ADA10-9am Tue 04 Sep 2022

Vector Space Perspective
Data Space Metric
FITEXY : data with errors in both X and Y

Error Bars in both \mathbf{X} and Y

Wrong ways to fit a line :

1. $y(x)=a x+b \quad\left(\sigma_{x}=0\right)$
2. $x(y)=c y+d \quad\left(\sigma_{y}=0\right)$

3. split difference between 1 and 2 .

Example: Primordial He abundance:
Extrapolate fit line to $[\mathrm{O} / \mathrm{H}]=0$.

Correct method is to minimise :

$$
\chi^{2}(a, b)=\sum_{i=1}^{N} \frac{\left(Y_{i}-\left(a X_{i}+b\right)\right)^{2}}{\sigma^{2}\left(Y_{i}\right)+a^{2} \sigma^{2}\left(X_{i}\right)}
$$

Vector Space Perspective

N data points, M parameters. $(M<N)$

Model $\mu(\alpha)$ defines a parameterised M-dimensional surface in the N-dimensional data space.

With the "data-space metric" (distance in sigma units along each axis in data space), then
$\chi^{2}(\alpha)=$ squared distance from the observed data to the model surface.

For linear models (scaling patterns), the model surface is a flat M-dimensional hyper-plane.

Best-fit model is the one closest to the data.

Review: Vector Spaces

Vectors have a direction and a length. Addition of vectors gives another vector. Scaling a vector stretches its length. Dot product:

$$
\begin{gathered}
\underline{\mathbf{a}} \cdot \underline{\mathbf{b}}=|\underline{\mathbf{a}}||\underline{\mathbf{b}}| \cos \theta \\
\theta=\text { "angle" between vectors } \underline{\mathbf{a}, \underline{\mathbf{b}} .}
\end{gathered}
$$

"Length" of a vector: $|\underline{\mathbf{a}}|^{2} \equiv \underline{\mathbf{a}} \cdot \underline{\mathbf{a}}$
(=distance from base to tip)
"Distance" between 2 vectors: | $\underline{\mathbf{a}}$ - $\underline{\mathbf{b}}$ |

Ortho-normal Basis Vectors

Ortho-normal basis vectors $\underline{\mathbf{e}}_{i}$:

$$
\underline{\mathbf{e}}_{i} \cdot \underline{\mathbf{e}}_{j}=\delta_{i j}= \begin{cases}1 & i=j \\ 0 & i \neq j\end{cases}
$$

Any vector $\underline{\mathbf{a}}$ is a linear combination of the N basis vectors $\underline{\mathbf{e}}_{i}$, with scale factors a_{i}
Example:

Data Space is a Vector Space

N data points define a vector in N-dimensional "data space":

$$
\begin{aligned}
\underline{\mathbf{x}} & =\left\{x_{1}, x_{2}, \ldots, x_{N}\right\} \\
& =x_{1} \underline{\mathbf{e}}_{1}+x_{2} \underline{\mathbf{e}}_{2}+\ldots+x_{N} \underline{\mathbf{e}}_{N}
\end{aligned}
$$

N basis vectors:

$$
\begin{aligned}
& \mathbf{e}_{1}=\{1,0, \ldots, 0\} \\
& \underline{\mathbf{e}}_{2}=\{0,1, \ldots, 0\} \\
& \ldots \\
& \underline{\mathbf{e}}_{N}=\{0,0, \ldots, 1\}
\end{aligned}
$$

- Basis is ortho-normal if:

$$
\underline{\mathbf{e}}_{i} \bullet \underline{\mathbf{e}}_{j}=\delta_{i j}
$$

- Basis vector $\underline{\mathbf{e}}_{i}$ selects data point $x_{i}: \quad \underline{\mathbf{x}} \bullet \underline{\mathbf{e}}_{i}=x_{i}$
- Data point \boldsymbol{x}_{i} is the projection of data vector $\underline{\mathbf{x}}$ along the basis vector $\underline{\mathbf{e}}_{i}$.

