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Gravitational Dynamics:
An Introduction

HongSheng Zhao
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C1.1.1 Our Galaxy and Neighbours

• How structure in universe form/evolve?
• Galaxy Dynamics Link together early universe & future.
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Our Neighbours

• M31 (now at 500 kpc) separated from MW
a Hubble time ago

• Large Magellanic Cloud has circulated our
Galaxy for about 5 times at 50 kpc
– argue both neighbours move with a typical

100-200km/s velocity relative to us.
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Outer Satellites on weak-g orbits
around Milky Way

~  50 globulars on weak-g    (R<150 kpc)
~100 globulars on strong-g   (R< 10 kpc)

R>10kpc: Magellanic/Sgr/Canis streams
R>50kpc: Draco/Ursa/Sextans/Fornax…
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C1.1.2 Milky Way as Gravity Lab

• Sun has circulated the galaxy for 30 times
– velocity vector changes direction +/- 200km/s

twice each circle ( R = 8 kpc )
–– ArgueArgue that the MW is a nano-earth-gravity Lab
– Argue that the gravity due to 1010 stars only

within 8 kpc is barely enough.  Might need to
add Dark Matter.
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Sun escapes unless our Galaxy has
Dark Matter
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C1.1.3  Dynamics as a tool

• Infer additional/dark matter
– E.g., Weakly Interacting Massive Particles

• proton mass, but much less interactive
• Suggested by Super-Symmetry, but undetected

– A $billion$ industry to find them.
• What if they don’t exist?
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…

• Test the law of gravity:
– valid in nano-gravity regime?
– Uncertain outside solar system:

• GM/r2  or cst/r ?
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Outer solar system

• The Pioneer experiences an anomalous
non-Keplerian acceleration of 10-8 cm s-2

• What is the expected acceleration at 10 AU?
• What could cause the anomaly?
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Gravitational Dynamics can be applied to:

• Two body systems:binary stars
• Planetary Systems, Solar system
• Stellar Clusters:open & globular
• Galactic Structure:nuclei/bulge/disk/halo
• Clusters of Galaxies
• The universe:large scale structure
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Topics
• Phase Space Fluid f(x,v)

– Eqn of motion
– Poisson’s equation

•  Stellar Orbits
– Integrals of motion (E,J)
– Jeans Theorem

• Spherical Equilibrium
– Virial Theorem
– Jeans Equation

• Interacting Systems
– TidesSatellitesStreams
– Relaxationcollisions

• MOND
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C2.1 How to model motions of
1010stars in a galaxy?

• Direct N-body approach (as in simulations)
– At time t particles have (mi,xi,yi,zi,vxi,vyi,vzi),

i=1,2,...,N (feasible for N<<106 ).
• Statistical or fluid approach (N very large)

– At time t particles have a spatial density
distribution n(x,y,z)*m, e.g., uniform,

– at each point have a velocity distribution
G(vx,vy,vz), e.g., a 3D Gaussian.
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C2.2 N-body Potential and Force

• In N-body system with mass m1…mN,
the gravitational acceleration g(r) and
potential φ(r) at position r is given by:
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Example: Force field of two-body
system in Cartesian coordinates
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C2.3 A fluid element: Potential &
Gravity

• For large N or a continuous fluid, the gravity dg and
potential dφ due to a small mass element dM is calculated
by replacing mi with dM:
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Lec 2:
Why Potential φ(r) ?

• Potential per unit mass φ(r) is scalar,
– function of r only,
– Related to but easier to work with than force

(vector, 3 components)
– Simply relates to orbital energy E= φ(r) + ½ v2
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C2.4 Poisson’s Equation

• PE relates the potential to the density of matter
generating the potential by:

• [BT2.1]
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C2.5 Eq. of Motion in N-body

• Newton’s law: a point mass m at position r
moving with a velocity dr/dt with Potential
energy Φ(r) =mφ(r) experiences a Force
F=mg , accelerates with following Eq. of
Motion:

m

r

m

F

dt

trd

dt

d
r

)()( !"#
==$%

&
'(

) r

rvv



AS4021 Gravitational Dynamics 19

Example 1: trajectories when G=0

• Solve Poisson’s Eq. with G=0 
– F=0,  Φ(r)=cst, 

• Solve EoM for particle i initially at (X0,i, V0,i)
– dVi/dt = Fi/mi = 0          Vi = cst = V0,i
– dXi/dt = Vi  = Vi,0          Xi(t) =  V0,i  t  + X0,i,
– where X, V are vectors,
– straight line trajectories

• E.g., photons in universe go straight
– occasionally deflected by electrons,
– Or bent by gravitational lenses
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What have we learned?

• Implications on gravity law and DM.
• Poisson’s eq. and how to calculate gravity
• Equation of motion
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How N-body system evolves

• Start with initial positions and velocities of all N
particles.

• Calculate the mutual gravity on each particle
– Update velocity of each particle for a small time step dt

with EoM
– Update position of each particle for a small time step dt

• Repeat previous for next time step.
•  N-body system fully described
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C2.6 Phase Space of Galactic Skiers
• Nskiers identical particles moving in a small bundle

in phase space (Vol =Δx Δ v),
• phase space deforms but maintains its area.

• Gap widens between faster & slower skiers
– but the phase volume & No. of skiers are constants.

