Lec 4, Friday 17 Feb

- potential and eqs. of motion
- in general geometry
- Axisymmetric
- spherical

Laplacian in various coordinates

Cartesians :
$\nabla^{2}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}$
Cylindrical:
$\nabla^{2}=\frac{1}{R} \frac{\partial}{\partial R}\left(R \frac{\partial}{\partial R}\right)+\frac{1}{R^{2}} \frac{\partial^{2}}{\partial \phi^{2}}+\frac{\partial^{2}}{\partial z^{2}}$
Spherical:
$\nabla^{2}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}$

Example: Energy is conserved

 in STATIC potential- The orbital energy of a star is given by:

$$
\begin{gathered}
E=\frac{1}{2} v^{2}+\phi(\vec{r}, t) \\
\frac{d E}{d t}=\underbrace{\vec{v} \frac{d \vec{v}}{d t}+\frac{d \vec{r}}{d t} \nabla \phi+\frac{\partial \phi}{\partial t}}=0+\frac{\partial \phi}{\underline{\partial t}}
\end{gathered}
$$

```
0 since }\frac{d\vec{v}}{dt}=-\nabla
```

0 for static potential.
and $\frac{d \bar{r}}{d t}=\bar{v}$
So orbital Energy is Conserved dE/dt=0 only in "time-independent" potential.

Static Axisymmetric density \rightarrow Static Axisymmetric potential

- We employ a cylindrical coordinate system (R, ϕ, z) e.g., centred on the galaxy and align the z axis with the galaxy axis of symmetry.
- Here the potential is of the form $\phi(\mathrm{R}, \mathrm{z})$.
- Density and Potential are Static and Axisymmetric
- independent of time and azimuthal angle

$$
\begin{aligned}
& \phi(R, z) \Rightarrow \rho(R, z)=\frac{1}{4 \pi G}\left[R \frac{\partial}{\partial R}\left(R \frac{\partial \phi}{\partial R}\right)+\frac{\partial^{2} \phi}{\partial z^{2}}\right] \\
& g_{r}=-\frac{\partial \phi}{\partial R} \quad g_{z}=-\frac{\partial \phi}{\partial z}
\end{aligned}
$$

Orbits in an axisymmetric potential

- Let the potential which we assume to be symmetric about the plane $\mathrm{z}=0$, be $\phi(\mathrm{R}, \mathrm{z})$.
- The general equation of motion of the star is

$$
\frac{d^{2} \vec{r}}{d t^{2}}=-\nabla \phi(R, z) \quad \text { Eq. of Motion }
$$

- Eqs. of motion in cylindrical coordinates
$\ddot{z}=-\frac{\partial \phi}{\partial z}, \quad \ddot{R}-R \dot{\theta}^{2}=-\frac{\partial \phi}{\partial R}, 2 \dot{R} \dot{\theta}+R \ddot{\theta}=\frac{d}{R d t}\left(R^{2} \dot{\theta}\right)=-\frac{\partial \phi}{R \partial \theta}=0$

Conservation of angular momentum z -component Jz if axisymmetric

$$
J_{Z}=R^{2} \dot{\theta} \Rightarrow \frac{d}{d t} J_{z}=\frac{d}{d t}\left(R^{2} \dot{\theta}\right)=0
$$

- The component of angular momentum about the z axis is conserved.
- If $\phi(R, z)$ has no dependence on θ then the azimuthal angular momentum is conserved - or because z -component of the torque $\mathrm{r} \times \underline{\mathrm{F}}=0$. (Show it)

Spherical Static System

- Density, potential function of radius $|\mathrm{r}|$ only
- Conservation of
- energy E,
- angular momentum J (all 3-components)
- Argue that a star moves orbit which confined to a plane perpendicular to J vector.

