Tutorial Questions AS4021

- You can print these into a sheet of tutorial questions
- Sun has circulated the galaxy for 30 times
- velocity vector changes direction $+/-200 \mathrm{~km} / \mathrm{s}$ twice each circle ($\mathrm{R}=8 \mathrm{kpc}$)
- Argue that the MW is a nano-earth-gravity Lab
- Argue that the gravity due to 10^{10} stars only within 8 kpc is barely enough. Might need to add Dark Matter.

Example: Force field of two-body

 system in Cartesian coordinates$\phi(\vec{r})=-\sum_{i=1}^{2} \frac{G \cdot m_{i}}{\left|\vec{r}-\vec{R}_{i}\right|}$, where $\vec{R}_{i}=(0,0,-i) * a, m_{i}=m_{\text {。 }}$
Sketch the configuration, sketch equal potential contours $\phi(x, y, z)=$?
$\vec{g}(\vec{r})=\left(g_{x}, g_{y}, g_{z}\right)=-\nabla \phi(\vec{r})=\left(-\frac{\partial \phi}{\partial x},-\frac{\partial \phi}{\partial y},-\frac{\partial \phi}{\partial z}\right)$
$\|\vec{g}(\vec{r})\|=\sqrt{\left(g_{x}^{2}+g_{y}^{2}+g_{z}^{2}\right)}=$?
sketch field lines. at what positions is force $=0$?

Outer solar system

- The Pioneer experiences an anomalous non-Keplerian acceleration of $10^{-8} \mathrm{~cm} \mathrm{~s}^{-2}$
- What is the expected acceleration at 10 AU ?
- Explain a few possible causes for the anomaly.

C2.7 density of phase space fluid: Analogy with air molecules

- air with uniform density $\mathrm{n}=10^{23} \mathrm{~cm}^{-3}$

Gaussian velocity rms velocity $\sigma=0.3 \mathrm{~km} / \mathrm{s}$ in $\mathrm{x}, \mathrm{y}, \mathrm{z}$ directions:

- Estimate $f(0,0,0,0,0,0)$ in $\mathrm{pc}^{-3}(\mathrm{~km} / \mathrm{s})^{-3}$
Asser Commanau bymanals

Example 2: A 4-body problem

- Four point masses with $\mathrm{G} \mathrm{m}=1$ at rest $(\mathrm{x}, \mathrm{y}, \mathrm{z})=(0,1,0),(0,-1,0),(-$ $1,0,0),(1,0,0)$. Show the initial total energy
Einit $=4^{*}\left(1 / 2+2^{-1 / 2}+2^{-1 / 2}\right) / 2=3.8$
- Integrate EoM by brutal force for one time step $=1$ to find the positions/velocities at time $\mathrm{t}=1$.
- Use $\mathrm{V}=\mathrm{V}_{0}+\mathrm{gt}=\mathrm{g}=(\mathrm{u}, \mathrm{u}, 0) ; \mathrm{u}=2^{1 / 2 / 4}+2^{1 / 2 / 4}+1 / 4=0.95$
- Use $x=x_{0}+V_{0} t=x_{0}=(0,1,0)$.
- How much does the new total energy differ from initial?

E- Einit $=1 / 2\left(u^{2}+u^{2}\right) * 4=2 u^{2}=1.8$

Example 6: Plummer Model for star cluster

- A spherically symmetric potential of the form:

$$
\phi=-\frac{G M}{\sqrt{r^{2}+a^{2}}}
$$

e.g., for a globular cluster $\mathrm{a}=1 \mathrm{pc}, \mathrm{M}=10^{5}$ Sun Mass show $\operatorname{Vesc}(0)=30 \mathrm{~km} / \mathrm{s}$

- Show corresponding to a density (use Poisson's
eq):

$$
\rho=\frac{3 M}{4 \pi a^{3}}\left(1+\frac{r^{2}}{a^{2}}\right)^{-\frac{5}{2}}
$$

- For a uniform sphere of density ρ_{0} and radius r_{0}.

Compute the total mass.
Compute the potential as function of radius. Plot the potential and gravity as functions of radius.
Compute the pressure at the center of the sphere, assuming isotropic dispersion.
Compute the total potential energy.

Concepts

- Phase space density
- incompressible
- Dimension Mass/[Length ${ }^{3}$ Velocity ${ }^{3}$]
- a pair of non-relativistic Fermionic particle occupy minimal phase space $\left(\mathrm{x}^{*} \mathrm{v}\right)^{3}>(\mathrm{h} / \mathrm{m})^{3}$, Show it has a maximum phase density $=2 \mathrm{~m}$ (h/m) ${ }^{-3}$

A worked-out example 7:
 Hernquist Potential for stars in a galaxy

$\phi_{*}(r)=-\frac{G M_{0}}{a+r}$, use Poisson eq. show
$\rho_{*}(r)=\frac{M_{0}}{2 \pi a^{3}}\left(\frac{r}{a}\right)^{-1}\left(1+\frac{r}{a}\right)^{-2}$

