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Cl1.1.1 Our Galaxy and Neighbours

@S  Andromeda
Galaxy (M31)

. ' -

Milky Way

-

Small Magellanic

: Large Magellanic
NGC 6822 Shesi Cloud

e How structure 1in universe form/evolve?

* Galaxy Dynamics Link together early universe & future.



Our Neighbours

« M31 (now at 500 kpc) separated from MW
a Hubble time ago

« Large Magellanic Cloud has circulated our
Galaxy for about 5 times at 50 kpc

— argue both neighbours move with a typical
100-200km/s velocity relative to us.



Outer Satellites on weak-g orbits
around Milky Way

R>10kpc: Magellanic/Sgr/Canis streams
R>50kpc: Draco/Ursa/Sextans/Fornax...

~ 50 globulars on weak-g (R<150 kpc)
~100 globulars on strong-g (R< 10 kpc)
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Cl1.1.2 Milky Way as Gravity Lab

* Sun has circulated the galaxy for 30 times

— velocity vector changes direction +/- 200km/s
twice each circle (R =8 kpc )

— Argue that the MW 1s a nano-earth-gravity Lab

— Argue that the gravity due to 1019 stars only
within 8 kpc is barely enough. Might need to
add Dark Matter.



Sun escapes unless our Galaxy has
Dark Matter
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C1.1.3 Dynamics as a tool

 Infer additional/dark matter
— E.g., Weakly Interacting Massive Particles

 proton mass, but much less interactive

» Suggested by Super-Symmetry, but undetected

— A $billion$ industry to find them.
e What if they don’t exist?
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» Test the law of gravity:
— valid 1n nano-gravity regime?
— Uncertain outside solar system:
« GM/r? orcst/r ?
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Outer solar system

* The Pioneer experiences an anomalous

non-Keplerian acceleration of 108 cm s

« What 1s the expected acceleration at 10 AU?

 What could cause the anomaly?
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Gravitational Dynamics can be applied to:

* Two body systems:binary stars

* Planetary Systems, Solar system
 Stellar Clusters:open & globular
 Galactic Structure:nuclei/bulge/disk/halo
e Clusters of Galaxies

* The umiverse:large scale structure
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Topics

Phase Space Fluid f(x,v)
— Eq" of motion

— Poisson’s equation
Stellar Orbits
— Integrals of motion (E,J)

— Jeans Theorem
Spherical Equilibrium

— Virial Theorem
— Jeans Equation
Interacting Systems

— Tides—> Satellites=> Streams
— Relaxation—=>collisions

MOND
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C2.1 How to model motions of
10'9stars in a galaxy?

* Direct N-body approach (as in simulations)
— At time t particles have (m,,x.,y.,z,,vX,,vy.,vzZ),
i=1,2,...,N (feasible for N<<10°%).
« Statistical or fluid approach (N very large)

— At time t particles have a spatial density
distribution n(x,y,z)*m, €.g., uniform,

— at each point have a velocity distribution
G(vx,vy,vz), e.g., a 3D Gaussian.
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C2.2 N-body Potential and Force

* In N-body system with mass m,...my,
the gravitational acceleration g(r) and
potential ¢(r) at position r 1s given by:

- ~Gemem; 7 -
F=mg(r)= —2 ‘A F ‘2 2 = —mV ¢
i= ry — ;

5P

L)
Ry

m, ® = mg(r) = -3 j};m;r
i=1 - 1y

G centre
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Example: Force field of two-body
system 1n Cartesian coordinates

B(F) = }j‘

Sketch the conﬁguration, sketch equal potential contours

¢(X, Y, Z) =7
§(7) = (g,.2,.8.) = ~V(F) = (- 2"’ -00 99,
x Jdy oz

WhereR =(0,0,-i)*a,m, =m,

|8(7) = (g2 +g2 +g2) =2

sketch field lines. at what positions 1s force = 0?
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C2.3 A fluid element: Potential &
Gravity

e For large N or a continuous fluid, the gravity dg and
potential dp due to a small mass element dM i1s calculated

by replacing m, with dM:

~ G-dM r,
dg = ——— _?2
I, dM "” — Ri
I d3R d¢=—GdM

G centre ‘77 - R‘
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Lec 2:
Why Potential ¢(r) ?