Globular: A nearly spherical static system

From Spherical Density to Mass

$\mathrm{M}(\mathrm{R}+\mathrm{dr})=\mathrm{M}(\mathrm{R})+\mathrm{dM}$
$\mathrm{dM}=\rho(\mathrm{r}) \mathrm{d}\left(\frac{4}{3} \pi r^{3}\right)=4 \pi r^{2} \rho(\mathrm{r}) d r$

$\rho(r)=\frac{d M}{d\left(\frac{4}{3} \pi r^{3}\right)}=\frac{d M}{4 \pi r^{2} d r}$
$M(R)=\int \rho d\left(\frac{4}{3} \pi r^{3}\right)$

Poisson's eq. in Spherical systems

- Poisson's eq. in a spherical potential with no θ or Φ dependence is:

$$
\nabla^{2} \varphi=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial \varphi}{\partial r}\right)=4 \pi G \rho(r)
$$

- NEWTONS $1^{\text {st }}$ THEOREM:A body that is inside a spherical shell of matter experiences no net gravitational force from that shell
- NEWTONS $2^{\text {nd }}$ THEOREM:The gravitational force on a body that lies outside a closed spherical shell of matter is the same as it would be if all the matter were concentrated at its centre.

Spherical Cow Theorem

- Most astronomical objects can be approximated as spherical.
- Anyway non-spherical systems are too difficult to model, almost all models are spherical.

Theorems on Spherical Systems

Interpretation of Poissons

Equation

- Consider a spherical distribution of mass of density $\rho(\mathrm{r})$.
$g=-\frac{G M(r)}{r^{2}}$

$\phi=\int^{\infty} g(r) d r \quad$ since $\phi=0$ at ∞ and is <0 at r $=-\int_{r}^{\infty} \frac{G M(r)}{r^{2}} d r$

Mass Enclosed $=\int^{\infty} 4 \pi r^{2} \rho(r) d r$

- Take d/dr and multiply $\mathrm{r}^{2} \rightarrow$
$r^{2} \frac{d \phi}{d r}=-g r^{2}=G M(r)=\left(G \int 4 \pi r^{2} \rho(r) d r\right)$
- Take d/dr and divide $\mathrm{r}^{2} \rightarrow$
$\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial \varphi}{\partial r}\right)=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(-r^{2} g\right)=\frac{1}{r^{2}} \frac{\partial}{\partial r}(G M)=4 \pi G \rho(r)$
$\rightarrow \nabla^{2} \phi=-\vec{\nabla} \cdot g=4 \pi G \rho$

Escape Velocity

- ESCAPE VELOCITY = velocity required in order for an object to escape from a gravitational potential well and arrive at ∞ with zero KE.

$$
\begin{aligned}
& \phi(r)=\phi(\infty)-\frac{1}{2} v_{e s c}^{2} \\
& \rightarrow v_{e s c}(r)=\sqrt{2 \phi(\infty)-2 \phi(r)}
\end{aligned}
$$

Plummer Model for star cluster

- A spherically symmetric potential of the form:

$$
\phi=-\frac{G M}{\sqrt{r^{2}+a^{2}}}
$$

e.g., for a globular cluster $\mathrm{a}=1 \mathrm{pc}, \mathrm{M}=10^{5}$ Sun Mass show $\operatorname{Vesc}(0)=30 \mathrm{~km} / \mathrm{s}$

- Show corresponding to a density (use Poisson's eq):

$$
\rho=\frac{3 M}{4 \pi a^{3}}\left(1+\frac{r^{2}}{a^{2}}\right)^{-\frac{5}{2}}
$$

What have we learned?

- Conditions for conservation of orbital energy, angular momentum of a test particle
- Meaning of escape velocity
- How Poisson's equation simplifies in cylindrical and spherical symmetries

A worked-out example:

Hernquist Potential for stars in a galaxy
$\phi_{*}(r)=-\frac{G M_{0}}{a+r}$, use Poisson eq. show
$\rho_{*}(r)=\frac{M_{0}}{2 \pi a^{3}}\left(\frac{r}{a}\right)^{-1}\left(1+\frac{r}{a}\right)^{-2}$