- E.g., $a=1000 \mathrm{pc}, \mathrm{M}_{0}=10^{10}$ solar, show central escape velocity $\operatorname{Vesc}(0)=300 \mathrm{~km} / \mathrm{s}$,
- Show M_{0} has the meaning of total mass
- Potential at large r is like that of a point mass M_{0}
- Integrate the density from $r=0$ to inifnity also gives M_{0}

Fist session lec5

Tutorial: Singular Isothermal Sphere

- Has Potential Beyond r_{o} : $\quad \phi(r)=-\frac{G M_{0}}{r^{2}}$
- And Inside $\mathrm{r}<\mathrm{r}_{0}$
$\phi(r)=v_{0}^{2} \ln \frac{r}{r}+\phi_{o}$
- Prove that the potential AND gravity is corftinuous at $\mathrm{r}=\mathrm{r}_{\mathrm{o}}$
if $\quad \phi_{0}=-G M_{0} / r_{0}=-v_{0}^{2}$
- Prove density drops sharply to 0 beyond r 0 , and inside r0

$$
\rho(r)=\frac{V_{0}^{2}}{4 \pi G r^{2}}
$$

- Integrate density to prove total mass=M0
- What is circular and escape velocities at $\mathrm{r}=\mathrm{r} 0$?
- Draw diagrams of $\mathrm{M}(\mathrm{r}), \operatorname{Vesc}(\mathrm{r}), \operatorname{Vcir}(\mathrm{r}),|\operatorname{Phi}(\mathrm{r})|, \rho(\mathrm{r})$, $|\mathrm{g}(\mathrm{r})|$ vs. r (assume $\mathrm{V} 0=200 \mathrm{~km} / \mathrm{s}, \mathrm{r} 0=100 \mathrm{kpc}$).

For An anisotropic incompressible spherical fluid, e.g, $f(E, L)=\exp (-$
$\mathrm{E} / \mathrm{\sigma}_{0}{ }^{2}-\mathrm{L}^{2 \beta}$ [BT4.4.4]

- Verify $\left\langle\mathrm{V}_{\mathrm{r}}{ }^{2}\right\rangle=\sigma_{0}{ }^{2},\left\langle\mathrm{~V}_{\mathrm{t}}^{2}\right\rangle=2(1-\beta) \sigma_{0}^{2}$
- Verify $\left\langle\mathrm{V}_{\mathrm{r}}>=0\right.$
- For a spherical potential, Prove angular momentum x-component is conserved in a spherical potential; Is the angular momentum conserved if the potential varies with time.

Another Singular Isothermal Sphere

Consider a potential $\Phi(\mathrm{r})=\mathrm{V}_{0}{ }^{2} \ln (\mathrm{r})$
Use Jeans eq. to show the velocity dispersion σ (assume isotropic) is
 we required constants $\mathrm{A}=\mathrm{V}_{0}{ }^{2}(4 * \mathrm{Pi} * \mathrm{G})$. and $\mathrm{n}=2$ in order for the tracer to become a self-gravitating population. Justify why this mode
is called Singular Isothermal Sphere.
Show stars with a phase space density $\mathrm{f}(\mathrm{E})=\exp \left(-\mathrm{E} / \sigma^{2}\right)$ inside this pelocity σ in all directions.
Consider a black hole of mass m on a rosette orbit bound between pericenter r_{0} and apocenter $2 r_{0}$. Suppose the black hole decays its orbit due to dynamical friction to a circular orbit $r_{0} / 2$ after time t_{0}. How much orbital energy and angular momentum have been
dissipated? By what percentage has the tidal radius of the BH reduced? How long would the orbital decay take for a smaller blac hole of mass $\mathrm{m} / 2$ in a small galaxy of potential $\Phi(\mathrm{r})=0.25 \mathrm{~V}_{0}{ }^{2} \ln (\mathrm{r})$. Argue it would take less time to decay from r_{0} to $\mathrm{r}_{0} / 2$ then from $\mathrm{r}_{0} / 2$ to
0 .

C9.4: Spherical Isotropic f(E) Equilibriums [BT4.4.3]

- ISOTROPIC $\beta=0$:The distribution function $\mathrm{f}(\mathrm{E})$ only depends on $|\mathrm{V}|$ the modulus of the velocity, same in all velocity directions.

$$
f(E), E=|\vec{v}|^{2} / 2+\phi(r)
$$

show $\sigma^{2}=\sigma_{x}^{2}=\sigma_{y}^{2}=\sigma_{z}^{2}=\sigma_{r}^{2}=\frac{1}{2} \sigma_{\text {tangential }}^{2}$
$\left\langle\bar{v}_{x} \vec{v}_{y}\right\rangle=0$

A toy galaxy
$\phi(R, z)=0.5 v_{0}^{2} \ln \left(R^{2}+2 z^{2}\right)-v_{0}^{2}\left(1+\left(R^{2}+z^{2}\right) / 1 k p c^{2}\right)^{-1 / 2}$, $\nu 0=100 \mathrm{~km} / \mathrm{s}$. Argue 1st \& 2nd terms of above galaxy potential resemble dark halo and stars respectively Calculate the circular velocity and dark halo density on equator $(\mathrm{R}, \mathrm{z})=(1 \mathrm{kpc}, 0)$
Estimate the total mass of stars and dark matter inside 10 kpc
Estimate the star column density inside $|\mathrm{z}|<0.1 \mathrm{kpc}, \mathrm{R}=1 \mathrm{kpc}$.

