metric

 uniformly curved, evolving spacetime$$
d s^{2}=-c^{2} d t^{2}+R^{2}(t)\left(d \chi^{2}+S_{k}^{2}(\chi) d \psi^{2}\right)
$$

$$
S_{k}(\chi)=\left\{\begin{array}{cccc}
\sin \chi & (k=+1) & \text { closed } & d \psi^{2} \equiv d \theta^{2}+\sin ^{2} \theta d \phi^{2} \\
\chi & (k=0) & \text { flat } & a(t) \equiv R(t) / R_{0} \\
\sinh \chi & (k=-1) & \text { open } & R_{0} \equiv R\left(t_{0}\right)
\end{array}\right.
$$

radial distance $=D(t)=R(t) \chi$ circumference $=2 \pi r(t) \quad r(t)=\square=R(t) S_{k}(\chi)$

Cosmological Principle (assumed) Isotropy (observed) => Homogeneity

Distances-Redshift relation

- We observe the redshift : $\quad z \equiv \frac{\lambda-\lambda_{0}}{\lambda_{0}}=\frac{\lambda}{\lambda_{0}}-1 \quad \lambda=$ observed,

$$
\lambda_{0}=\text { emitted (rest) }
$$

- Hence we know the expansion factor:

$$
x \equiv 1+z=\frac{\lambda}{\lambda_{0}}=\frac{\lambda\left(t_{0}\right)}{\lambda(t)}=\frac{R\left(t_{0}\right)}{R(t)}=\frac{R_{0}}{R(t)}
$$

- Need the time of light emitted

$$
t(z)=?
$$

- Need coordinate of the source $H \quad \chi(z)=$?
- Need them as functions of
- Distances $D(t, \chi)=R(t) \chi$

$$
r(t, \chi)=R(t) S_{k}(\chi)
$$

$$
\begin{aligned}
& D_{A}=r_{0}(\chi) /(1+z) \\
& D_{L}=r_{0}(\chi)(1+z)
\end{aligned}
$$

- E.g. D_L is $4 \times \quad$ __A for an object at $\mathbf{z = 1}$.

Tutorial: Time -- Redshift relation

$$
\begin{aligned}
x & =1+z=\frac{R_{0}}{R} \quad \begin{array}{l}
\text { Memorise this } \\
\text { derivation! }
\end{array} \\
\frac{d x}{d t} & =-\frac{R_{0}}{R^{2}} \frac{d R}{d t} \quad \text { Hubble parameter } \\
& =-\frac{R_{0}}{R} \frac{R}{R} \\
& =-x H(x) \\
\therefore & d t=\frac{-d x}{x H(x)}=\frac{-d z}{(1+z) H(z)}
\end{aligned}
$$

Tutorial: $\underset{d t}{d t}\left(x=1+z=\frac{R_{0}}{R}\right) \xrightarrow{\text { Time and }}$ Distance $=\frac{-\mathbf{v s}_{x} \text { Redshift }}{x H(x)}$

Look - back time :

$$
t(z)=\int_{t}^{t_{p}} d t=\int_{1+z} \frac{-d x}{x H(x)}=\int_{1}^{1+z} \frac{d x}{x H(x)}
$$

Age: $\quad t_{0}=t(z \rightarrow \infty)$
Distance : $D=R \chi \quad r=R S_{k}(\chi)$

$\chi(z)=\int d \chi=\int_{t}^{t} \frac{c d t}{R(t)}=\frac{c^{1+z}}{R_{0}} \int_{1}^{1} \frac{R_{0}}{R(t)} \frac{d x}{x H(x)}=\frac{c^{1+z}}{R_{0}} \int_{1}^{1} \frac{d x}{H(x)}$
Horizon : $\quad \chi_{H}=\chi(z \rightarrow \infty)$
Need to know $R(t)$, or R_{0} and $H(x)$.