- E.g., $a=1000 \mathrm{pc}, \mathrm{M}_{0}=10^{10}$ solar, show central escape velocity $\operatorname{Vesc}(0)=300 \mathrm{~km} / \mathrm{s}$,
- Show M_{0} has the meaning of total mass
- Potential at large r is like that of a point mass M_{0}
- Integrate the density from $r=0$ to inifnity also gives M_{0}

Potential of globular clusters and galaxies looks like this:

```
\phi(0)=-const (finite well at centre)
\phi(r)\propto\mp@subsup{\textrm{r}}{}{-1}\quad(Kepler for large r)
Centre is the minimum of potential with escape velocity
v _ { e s c } ( 0 ) = \sqrt { \frac { 2 G M _ { o } } { a } }
```


Links between dynamical quantities

Circular Velocity

- CIRCULAR VELOCITY= the speed of a test particle in a circular orbit at radius r .

$$
\begin{aligned}
& |g|=\frac{v_{c i r}^{2}}{r}=\nabla \phi=\frac{G M(r)}{r^{2}} \\
& \Rightarrow M(r)=\frac{v_{c i r}^{2} r}{G}
\end{aligned}
$$

For a point mass M : Show in a uniform density sphere

$$
v_{c}(r)=\sqrt{\frac{G M}{r}} \quad v_{c}(r)=\sqrt{\frac{4 \pi G \rho}{3}} r \text { since } \mathrm{M}(\mathrm{r})=\frac{4}{3} \pi r^{3} \rho
$$

What have we learned?

- How to apply Poisson's eq.
- How to relate
- Vesc with potential and
- Vcir with gravity
- The meanings of
- the potential at very large radius,
- The enclosed mass

Lec 6, Fri, 24 Feb

Motions in spherical potential

Equation of motion $\frac{\mathrm{d} \mathbf{x}}{\mathrm{dt}}=\mathbf{v}$ $\frac{\mathrm{d} \mathbf{v}}{\mathrm{dt}}=\bar{g}=-\nabla \phi$	If spherical
	$g_{r}=-\frac{\partial \phi}{\partial r}$
If no gravity	Conserved if spherical static
$\mathbf{x}(t)=\mathbf{v}_{\mathbf{o}^{t} t+\mathbf{x}_{0}}^{\mathbf{v}(t)=\mathbf{v}_{0}}$	$\mathrm{E}=\frac{1}{2} v^{2}+\phi(r)$
	$L=J=\mathbf{x} \otimes \mathbf{v}=r v_{t} \cdot \hat{n}$

Proof: Angular Momentum is Conserved if spherical

- $\vec{L}=\vec{r} \times \vec{v}$
$\rightarrow \quad \frac{d \vec{L}}{d t}=\frac{d(\vec{r} \times \vec{v})}{d t}=\frac{d \vec{r}}{d t} \times \vec{v}+\vec{r} \times \frac{d \vec{v}}{d t}=0+\vec{r} \times \vec{g}$
Since $\frac{\partial \phi}{\partial \theta}=0$ then the spherical force g is in the r direction, no torque
\rightarrow both cross products on the RHS $=0$.
So Angular Momentum \underline{L} is Conserved

$$
\frac{d \stackrel{\rightharpoonup}{L}}{d t}=0
$$

In static spherical potentials: star moves in a plane (r, θ)

- central force field
$\underline{g}=g \hat{r}$
- angular momentum

$$
\underline{r} \times \underline{\dot{r}}=\underline{L}
$$

- equations of motion are
-radial acceleration: $\ddot{r}-r \dot{\theta}^{2}=g(r)$
-tangential acceleration: $2 \dot{r} \dot{\theta}+r \ddot{\theta}^{2}=0$ $r^{2} \dot{\theta}=$ constant $=L$

Orbits in Spherical Potentials

- The motion of a star in a centrally directed field of force is greatly simplified by the familiar law of conservation (WHY?) of angular momentum.

$$
\begin{aligned}
\vec{L} & =\bar{r} \times \frac{d \bar{r}}{d t}=\text { const } \\
& =\mathrm{r}^{2} \frac{d \theta}{d t}=2 \frac{\text { area swept }}{\text { unit time }}
\end{aligned}
$$