» Potential per unit mass ¢(r) is scalar,
— function of r only,

— Related to but easier to work with than force
(vector, 3 components)

— Simply relates to orbital energy E= o¢(r) + % v?
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C2.4 Poisson’s Equation

* PE relates the potential to the density of matter
generating the potential by:

V-V¢ =-V-5 =4aGp(r)

. [BT2.1]
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C2.5 Eq. of Motion 1n N-body

 Newton’s law: a point mass m at position r
moving with a velocity dr/dt with Potential

energy O(r) =mao(r) experiences a Force
F=mg , accelerates with following Eq. of
Motion:

d [dF(t)] F -V.0(r)

dt_dt_m m
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Example 1: trajectories when G=0

* Solve Poisson’s Eq. with G=0 =
— F=0, = ®(r)=cst, =>»
* Solve EoM for particle 1 imitially at (X ;, V)
— dV/dt=F./m,=0 2> V.=cst=V;
- dXydt=V; =V, 2> X() = Vi; t +X;,
— where X, V are vectors,
— =»straight line trajectories
* E.g., photons in universe go straight
— occasionally deflected by electrons,
— Or bent by gravitational lenses
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What have we learned?

Implications on gravity law and DM.

Poisson’s eq. and how to calculate gravity

Equation of motion
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How N-body system evolves

Start with initial positions and velocities of all N
particles.

Calculate the mutual gravity on each particle

— Update velocity of each particle for a small time step dt
with EoM

— Update position of each particle for a small time step dt
Repeat previous for next time step.
=>» N-body system fully described
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C2.6 Phase Space of Galactic Skiers

* Ny 1dentical particles moving in a small bundle
in phase space (Vol =A A ),
* phase space deforms but maintains its area.

+V, Fast A\

A =F | +x front

' f \\-
4 A

» Gap widens between faster & slower skiers

— but the phase volume & No. of skiers are constants.
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“Liouvilles Theorem on the piste™

« Phase space density of a group of skiers is const.
f =m Nskiers

Where m 1s mass of each skier,

/ AX Av, = const

[ BT4.1]
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C2.7 density of phase space fluid:
Analogy with air molecules

« air with uniform density n=10%° cm

Gaussian velocity rms velocity o =0.3km/s

in X,y,z directions: v+ 407
mxn_ exp| - >
fxv) 20
X,V) =
(V2ro)’

 Estimate £(0,0,0,0,0,0)/m in pc (km/s)~?
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Lec 3 (Tuesday)
C2.8 Phase Space Distribution Function (DF)

PHASE SPACE DENSITY: No. of sun-like
stars per unit volume per velocity volume
f(x,v)

fx.v) = AN xmg,, _ number of sunsxm_
b .
dx’dv’ space volume x velocity volume

Ixm

Sun

D 3 -1\3
pc” x(100kms™)
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C2.9 add up stars: integrate over
phase space

 star mass density: integrate velocity volume

400 400 400

P =my, xn(¥)= [ [ [ f(E,0)dv,dv,dv,

—00 —00 —-00

* The total mass : integrate over phase space

M, = fp(x)d3x = f f(x,9)dvd’x
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* define spatial density of stars n(x)

n= f fd'v
 and the mean stellar velocity v(x)
nv; = flux in i-direction = f fody

* E.g., Conservation of flux (without proof)

on . 0 (nv_1)+ 0 (n;z )+ 0 (n;a )= )
Jt dx 0 X, Jx,

AS4021 Gravitational Dynamics
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(C3.0 Star clusters differ from air:

 Stars collide far less frequently
— size of stars<<distance between them

— Velocity distribution not 1sotropic

* Inhomogeneous density p(r) in a Grav.
Potential ¢(r)

28



Example 2: A 4-body problem

Four point masses with Gm =1 atrest (x,y,z)=(0,1,0),(0,-1,0),(-
1,0,0),(1,0,0). Show the initial total energy

Einit=4* (/2 +2124+212)/2 =38

Integrate EoM by brutal force for one time step =1 to find the
positions/velocities at time t=1.

— Use V=V ,+gt=g =(u,u,0); u=2"2/4+212/4+% = 0.95
— Usex=x,+V,t=x,=(0,1,0).

How much does the new total energy differ from initial?
E - Einit = Y2 (u?+u?) ¥*4=2u>=1.8
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Often-made Mistakes

Specific energy or specific force confused with the
usual energy or force

Double-counting potential energy between any
pair of mass elements, kinetic energy with v

Velocity vector V confused with speed,
1/|r| confused with 1/|x|+1/|y|+1/|Z]

30



What have we learned?

Potential to Gravity g=-V¢
Potential to density 1
' p="—"=V
4rnG
Density to potential _ God’r'
p(7) =

Motion to gravity g=dv/dt
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Concepts

» Phase space density
— 1ncompressible

— Dimension Mass/[ Length3 Velocity? ]

— Show a pair of non-relativistic Fermionic
particle occupy minimal phase space (x*v)3 >
(h/m)3 , hence has a maximum phase density
=2m (h/m)-
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Where are we heading to?
Lec 4, Friday 22 Feb

 potential and egs. of motion
— 1n general geometry
— Axisymmetric

— spherical
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Link phase space quantities
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C 3.1: Laplacian in various coordinates

Cartesians:

Cylindrical :
2 2
Vz=1 0 Ra . 12 82+82
ROR\ OR) R d¢~ oz
Spherical :