Size and Density of a BH

- A black hole has a finite (schwarzschild) radius $\mathrm{R}_{\mathrm{bh}}=2 \mathrm{G} \mathrm{M}_{\mathrm{bh}} / \mathrm{c}^{2} \sim 2 \mathrm{au}\left(\mathrm{M}_{\mathrm{bh}} / 10^{8} \mathrm{M}_{\mathrm{sun}}\right)$ - verify this! What is the mass of 1 cm BH?
- A BH has a density ($3 / 4 \mathrm{Pi}$) $\mathrm{M}_{\mathrm{bh}} / \mathrm{R}_{\mathrm{bh}}{ }^{3}$, hence smallest holes are densest.
- Compare density of 10^{8} Msun BH with Sun (or water) and a giant star (10Rsun).

Short question

- Recalculate the instantaneous Roche Lobe for satellite on radial orbit, but assume
Host galaxy potential $\Phi(\mathrm{R})=\mathrm{V}_{0}{ }^{2} \ln (\mathrm{R})$
Satellite self-gravity potential $\varphi(\mathrm{r})=\mathrm{v}_{0}{ }^{2} \ln (\mathrm{r})$, where $\mathrm{v}_{0}, \mathrm{~V}_{0}$ are constants.
- Show $M=V_{0}{ }^{2} R / G, m=v_{0}{ }^{2} r / G$,
- Hence Show $\mathrm{r}_{\mathrm{t}} / \mathrm{R}=\operatorname{cst} \mathrm{v}_{0} / \mathrm{V}_{0}$, cst $=\mathrm{k}^{1 / 2}$

Motions in spherical potential

Equation of motion	If spherical
$\frac{\mathrm{d} \mathbf{x}}{\mathrm{dt}}=\mathbf{v}$	$g_{r}=-\frac{\partial \phi}{\partial r}$
$\frac{\mathrm{~d} \mathbf{v}}{\mathrm{~d}}=\bar{g}=-\nabla \phi$	$g_{\theta}=-\frac{\partial \phi}{\partial \theta}=0$
If no gravity	Conserved if spherical static
$\mathbf{x}(t)=\mathbf{v}_{\mathbf{0}} t+\mathbf{x}_{0}$	$\mathrm{E}=\frac{1}{2} v^{2}+\phi(r)$
$\mathbf{v}(t)=\mathbf{v}_{0}$	$L=J=\mathbf{x} \otimes \mathbf{v}=r v_{t} \cdot \hat{n}$

Short questions

- Turn the Sun's velocity direction (keep amplitude) such that the Sun can fall into the BH at Galactic Centre. How accurate must the aiming be in term of angles in arcsec? Find input values from speed of the Sun, BH mass and distances from literature.
- Consider a giant star (of 100 solar radii, 1 solar mass) on circular orbit of 0.1 pc around the BH how big is its tidal radius in terms of solar radius? The star will be drawn closer to the BH as it grows. Say BH becomes 1000 as massive as now what is the new tidal radius in solar radius?

Link phase space quantities

Link quantities in spheres

\qquad

Helpful Math/Approximations (To be shown at AS4021 exam)

- Convenient Units
- Gravitational Constant
- Laplacian operator in various coordinates

Phase Space Density $f(x, v)$ relation with the mass in a small position cube and velocity cube

$1 \mathrm{~km} / \mathrm{s} \sim \frac{1 \mathrm{pc}}{1 \mathrm{Myr}} \sim \frac{1 \mathrm{kpp}}{1 \mathrm{Gyy}}$
$G \sim 4 \times 10^{-3} \mathrm{pc}(\mathrm{km} / \mathrm{s})^{2} \mathrm{M}_{\text {sun }}^{-1}$
$G \sim 4 \times 10^{-6}{ }_{\mathrm{kpc}}\left(\mathrm{km} / \mathrm{s}^{2} \mathrm{M}_{\mathrm{sun}}^{-1}\right.$
$\nabla \cdot \nabla-\partial_{x}^{2}+\partial_{y}^{2}+\partial_{z}^{2}$ (rectangular)
$\left.-\mathrm{R}^{-1} \partial_{R^{(R \partial}}{ }_{R}\right)+\partial_{z}^{2}+\mathrm{R}^{-2} \partial_{\phi}^{2}$ (cylindrical)
$-\frac{\partial_{r}\left(r^{2} \partial_{r}\right)}{\mathrm{r}^{2}}+\frac{\partial_{\theta}\left(\sin \theta \theta_{\theta}\right)}{\mathrm{r}^{2} \sin \theta}+\frac{\partial_{\phi}^{2}}{\mathrm{r}^{2} \sin \theta^{2}}($ spherical)
$\mathrm{dM}-f(x, v) \mathrm{dx} \mathrm{d}^{3} \mathrm{dv}^{3}$