Energy Conservation (WHY?)

$$
\begin{aligned}
& E= \phi(r)+\frac{\underline{\underline{\underline{\frac{1}{2}\left(\frac{d \vec{r}}{d t}\right)^{2}+\frac{1}{2}\left(r \frac{d \theta}{d t}\right)^{2}}}}}{\phi_{\text {eff }}} \\
&=\phi(r)+\frac{L^{2}}{2 r^{2}}+\frac{1}{2}\left(\frac{d \vec{r}}{d t}\right)^{2}
\end{aligned}
$$

Orbit in the $\mathrm{z}=0$ plane of a disk potential $\phi(\mathrm{R}, \mathrm{z})$.

- Energy/angular momentum of star (per unit mass)

$$
\begin{aligned}
E & =\frac{1}{2}\left[\dot{R}^{2}+(R \dot{\theta})^{2}\right]+\Phi(R, 0) \\
& =\frac{1}{2}\left[\dot{R}^{2}\right]+\left[\frac{J_{z}^{2}}{2 R^{2}}+\Phi(R, 0)\right] \\
& =\frac{1}{2}\left[\dot{R}^{2}\right]+\Phi \Phi_{\mathrm{eff}}(\mathrm{R}, 0)
\end{aligned}
$$

- orbit bound within

$$
\Longrightarrow E \geq \Phi_{\mathrm{eff}}(R, 0)
$$

Radial Oscillation

- An orbit is bound between two radii: a loop
- Lower energy E means thinner loop (nearly circular closed) orbit

Eq of Motion for planar orbits

- EoM:
$\ddot{R}=-\frac{\partial \Phi_{\text {eff }}}{\partial R} ; \quad \mathrm{z}=0$

If circular orbit $\mathrm{R}=\mathrm{cst}, z=0 \Rightarrow \frac{\partial \Phi_{\text {eff }}}{\partial R}=0$ at $R=R_{c}$

Apocenter and pericenter

- No radial motion at these turn-around radii $-\mathrm{dr} / \mathrm{dt}=\mathrm{V}_{\mathrm{r}}=0$ at apo and peri
- Hence
- $\mathrm{J}_{\mathrm{z}}=\mathrm{R} \mathrm{V}_{\mathrm{t}}$
$=\mathrm{R}_{\mathrm{a}} \mathrm{V}_{\mathrm{a}}=\mathrm{R}_{\mathrm{p}} \mathrm{V}_{\mathrm{p}}$
- $\mathrm{E}=1 / 2\left(\mathrm{~V}_{\mathrm{r}}^{2}+\mathrm{V}_{\mathrm{t}}^{2}\right)+\Phi(\mathrm{R}, 0)=1 / 2 \mathrm{~V}_{\mathrm{r}}^{2}+\Phi_{\mathrm{eff}}(\mathrm{R}, 0)$
$=1 / 2 V_{a}^{2}+\Phi\left(R_{a}, 0\right)$
$=1 / 2 \mathrm{~V}_{\mathrm{p}}^{2}+\Phi\left(\mathrm{R}_{\mathrm{p}}, 0\right)$

Orbit in axisymmetric disk potential ϕ (R, z).

- Energy/angular momentum of star (per unit mass)

$$
\begin{aligned}
E & =\frac{1}{2}\left[\dot{R}^{2}+(R \dot{\theta})^{2}+\dot{z}^{2}\right]+\Phi \\
& =\frac{1}{2}\left[\dot{R}^{2}+\dot{z}^{2}\right]+\frac{J_{z}^{2}}{2 R^{2}}+\Phi \\
& =\frac{1}{2}\left[\dot{R}^{2}+\dot{z}^{2}\right]+\Phi_{\text {eff }}(\mathbf{R}, \mathrm{z})
\end{aligned}
$$

