

- You can print these into a sheet of tutorial questions
- M31 (now at 500 kpc) separated from MW a Hubble time ago
- Large Magellanic Cloud has circulated our Galaxy for about 5 times at 50 kpc
 - argue both neighbours move with a typical 100-200km/s velocity relative to us.

2

- Sun has circulated the galaxy for 30 times

 velocity vector changes direction +/- 200km/s
 - twice each circle (R = 8 kpc) - Argue that the MW is a nano-earth-gravity Lab
 - Argue that the low is a nano-cartingravity had
 Argue that the gravity due to 10¹⁰ stars only
 - within 8 kpc is barely enough. Might need to add Dark Matter.

Outer solar system

- The Pioneer experiences an anomalous non-Keplerian acceleration of 10⁻⁸ cm s⁻²
 - What is the expected acceleration at 10 AU?
 - Explain a few possible causes for the anomaly.

Example: Force field of two-body system in Cartesian coordinates $\phi(\vec{r}) = -\sum_{i=1}^{2} \frac{G \cdot m_{i}}{\left|\vec{r} - \vec{R}_{i}\right|}, \text{ where } \vec{R}_{i} = (0, 0, -i) * a, m_{i} = m_{\circ}$ Sketch the configuration, sketch equal potential contours $\phi(x, y, z) = ?$ $\vec{g}(\vec{r}) = (g_{x}, g_{y}, g_{z}) = -\nabla\phi(\vec{r}) = (-\frac{\partial\phi}{\partial x}, -\frac{\partial\phi}{\partial y}, -\frac{\partial\phi}{\partial z})$ $\|\vec{g}(\vec{r})\| = \sqrt{(g_{x}^{2} + g_{y}^{2} + g_{z}^{2})} = ?$

• For An anisotropic incompressible spherical fluid, e.g. $f(E,L) = \exp(-\frac{E/\sigma_2^2}{L^{26}} [BT4.4.4]$

- Verify $\langle V_r^2 \rangle = \sigma_0^2$, $\langle V_t^2 \rangle = 2(1-\beta) \sigma_0^2$
- Verify $\langle V_r \rangle = 0$
- For a spherical potential, Prove angular momentum x-component is conserved in a spherical potential; Is the angular momentum conserved if the potential varies with time.

C9.4: Spherical Isotropic f(E) Equilibriums [BT4.4.3] • ISOTROPIC β=0: The distribution function f(E) only depends on |V| the modulus of the velocity, same in all velocity directions. $f(E), E = |\vec{v}|^2 / 2 + \phi(r)$ $how \sigma^2 = \sigma_x^2 = \sigma_y^2 = \sigma_z^2 = \sigma_r^2 = \frac{1}{2}\sigma_{tangential}^2$ $e \vec{v}_x \vec{v}_y \ge 0$

15

17

 $\phi(R, z) = 0.5v_0^2 \ln(R^2 + 2z^2) - v_0^2 (1 + (R^2 + z^2)/1kpc^2)^{-1/2},$ v0 = 100km/s. Argue 1st & 2nd terms of above galaxy potential resemble dark halo and stars respectively. Calculate the circular velocity and dark halo density on equator (R,z) = (1kpc,0)

Estimate the total mass of stars and dark matter inside 10kpc. Estimate the star column density inside |z|<0.1kpc, R=1kpc.

Size and Density of a BH
A black hole has a finite (schwarzschild) radius R_{bh}=2 G M_{bh}/c² ~ 2au (M_{bh}/10⁸M_{sun}) – verify this! What is the mass of 1cm BH?
A BH has a density (3/4Pi) M_{bh}/R_{bh}³, hence smallest holes are densest.
Compare density of 10⁸Msun BH with Sun (or water) and a giant star (10Rsun).

18

