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Central Limit Theorem  
(why Gaussians are special)

Statistics:
Sample Mean (unbiased)

vs
Optimal Average (unbiased, 

minimum variance)



Review:   Functions of Random Variables
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= !y (X)
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The Central Limit Theorem
• (a.k.a. the Law of Large Numbers)
• Sum up a large number N of independent random variables  Xi .
• The result resembles a Gaussian:

• The means and variances accumulate (algebra of random variables):

• But higher moments are forgotten.
• The original distributions f( Xi ) don’t matter -- all shape information is lost.
• This is why Gaussians are special.
• This is why measurements often give Gaussian error distributions.
• (Fast computers let us do more exact Monte Carlo analysis.)
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Example:   Coin Toss

C = +1    if heads
     −1    if tails
C = 0 σC

2 =1

SN ≡ Ci
i=1
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Coin Toss   =>   Gaussian



Uniform   =>   Gaussian



Biased Coin   =>   Gaussian



Poisson => Gaussian
• Poisson distribution  P(l)

– < X > = l , Var(X) = l,   x = 0, 1, 2, …
• Add N independent xi values:
• Sum xi ~  P( N l )
• CLT ensures that for large l, 

Poisson  ->  Gaussian:
– P( l ) => G ( µ, s2 )
– with  µ =  l,   s2 =  l
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Recap : Central Limit Theorem : (e.g. Coin Toss   =>   Gaussian)

Xi = µi ±σ i Xi
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Convolution of Gaussians  =  Gaussian

Convolution of Lorentzians =   Lorentzian
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Definition : What is a Statistic?
• Anything you measure or compute from the data.
• Any function of the data.
• Because the data “jiggle”, every statistic also “jiggles”.
• Example: the average of N data points is a statistic:

• It has a definite value for a particular dataset.
• It has a probability distribution describing how it  “jiggles”

with the ensemble of repeated datasets.

• Note that                        Why?
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Sample Mean : Average of N data points
Sample Mean                              is a statistic.

It has a probability distribution, 
with a mean value:

and a variance:
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Sample Mean: Unbiased  and lower Variance

If Xi have the same mean, < Xi > = < X > , then:

If Xi all have the same variance, Var[ Xi ] =  s2,              
and are uncorrelated,  Cov[ Xi, Xj ] = s2 di j , then:
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Many other Unbiased Statistics
• Sample median (half points above, half below)

• ( Xmax + Xmin ) / 2

• Any single point Xi chosen at random from sequence

• Weighted average:

• Which un-biased statistic is best ?
(best = minimum variance)
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Inverse-variance weights are best!
• Variance of the weighted mean  ( assume Cov[ Xi, Xj ] = si2 dij ) :

• What are the optimal weights ?
• The variance of the weighted average is minimised when:

• Let’s verify this -- it’s important!
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Optimising the weights
• To minimise the variance of the weighted average, set:
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The Optimal Average
• Good principles for constructing statistics:

– Unbiased ->   no systematic error
– Minimum variance  ->   smallest possible statistical error

• Optimal (inverse-variance weighted) average:

• Is unbiased, since:

• And minimum variance: € 
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Compare: Equal vs Optimal Weights
• Both are unbiased:
• Bad data spoils the Sample Mean (information lost).
• Optimal average ALWAYS improves with more data.
• Consider N = 2 :€ 
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Averaging Data with Equal Error Bars
2 data points with equal error bars:
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Averaging Data with Unequal Error Bars
2 data points with unequal error bars:

Optimal weights retain all the information.                                 
Optimal Average always improves with new data.
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Compare: Sample Mean vs Optimal Average
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Optimal weights:                                   
New data always improves the result.
Use ALL the data, but with appropriate 
1 / Variance weights.
Must have good error bars.

Equal weights:                                   
Poor data degrades the result.
Better to ignore “bad” data.
Information lost.
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