- orbit bound within

$$
\Rightarrow E \geq \Phi_{\mathrm{eff}}(R, z)
$$

EoM for nearly circular orbits

- EoM:

$$
\ddot{R}=-\frac{\partial \Phi_{\text {eff }}}{\partial R} ; \quad \ddot{z}=-\frac{\partial \Phi_{\text {eff }}}{\partial z}
$$

$\frac{\partial \Phi_{\text {eff }}}{\partial R}=\frac{\partial \Phi_{\text {eff }}}{\partial z}=0 \quad$ at $\quad R=R_{g}, z=0$

- Taylor expand

$$
\begin{aligned}
\Phi_{\text {eff }} & =\frac{1}{2}\left(\frac{\partial^{2} \Phi_{\text {eff }}}{\partial R^{2}}\right)_{\left(R_{g}, 0\right)} x^{2}+\frac{1}{2}\left(\frac{\partial^{2} \Phi_{\text {eff }}}{\partial z^{2}}\right)_{\left(R_{g}, 0\right)} z^{2}+\ldots \\
& =\kappa^{2} x^{2} / 2+\quad v^{2} z^{2} / 2+\ldots
\end{aligned}
$$

$-x=R-R_{g}$

Links between dynamical quantities

Bekenstein \& Milgrom (1984)
Bekenstein (2004), Zhao \& Famaey (2006)

- Modify gravity g,
- Analogy to E-field in medium of varying Dielectric

$$
\begin{array}{rlrl}
-\nabla \cdot\left(\frac{\mathrm{g}}{4 \pi \overline{\mathrm{G}}}\right)=\rho_{*}(r) & & \\
\overline{\mathrm{G}}\left(\mathrm{~g} / \mathrm{a}_{0}\right) & =\left(1+\mathrm{a}_{0} / \mathrm{g}\right) \mathrm{G} & & \\
& \sim \mathrm{G} & & \text { if } \mathrm{g}=|\nabla \phi|>a_{0} \\
& \sim \mathrm{Ga} \mathrm{a}_{0} / g>\mathrm{G} & & \text { if } \mathrm{g}<\mathrm{a}_{0}
\end{array}
$$

- Gradient of Conservative potential

Sun's Vertical and radial epicycles

- harmonic oscillator $+/-10 \mathrm{pc}$ every $10^{8} \mathrm{yr}$
κ-epicyclic frequency :
v-vertical frequency :

$$
\ddot{\mathrm{R}}=-\kappa^{2} R, \quad \text { and } \quad \ddot{z}=-v^{2} z
$$

Stars are not enough: add Dark Matter in galaxies

MOND similar to DM in potential, rotation curve, orbit

Read \& Moore (2005)

Explained: Fall/Rise/wiggles in Ellip/Spiral/Dwarf galaxies

What have we learned?

- Orbits in a spherical potential or in the midplane of a disk potential
- How to relate Pericentre, Apocentre through energy and angular momentum conservation.
- Rotation curves of galaxies
- Need for Dark Matter or a boosted gravity

Tutorial: Singular Isothermal Sphere
$\begin{array}{ll}\text { - Has Potential Beyond } \mathrm{r}_{0}: & \phi(r)=-\frac{G M_{0}}{r} \\ \text { - And Inside } \mathrm{r}<\mathrm{r}_{0} & \phi(r) \stackrel{r}{=} v_{0}^{2} \ln \frac{r}{r_{o}}+\phi_{o}\end{array}$

- Prove that the potential AND gravity is continuous at $\mathrm{r}=\mathrm{r}_{\mathrm{o}}$

$$
\text { if } \quad \phi_{0}=-G M_{0} / r_{0}=-v_{0}^{2}
$$

- Prove density drops sharply to 0 beyond r 0 , and inside r 0

$$
\rho(r)=\frac{V_{0}^{2}}{4 \pi G r^{2}}
$$

- Integrate density to prove total mass=M0
- What is circular and escape velocities at $\mathrm{r}=\mathrm{r} 0$?
- Draw diagrams of $\mathrm{M}(\mathrm{r}), \mathrm{Vesc}(\mathrm{r}), \mathrm{V} \operatorname{cir}(\mathrm{r}),|\operatorname{Phi}(\mathrm{r})|$, rho(r), $|\mathrm{g}(\mathrm{r})|$ vs. r (assume $\mathrm{V} 0=200 \mathrm{~km} / \mathrm{s}, \mathrm{r} 0=100 \mathrm{kpc}$).