Non-orthogonal Basis Vectors

In the non-orthogonal case,

$$
\underline{\mathbf{e}}_{1} \bullet \underline{\mathbf{e}}_{2}=\cos \theta \neq 0
$$

Two ways to measure coordinates:

- Contravariant coordinates (index high): x^{i} project parallel to basis vectors:

$$
\underline{\mathbf{x}}=x^{1} \underline{\mathbf{e}}_{1}+x^{2} \underline{\mathbf{e}}_{2}+\ldots+x^{N} \underline{\mathbf{e}}_{N}
$$

- Covariant coordinates (index low): x_{i} project perpendicular to basis vectors.

$$
\begin{aligned}
& x_{1}=x^{1}+x^{2} \cos \theta \\
& x_{2}=x^{2}+x^{1} \cos \theta
\end{aligned}
$$

$$
\begin{gathered}
x_{i}=\sum_{j} g_{i j} x^{j} \\
\text { - Metric tensor: } \quad g_{i j} \equiv \underline{\mathbf{e}}_{i} \bullet \underline{\mathbf{e}}_{j}
\end{gathered} \quad\left[\begin{array}{c}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{cc}
1 & \cos \theta \\
\cos \theta & 1
\end{array}\right]\left[\begin{array}{c}
x^{1} \\
x^{2}
\end{array}\right]
$$

Dot product:

$$
\underline{\mathbf{x}} \bullet \underline{\mathbf{y}}=\sum_{i, j} x^{i} y^{j} \underline{\mathbf{e}}_{i} \bullet \underline{\mathbf{e}}_{j}=\sum_{i, j} x^{i} y^{j} g_{i j}=\sum_{i} x^{i} y_{i}=\sum_{j} x_{j} y^{j}
$$

Metric for non-orthonormal Basis Vectors

$$
g_{i j} \equiv \underline{\mathbf{e}}_{i} \cdot \underline{\mathbf{e}}_{j}=\left\{\begin{array}{cc}
\left|\underline{\mathbf{e}}_{1}\right|^{2} & \left|\underline{\mathbf{e}}_{1}\right|\left|\underline{\mathbf{e}}_{2}\right| \cos \theta \\
\left|\underline{\mathbf{e}}_{1}\right|\left|\underline{\mathbf{e}}_{2}\right| \cos \theta & \left|\underline{\mathbf{e}}_{2}\right|^{2}
\end{array}\right\}
$$

Metric is symmetric: $g_{i j}=g_{j i}$.
Off-diagonal terms vanish if the basis vectors are orthogonal.
Diagonal terms define the lengths of the basis vectors.

Data sets and Functions as Vector Spaces

- A data set, $X_{i}, i=1, \ldots, N$, is also an N-component vector ($X_{1}, X_{2}, \ldots, X_{N}$), one dimension for each data point.
- The data vector is a single point in the \mathbf{N}-dimensional data space.
- A function, $f(t)$, is a vector in an infinite-dimensional vector space, one dimension for each value of t.
- The "dot product" between 2 functions depends on a weighting function $w(t)$:

$$
\begin{array}{r}
\langle f, g\rangle \equiv \int_{-\infty}^{\infty} f(t) g(t) w(t) d t \\
\begin{array}{l}
\text { Weighting } \\
\text { function }
\end{array}
\end{array}
$$

Each weighting function $w(t)$ gives a different dot product, a different distance measure, a different vector space.

Which w(t) to use for data analysis?