 +x front

 vx

x

+Vx Fast



AS4021 Gravitational Dynamics 23

“Liouvilles Theorem on the piste”

• Phase space density of a group of skiers is const.
  f  = m  Nskiers / Δx Δvx = const
Where m is mass of each skier,

[ BT4.1]



AS4021 Gravitational Dynamics 24

C2.7 density of phase space fluid:
Analogy with air molecules

• air with uniform density n=1023 cm-3

   Gaussian velocity rms velocity σ =0.3km/s
in x,y,z directions:

• Estimate f(0,0,0,0,0,0)/m  in pc-3 (km/s)-3
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Lec 3 (Tuesday)
C2.8 Phase Space Distribution Function (DF)

PHASE SPACE DENSITY: No. of sun-like
stars per unit volume per velocity volume
f(x,v)

sun sun
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C2.9 add up stars: integrate over
phase space

• star mass density: integrate velocity volume

• The total mass : integrate over phase space
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• define spatial density of stars n(x)

• and the mean stellar velocity v(x)

• E.g., Conservation of flux (without proof)
( ) ( ) ( )

3

3

2 31

1 2 3

                  

                  flux in i-direction

                  0

i i

n fd v

nv fv d v

nv nv nvn

t x x x

! ! !!

! ! ! !

"

" =

+ + + =

#

#



AS4021 Gravitational Dynamics 28

C3.0 Star clusters differ from air:

• Stars collide far less frequently
– size of stars<<distance between them
– Velocity distribution not isotropic

• Inhomogeneous density ρ(r) in a Grav.
Potential φ(r)
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Example 2: A 4-body problem

• Four point masses with G m = 1 at rest    (x,y,z)=(0,1,0),(0,-1,0),(-
1,0,0),(1,0,0).  Show the initial total energy

        Einit = 4 * ( ½ + 2-1/2 + 2-1/2) /2  = 3.8

• Integrate EoM by brutal force for one time step =1 to find the
positions/velocities at time t=1.
– Use V=V0 + g t = g  = (u, u, 0) ;  u = 21/2/4 + 21/2/4 + ¼   =  0.95
– Use x= x0 + V0 t = x0 = (0, 1, 0).

• How much does the new total energy differ from initial?
   E - Einit  =  ½ (u2 +u2) * 4 =  2 u2  = 1.8
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Often-made Mistakes

• Specific energy or specific force confused with the
usual energy or force

• Double-counting potential energy between any
pair of mass elements, kinetic energy with v2

• Velocity vector V confused with speed,
• 1/|r| confused with 1/|x|+1/|y|+1/|z|
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What have we learned?

Potential to Gravity

Potential to density

Density to potential

Motion to gravity
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Concepts

• Phase space density
–  incompressible
– Dimension Mass/[ Length3 Velocity3 ]

– Show a pair of non-relativistic Fermionic
particle occupy minimal phase space (x*v)3 >
(h/m)3 , hence has a maximum phase density
=2m (h/m)-3
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Where are we heading to?
Lec 4, Friday 22 Feb

• potential and eqs. of motion
– in general geometry
– Axisymmetric
– spherical
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Link phase space quantities

r

J(r,v)

Ek(v)
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Vt

E(r,v)dθ/dt

vr



AS4021 Gravitational Dynamics 35

C 3.1: Laplacian in various coordinates
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Example 3: Energy is conserved
in STATIC potential

• The orbital energy of a star is given by:
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Example 4: Static Axisymmetric density 
Static Axisymmetric potential

• We employ a cylindrical coordinate system (R,
θ,z) e.g., centred on the galaxy and align the z axis
with the galaxy axis of symmetry.

• Here the potential is of the form φ(R,z).
• Density and Potential are Static and Axisymmetric

– independent of time and azimuthal angle
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C3.2: Orbits in an axisymmetric potential

• Let the potential which we assume to be
symmetric about the plane z=0, be φ(R,z).

• The general equation of motion of the star is

• Eqs. of motion in cylindrical coordinates
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Conservation of angular momentum
z-component Jz if axisymmetric

• The component of angular momentum about the z-
axis is conserved.

• If φ(R,z) has no dependence on θ then the
azimuthal angular momentum is conserved
– or because z-component of the torque r×F=0. (Show it)

2 2( ) 0
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C4.1: Spherical Static System

• Density, potential function of radius |r| only
• Conservation of

– energy E,
– angular momentum J (all 3-components)
– Argue that a star moves orbit which confined to

a plane perpendicular to J vector.
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C 4.1.0: Spherical Cow Theorem

• Most astronomical objects can be
approximated as spherical.

• Anyway non-spherical systems are too
difficult to model, almost all models are
spherical.
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Globular: A nearly spherical static system
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C4.2: From Spherical Density to Mass
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C4.3: Theorems on Spherical Systems

• NEWTONS 1st THEOREM:A body that is
inside a spherical shell of matter
experiences no net gravitational force from
that shell

• NEWTONS 2nd THEOREM:The
gravitational force on a body that lies
outside a closed spherical shell of matter is
the same as it would be if all the matter
were concentrated at its centre. [BT 2.1]
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C4.4: Poisson’s eq. in Spherical systems

• Poisson’s eq. in a spherical potential with no θ or Φ
dependences is:

• BT2.1.2
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Example 5: Interpretation of Poissons Equation

• Consider a spherical distribution of mass of
density ρ(r).
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• Take d/dr and multiply r2 

• Take d/dr and divide r2
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C4.5: Escape Velocity
• ESCAPE VELOCITY= velocity required in

order for an object to escape from a
gravitational potential well and arrive at ∞
with zero KE.
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Example 6: Plummer Model for star cluster
• A spherically symmetric potential of the form:

• Show corresponding to a density (use Poisson’s
eq):
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e.g., for a globular cluster a=1pc, M=105 Sun Mass
show Vesc(0)=30km/s
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What have we learned?

• Conditions for conservation of orbital
energy, angular momentum of a test particle

• Meaning of escape velocity
• How Poisson’s equation simplifies in

cylindrical and spherical symmetries