Another Singular Isothermal Sphere

- Consider a potential $\Phi(\mathrm{r})=\mathrm{V}_{0}{ }^{2} \ln (\mathrm{r})$.
- Use Jeans eq. to show the velocity dispersion σ (assume isotropic) is constant $\mathrm{V}_{0}^{2} / \mathrm{n}$ for a spherical tracer population of density $\mathrm{A}^{*} \mathrm{r}^{-1}$; Show
che we required constants $\mathrm{A}=\mathrm{V}_{0}{ }^{2} /(4 * \mathrm{Pi} * \mathrm{G})$. and $\mathrm{n}=2$ in order for the tracer to become a self-gravitating population. Justify why this model is called Singular Isothermal Sphere.
- Show stars with a phase space density $\mathrm{f}(\mathrm{E})=\exp \left(-\mathrm{E} / \sigma^{2}\right)$ inside this potential well will have no net motion $\langle\mathrm{V}\rangle=0$, and a constant rms velocity σ in all directions.
- Consider a black hole of mass m on a rosette orbit bound between pericenter r_{0} and apocenter $2 r_{0}$. Suppose the black hole decays its orbit due to dynamical friction to a circular orbit $\mathrm{r}_{0} / 2$ after time dissipated? By what percentage has the tidal radius of the BH reduced? How long would the orbital decay take for a smaller black hole of mass $\mathrm{m} / 2$ in a small galaxy of potential $\Phi(\mathrm{r})=0.25 \mathrm{~V}_{0}{ }^{2} \ln (\mathrm{r})$.

Incompressible $\mathrm{df} / \mathrm{dt}=0$

- $\mathrm{N}_{\text {star }}$ identical particles moving in a small bundle in phase space $\left(\mathrm{Vol}=\Delta_{\mathrm{x}} \Delta_{\mathrm{p}}\right)$,
- phase space deforms but maintains its area. - Likewise for $y-p_{y}$ and $z-p_{z}$.

$\frac{d V o l}{d \lambda}=0, \frac{d N s t a r}{d \lambda}=0, \quad$ 'LIOUVILLES THEOREM'
Phase space density $\mathrm{f}=\mathrm{Nstars} / \Delta_{\mathrm{x}} \Delta_{\mathrm{p}} \sim$ const

Stars flow in phase-space

- Flow of points in phase space ~ stars moving along their orbits.
- phase space coords: $(\underline{x}, \underline{v}) \equiv \underline{w} \equiv\left(w_{1}, w_{2}, \ldots, w_{6}\right)$

$$
\underline{\dot{w}}=(\underline{\dot{x}}, \underline{\dot{v}})=(\underline{v},-\nabla \Phi)
$$

Collisionless Boltzmann

 Equation- Collisionless df/dt=0:

$$
\begin{aligned}
& \text { less dt/dt=0: } \\
& \frac{\mathrm{d}}{\mathrm{dt}} f(x, v, t)=\left(\frac{\partial}{\partial t}+\sum_{\alpha=1}^{6} \dot{w}_{\alpha} \frac{\partial}{\partial w_{\alpha}}\right) f(w, t)=0 \\
& \frac{\partial f}{\partial t}+\sum_{i=1}^{3}\left[v_{i} \frac{\partial f}{\partial x_{i}}-\frac{\partial \Phi}{\partial x_{i}} \frac{\partial f}{\partial v_{i}}\right]=0
\end{aligned}
$$

- Vector form

$$
\frac{\partial f}{\partial t}+\underline{v} \cdot \nabla f-\nabla \Phi \cdot \frac{\partial f}{\partial \underline{v}}=0
$$

