ADA04-9am Tue 20 Sep 2022
Central Limit Theorem (why Gaussians are special)

Statistics:
Sample Mean (unbiased) vs
Optimal Average (unbiased, minimum variance)

79

The Central Limit Theorem

- (a.k.a. the Law of Large Numbers)
- Sum up a large number N of independent random variables X_{i}.
- The result resembles a Gaussian:

$$
\sum_{i=1}^{N} X_{i} \rightarrow G\left(\mu, \sigma^{2}\right) \quad \text { as } N \rightarrow \infty
$$

- The means and variances accumulate (algebra of random variables):

$$
\mu=\sum_{i=1}^{N}\left\langle X_{i}\right\rangle \quad \sigma^{2}=\sum_{i=1}^{N} \sigma^{2}\left(X_{i}\right)
$$

- But higher moments are forgotten.
- The original distributions $f\left(X_{i}\right)$ don't matter -- all shape information is lost.
- This is why Gaussians are special.
- This is why measurements often give Gaussian error distributions.
- (Fast computers let us do more exact Monte Carlo analysis.)

Example: Coin Toss

83

Review: Functions of Random Variables
$Y=y(X) \quad \frac{d Y}{d X}=y^{\prime}(X)$

Conserve probability
$d($ Prob $)=f(Y)|\mathrm{d} Y|=f(X)|\mathrm{d} X|$
$f(Y)=f(X)\left|\frac{d X}{d Y}\right|=\frac{f(X)}{\left|y^{\prime}(X)\right|}$
mean value (biased)
$\langle Y\rangle=y(\langle X\rangle)+\frac{1}{2} y^{\prime \prime}(\langle X\rangle) \sigma_{x}^{2}+$
standard deviation (stretched)
$\sigma_{Y}=\sigma_{X}\left|\frac{d y}{d x}\right|_{X=(X)}+$

80

82

84

85

87

Definition : What is a Statistic?

- Anything you measure or compute from the data.
- Any function of the data.
- Because the data "jiggle", every statistic also "jiggles".
- Example: the average of N data points is a statistic:

$$
\bar{X} \equiv \frac{1}{N} \sum_{i=1}^{N} X_{i}
$$

- It has a definite value for a particular dataset.
- It has a probability distribution describing how it "jiggles" with the ensemble of repeated datasets.
- Note that $\bar{X} \neq\langle X\rangle$ Why?
- If $\left\langle X_{i}\right\rangle=\langle X\rangle$, then $\langle\bar{X}\rangle=\langle X\rangle$.

86

88

Sample Mean : Average of N data points

Sample Mean $\quad \bar{X} \equiv \frac{1}{N} \sum_{i=1}^{N} X_{i} \quad$ is a statistic.
It has a probability distribution,
with a mean value:

$$
\langle\bar{X}\rangle=\left\langle\frac{1}{N} \sum_{i} X_{i}\right\rangle=\frac{1}{N}\left\langle\sum_{i} X_{i}\right\rangle=\frac{1}{N} \sum_{i}\left\langle X_{i}\right\rangle
$$

and a variance:
$\operatorname{Var}(\bar{X})=\operatorname{Var}\left(\frac{1}{N} \sum_{i} X_{i}\right)=\frac{1}{N^{2}} \operatorname{Var}\left(\sum_{i} X_{i}\right)=\frac{1}{N^{2}} \sum_{i} \operatorname{Var}\left(X_{i}\right)$
assuming $\operatorname{Cov}\left[X_{a}, X_{b}\right]=\operatorname{Var}\left[X_{a}\right] \delta_{a b}$

Sample Mean: Unbiased and lower Variance

If X_{i} have the same mean, $\left\langle X_{i}\right\rangle=\langle X\rangle$, then:
$\langle\bar{X}\rangle=\frac{1}{N} \sum_{i=1}^{N}\left\langle X_{i}\right\rangle=\frac{N\langle X\rangle}{N}=\langle X\rangle$
$\therefore \quad \bar{X}$ is an unbiased estimator of $\langle X\rangle$.
If X_{i} all have the same variance, $\operatorname{Var}\left[X_{i}\right]=\sigma^{2}$, and are uncorrelated, $\operatorname{Cov}\left[X_{i}, X_{j}\right]=\sigma^{2} \delta_{i j}$, then:
$\operatorname{Var}(\bar{X})=\frac{1}{N^{2}}\left(\sum_{i} \operatorname{Var}\left(X_{i}\right)\right)=\frac{N \sigma^{2}}{N^{2}}=\frac{\sigma^{2}}{N}$
$\therefore \sigma(\bar{X})=\frac{\sigma}{\sqrt{N}}$, i.e. \bar{X} " jiggles" much less than a single data value X_{i} does.