χ^{2} as (distance) ${ }^{2}$ in function space

- The (absolute value) ${ }^{2}$ of a function $f(t)$:

$$
\|f\|^{2} \equiv\langle f, f\rangle=\int f^{2}(t) w(t) d t
$$

- The (distance) ${ }^{2}$ between $f(t)$ and $g(t)$:

$$
\|f-g\|^{2} \equiv\langle f-g, f-g\rangle=\int(f(t)-g(t))^{2} w(t) d t
$$

- A dataset $\left(X_{i}+/-\sigma_{i}\right)$ at $t=t_{i}$ defines a specific weighting function:

$$
w(t) \equiv \sum_{i=1}^{N} \frac{\delta\left(t-t_{i}\right)}{\sigma_{i}^{2}}
$$

- With this $w(t)$, the (distance) $)^{2}$ from data $X(t)$ to model $\mu(t)$ is χ^{2}.

$$
\|X-\mu\|^{2}=\sum_{i=1}^{N}\left(\frac{X_{i}-\mu\left(t_{i}\right)}{\sigma_{i}}\right)^{2}=\chi^{2} .
$$

Each dataset defines its own weighting function.

The Data-Space Metric: σ is the unit of distance. $\quad \chi^{2}$ is (distance) ${ }^{2}$

- Define the data-space dot product with inverse-variance weights:

$$
\begin{aligned}
& w_{i}=\frac{1}{\sigma_{i}^{2}} \Rightarrow \underline{\mathbf{a}} \cdot \underline{\mathbf{b}}=\sum_{i=1}^{N} a_{i} b_{i} w_{i}=\sum_{i=1}^{N} \frac{a_{i} b_{i}}{\sigma_{i}^{2}} \\
& |\underline{\mathbf{a}}-\underline{\mathbf{b}}|^{2}=\sum_{i=1}^{N}\left(\frac{a_{i}-b_{i}}{\sigma_{i}}\right)^{2}
\end{aligned}
$$

- Then, the (distance) ${ }^{2}$ between data $\underline{\mathbf{x}}$ and parameterised model $\underline{\mu}(\alpha)$ is:

$$
\chi^{2}=\sum_{i=1}^{N}\left(\frac{X_{i}-\mu_{i}(\alpha)}{\sigma_{i}}\right)^{2}=|\underline{\mathbf{X}}-\underline{\mu}(\alpha)|^{2} .
$$

Optimal Scaling in Vector Space Notation

- Minimise $\chi^{2}->$ pick model closest to the data.
- Scaling a pattern: $\boldsymbol{\mu}(\alpha)=\alpha \underline{\mathbf{P}}$:

$$
\left\langle X_{i}\right\rangle=\mu_{i}(\alpha)=\alpha P_{i}
$$

- The pattern $\underline{\mathbf{P}}$ is a vector in data space.
- The model $\alpha \underline{\mathbf{P}}$ is a line in data space, multiples of $\underline{\mathbf{P}}$.
- The best fit is the point along the line closest to the data $\underline{\mathbf{X}}$

$$
\begin{aligned}
& \hat{\alpha}=\frac{\sum X_{i} P_{i} / \sigma_{i}^{2}}{\sum P_{i}^{2} / \sigma_{i}^{2}}=\frac{\underline{\mathbf{X}} \cdot \underline{\mathbf{P}}}{\mathbf{P} \cdot \underline{\mathbf{P}}} \\
& \underline{\mu}(\hat{\alpha})=\hat{\alpha} \underline{\mathbf{P}}=\left(\underline{\underline{\mathbf{X}} \cdot \underline{\mathbf{P}}}(\underline{\mathbf{P}} \cdot \underline{\mathbf{P}}) \underline{\mathbf{P}}=\left(\underline{\mathbf{X}} \cdot \underline{\mathbf{e}}_{P}\right) \underline{\mathbf{e}}_{P}\right. \\
& \text { - Unit vector along } \underline{\mathbf{P}} \text { : } \quad \underline{\mathbf{e}}_{P} \equiv \frac{\mathbf{P}}{|\underline{\mathbf{P}}|}
\end{aligned}
$$

