ADA02-9am Tue 13 Sep 2022
Eyeballing sigma (5-sigma rule)
Joint Probability Distributions Independence vs Correlation

Algebra of Random Variables:
Linear Transformations
Covariance Matrix
Correlation Coefficient / Matrix

43

45

Joint Probability Distribution $\quad f(X, Y)$

- X and Y are two random variables.
- Their joint probability distribution is $f(X, Y)$
- Normalisation:
$\iint f(X, Y) d X d Y=1$
- Projection gives $f(X), f(Y): \quad f(Y)=\int f(X, Y) d X$

47

44

46

48

The Algebra of Random Variables

Ordinary numbers are "sharp".

$$
1+1=2
$$

Random variables are "fuzzy" numbers
$(\mu \pm \sigma)$ is a shorthand notation giving the mean μ and standard deviation σ of a random variable

$$
(1 \pm 1)+(1 \pm 2)=(? \pm ?)
$$

How do the mean and variance change when we add or subtract or multiply fuzzy numbers?
How do the higher moments change?

Linear Transformations: Scaling

```
Constants: }\langlea\rangle=? \ Var(a)=
```

Scaling a random variable, X, by a constant, a :

$$
\begin{aligned}
& \text { - Mean: } \\
& \langle a X\rangle=a\langle X\rangle \\
& \langle a X\rangle=\int a X f(X) d X \\
& =a \int X f(X) d X=a\langle X\rangle \\
& \text { - Variance: } \\
& \operatorname{Var}(a X)=a^{2} \operatorname{Var}(X) \\
& \sigma(a X)=|a| \sigma(X) \\
& \operatorname{Var}(a X)=\left\langle[a X-\langle a X\rangle]^{2}\right\rangle \\
& =\left\langle[a X-a\langle X\rangle]^{2}\right\rangle \\
& =\left\langle a^{2}[X-\langle X\rangle]^{2}\right\rangle \\
& =a^{2} \operatorname{Var}(X) \\
& \text { "Stretch the paper" by a factor } a \text {. } \\
& =a^{2} \operatorname{Var}(X) \\
& \text { Location } \mu \text { and width } \sigma \text { then increase by factor } \mathbf{a} \text {. }
\end{aligned}
$$

Linear Transformations: Addition

- Adding two random variables X and Y :
$\langle X+Y\rangle \equiv \iint(X+Y) f(X, Y) d X d Y$
$=\iint X f(X, Y) d X d Y+\iint Y f(X, Y) d X d Y$
$=\int X\left[\int f(X, Y) d Y\right] d X+\int Y\left[\int f(X, Y) d X\right] d Y$
$=\int X f(X) d X+\int Y f(Y) d Y$
$\equiv\langle X\rangle+\langle Y\rangle$
- True for any joint PDF!

$$
\langle X+Y\rangle=\langle X\rangle+\langle Y\rangle
$$

51

Variance and Co-variance

- Variance of $X+Y$ depends on how X and Y co-vary:

$$
\begin{aligned}
\operatorname{Var}(X+Y) & =\operatorname{Var}(X)+\operatorname{Var}(Y)+2 \operatorname{Cov}(X, Y) \\
\operatorname{Cov}(X, Y) & \equiv\langle(X-\langle X\rangle)(Y-\langle Y\rangle)\rangle
\end{aligned}
$$

$\operatorname{Var}(X+Y) \equiv\left\langle[X+Y-\langle X+Y\rangle]^{2}\right\rangle$

$$
=\left\langle[X+Y-\langle X\rangle-\langle Y\rangle]^{2}\right\rangle
$$

$$
=\left\langle[(X-\langle X\rangle)+(Y-\langle Y\rangle)]^{2}\right\rangle
$$

$$
=\left\langle(X-\langle X\rangle)^{2}+(Y-\langle Y\rangle)^{2}+2(X-\langle X\rangle)(Y-\langle Y\rangle)\right\rangle
$$

$$
=\left\langle(X-\langle X\rangle)^{2}\right\rangle+\left\langle(Y-\langle Y\rangle)^{2}\right\rangle+2\langle(X-\langle X\rangle)(Y-\langle Y\rangle)\rangle
$$

$=\operatorname{Var}(X)+\operatorname{Var}(Y)+2 \operatorname{Cov}(X, Y)$

Why it works...

- Centre of mass is a well-defined position.

52

Co-variance vs Independence

- Cov>0

$$
\cdot \operatorname{Cov}=?
$$

Independent?

- Cov<0

- $\operatorname{Cov}=$?

54

55

Correlation Coefficient $R(X, Y)$

$R(X, Y) \equiv \frac{\operatorname{Cov}(X, Y)}{\sigma(X) \sigma(Y)}$

- Correlation matrix:

$$
R_{i j} \equiv \frac{\operatorname{Cov}\left(X_{i}, X_{j}\right)}{\sigma\left(X_{i}\right) \sigma\left(X_{j}\right)}=\left[\begin{array}{cccc}
1 & . & . & . \\
. & 1 & . & \cdot \\
. & . & 1 & . \\
. & . & . & 1
\end{array}\right]
$$

- Variance: $\quad \operatorname{Var}\left[\sum_{i} a_{i} X_{i}\right]=\sum_{i} \sum_{j} a_{i} a_{j} \sigma\left(X_{i}\right) \sigma\left(X_{j}\right) R_{i j}$

Linear Transformations

- Scale and add any number of random variables:

$$
\left\langle\sum_{i} a_{i} X_{i}\right\rangle=\sum_{i} a_{i}\left\langle X_{i}\right\rangle \quad \operatorname{Var}\left[\sum_{i} a_{i} X_{i}\right]=\sum_{i, j} a_{i} a_{j} \operatorname{Cov}\left(X_{i}, X_{j}\right)
$$

Or, in terms of the (symmetric) Co-variance Matrix:

$$
\begin{aligned}
& \operatorname{Var}\left[\sum_{i} a_{i} X_{i}\right]=\sum_{i, j} a_{i} C_{i j} a_{j} \\
& \operatorname{Var}\left[\begin{array}{ll}
\left.\left.\left(\begin{array}{ll}
a_{i} & \ldots \\
a_{N}
\end{array}\right)\left(\begin{array}{c}
X_{1} \\
\ldots \\
X_{N}
\end{array}\right)\right]=\begin{array}{lll}
a_{i} & \ldots & a_{N}
\end{array}\right)\left(\begin{array}{ccc}
C_{11} & \ldots & C_{1 N} \\
\ldots & \ldots & \ldots \\
C_{N 1} & \ldots & C_{N N}
\end{array}\right)\left(\begin{array}{c}
a_{1} \\
\ldots \\
a_{N}
\end{array}\right)
\end{array} .=\begin{array}{ll}
\\
\end{array}\right]
\end{aligned}
$$

56

58

Fini -- ADA 02