91

Inverse-variance weights are best!

- Variance of the weighted mean (assume $\operatorname{Cov}\left[X_{i}, X_{j}\right]=\sigma^{2} \delta_{i j}$):
$\operatorname{Var}\left[\frac{\sum_{i} w_{i} X_{i}}{\sum_{i} w_{i}}\right]=\frac{\operatorname{Var}\left[\sum_{i} w_{i} X_{i}\right]}{\left(\sum_{i} w_{i}\right)^{2}}=\frac{\sum_{i} w_{i}^{2} \operatorname{Var}\left[X_{i}\right]}{\left(\sum_{i} w_{i}\right)^{2}}=\frac{\sum_{i} w_{i}^{2} \sigma_{i}^{2}}{\left(\sum_{i} w_{i}\right)^{2}}$
- What are the optimal weights ?
- The variance of the weighted average is minimised when.

$$
w_{i}=\frac{1}{\operatorname{Var}\left(X_{i}\right)} \equiv \frac{1}{\sigma_{i}^{2}} .
$$

- Let's verify this -- it's important!

93

The Optimal Average

- Good principles for constructing statistics:
- Unbiased -> no systematic error
- Minimum variance -> smallest possible statistical error
- Optimal (inverse-variance weighted) average:
N datapoints: $\quad X_{i}=\langle X\rangle \pm \sigma_{i}$
$\left\langle X_{i}\right\rangle=\langle X\rangle \quad \operatorname{Cov}\left[X_{i}, X_{j}\right]=\sigma_{i}^{2} \delta_{i j}$
- Is unbiased, since: $\langle\hat{X}\rangle=\langle X\rangle$
- And minimum variance:

Memorise!

Compare: Equal vs Optimal Weights

- Both are unbiased: $\langle\hat{X}\rangle=\langle\bar{X}\rangle=\left\langle X_{i}\right\rangle=\langle X\rangle$
- Bad data spoils the Sample Mean (information lost).
- Optimal average ALWAYS improves with more data.
- Consider $N=2$.

$$
\begin{array}{rr}
\bar{X}=\frac{X_{1}+X_{2}}{2} & \hat{X}=\frac{\frac{X_{1}}{\sigma_{1}^{2}}+\frac{X_{2}}{\sigma_{2}^{2}}}{\frac{1}{\sigma_{1}^{2}}+\frac{1}{\sigma_{2}^{2}}} \\
\operatorname{Var}[\bar{X}]=\frac{\sigma_{1}^{2}+\sigma_{2}^{2}}{4} & \operatorname{Var}[\hat{X}]=\frac{1}{\frac{1}{\sigma_{1}^{2}}+\frac{1}{\sigma_{2}^{2}}}
\end{array}
$$

Averaging Data with Equal Error Bars

2 data points with equal error bars:

$$
\begin{aligned}
& \bar{X}=\frac{0+1}{2}=\frac{1}{2}, \quad \sigma^{2}(\bar{X})=\frac{1^{2}+1^{2}}{4}=\frac{1}{2} . \\
& \hat{X}=\frac{\frac{0}{1^{2}}+\frac{1}{1^{2}}}{\frac{1}{1^{2}}+\frac{1}{1^{2}}}=\frac{1}{2}, \quad \sigma^{2}(\hat{X})=\frac{1}{\frac{1}{1^{2}}+\frac{1}{1^{2}}}=\frac{1}{2} .
\end{aligned}
$$

In this case $\hat{X}=\bar{X}$ since the σ_{i} are all the same.