1 1 . 1 9
V2=—i r2i +—— 0 sin 6 0 +——— :
or /] r sméb 00 00 ) r“sin“0 9d¢
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Example 3: Energy is conserved

in STATIC potential
* The orbital energy of a star is given by:
E-1. +¢(7,1)
2
dE dv dr 0 0
— =V ch +— ? =0+— ?
dt dt dt dt oat
. dv
0 since Ve 0 for static potential.
and 9r _ 5 So orbital Energy 1s Conserved dE/dt=0

dt only in “time-independent” potential.
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Example 4: Static Axisymmetric density =
Static Axisymmetric potential

We employ a cylindrical coordinate system (R,
0,z) e.g., centred on the galaxy and align the z axis
with the galaxy axis of symmetry.

Here the potential is of the form ¢p(R,z).

Density and Potential are Static and Axisymmetric

— 1ndependent of time and azimuthal angle

¢(R,Z)3P(R,Z)=L[R1(Ra¢)+a (p}

AnG| OR\ OR | 9z°

9

' R 0
AS4021 Gravitational Dynamics
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C3.2: Orbits in an axisymmetric potential

 Let the potential which we assume to be
symmetric about the plane z=0, be ¢(R,z).

* The general equation of motion of the star 1s
dz* - _V§(R,?2) Eq. of Motion

* Egs. of mot10n in cylindrical coordinates

.o o o2 .
2=-2 R ro =-9% 2R +RH——(R g)_-% 0
9z R’ Rdt ROO
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Conservation of angular momentum
z-component Jz 1f axisymmetric

J, = R0 =9 -4 (R6)=0
dt dt

* The component of angular momentum about the z-
axis 1s conserved.

« If p(R,z) has no dependence on 0 then the
azimuthal angular momentum 1s conserved

— or because z-component of the torque rxF=0. (Show it)
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C4.1: Spherical Static System

* Density, potential function of radius |r| only

e Conservation of
— energy E,
— angular momentum J (all 3-components)

— Argue that a star moves orbit which confined to
a plane perpendicular to J vector.
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C 4.1.0: Spherical Cow Theorem

* Most astronomical objects can be
approximated as spherical.

* Anyway non-spherical systems are too
difficult to model, almost all models are
spherical.
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Globular: A nearly spherical static system

Ina 0]0bula1 cluster

Far far deV 1n the LNMC

Looming i on R \I56
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(C4.2: From Spherical Density to Mass

M(R " dr) B M(R) +dM f-";_::M(rerr)

dM = P(l‘)d(§m’3) = 47’ p(r)dr II'-\\_ _Mg)' /.."
dM AM
p(r) = 1 -
d(,m'3 ) drtr-dr
3

4
M(R) = f,od(gnrﬁ)
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(C4.3: Theorems on Spherical Systems

« NEWTONS 1 THEOREM:A body that is
inside a spherical shell of matter

experiences no net gravitational force from
that shell

« NEWTONS 2" THEOREM:The
gravitational force on a body that lies
outside a closed spherical shell of matter 1s
the same as 1t would be if all the matter
were concentrated at 1ts centre. [BT 2.1]
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C4.4: Poisson’s eq. 1n Spherical systems

« Poisson’s eq. 1n a spherical potential with no 6 or ®
dependences 1s:

Vg = L9 (r2 6_(,0) = 4aGp(r)

r or or

« BT2.1.2
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Example 5: Interpretation of Poissons Equation

* Consider a spherical distribution of mass of

density p(r). ek \\
GM (r) (5 )
E=77 2 \\\ 7 /

1) =fg(r)dr since =0atooandis<Oatr

f

Mass Enclosed = f drer’ p(r)dr

M (r)

AS4021 Gravitational Dynamics
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« Take d/dr and multiply r*> =

r a9 _ —gr’ =GM(r) = (Gf4nr2p(r)dr]

dr

e Take d/dr and divide r?=>

1
—i(rz a_cp) = Li —rzg = in(GM)= 4aGp(r)
v reoor
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(C4.5: Escape Velocity

« ESCAPE VELOCITY= velocity required in
order for an object to escape from a
gravitational potential well and arrive at o
with zero KE. —0 often

<1,
B(r) = 9(2) = V.,
= v, (1) = \2() - 2¢(r)
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Example 6: Plummer Model for star cluster

* A spherically symmetric potential of the form:

GM
¢ =- 2, 2
Vil +a
e.g., for a globular cluster a=1pc, M=10°> Sun Mass
show Vesc(0)=30km/s

e Show corresponding to a density (use Poisson’s
5

eq): 3IM ( 2 )"2

P 1+—2

Ama’ a
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What have we learned?

» Conditions for conservation of orbital
energy, angular momentum of a test particle

* Meaning of escape velocity

 How Poisson’s equation simplifies in
cylindrical and spherical symmetries
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