Stretching the Basis Vectors

Using the vector notation,

$$
\hat{\alpha}=\frac{\mathbf{P} \cdot \underline{\mathbf{x}}}{\mathbf{P} \cdot \underline{\mathbf{P}}}=\frac{\sum_{i} \sum_{j} X^{i} P^{j} g_{i j}}{\sum_{i} \sum_{j} P^{i} P^{j} g_{i j}}=\frac{\sum_{i} X^{i} P^{i} / \sigma_{i}^{2}}{\sum_{i}\left(P^{i}\right)^{2} / \sigma_{i}^{2}}
$$

$$
\mathbf{e}_{1}=\{1,0, \ldots, 0\}
$$

$$
\mathbf{e}_{2}=\{0,1, \ldots, 0\}
$$

So the \mathbf{e}_{i} basis vectors are orthogonal but not unit length, given the data-space metric

$$
g_{i j}=\underline{e}_{i} \bullet \underline{e}_{j}=\frac{1}{\sigma_{i}^{2}} \delta_{i j}
$$

$$
\mathbf{e}_{N}=\{0,0, \ldots, 1\}
$$

i.e. σ_{i} is the natural unit of distance on the i_{th} axis of data space!

We can "stretch" basis vectors \underline{e}_{i} by factor σ_{i} to define a new set of ortho-normal basis vectors $\underline{\mathbf{b}}_{i}$:

$$
\begin{aligned}
& \underline{\mathbf{b}}_{1}=\left\{\sigma_{1}, 0, \ldots, 0\right\} \\
& \mathbf{b}_{2}=\left\{0, \sigma_{2}, \ldots, 0\right\}
\end{aligned}
$$

$$
\underline{\mathbf{b}}_{i} \equiv \sigma_{i} \underline{\mathbf{e}}_{i} \quad \underline{\mathbf{b}}_{i} \cdot \underline{\mathbf{b}}_{j}=\delta_{i j}
$$

$$
\underline{\mathbf{b}}_{N}=\left\{0,0, \ldots, \sigma_{N}\right\}
$$

Stretch basis vectors to make χ^{2} ellipses become circles

Old basis vectors:

$$
\underline{\mathbf{x}}=\sum_{i=1}^{N} x_{i} \underline{\mathbf{e}}_{i} \quad g_{i j}=\underline{\mathbf{e}}_{i} \bullet \underline{\mathbf{e}}_{j}=\frac{\delta_{i j}}{\sigma_{i}^{2}}
$$

Orthogonal, but not normalised.

"Stretched" basis vectors are orthonormal:

Error Bars in both \mathbf{X} and \mathbf{Y}

Wrong ways to fit a line :

1. $y(x)=a x+b \quad\left(\sigma_{x}=0\right)$
2. $x(y)=c y+d \quad\left(\sigma_{y}=0\right)$

3. split difference between 1 and 2 .

Example: Primordial He abundance:

Extrapolate fit line to $[\mathrm{O} / \mathrm{H}]=0$.

Key concept: $X+/-\sigma_{X}$ and $Y+/-\sigma_{Y}$
 are 2 independent dimensions of the $\mathbf{2 N}$-dimensional data space.

Line Fit with error bars in both X and Y

Data: $X \pm \sigma_{X} \quad Y \pm \sigma_{Y}$
Model: $\quad y=a x+b$

For $\sigma_{X} \neq \sigma_{Y}$, where is the point of closest approach?

Not obvious. :

Horizontal stretch by factor σ_{Y} / σ_{X} makes the probability cloud round. Also changes the slope: $a=>a$ '

Closest approach at $R=\Delta y \cos \theta$

$$
\begin{aligned}
& \left(\frac{R}{\Delta y}\right)^{2}=\frac{\cos ^{2} \theta}{\cos ^{2} \theta+\sin ^{2} \theta}=\frac{1}{1+\tan ^{2} \theta}=\frac{\sigma_{Y}^{2}}{\sigma_{Y}^{2}+a^{2} \sigma_{X}^{2}} \\
& \left(\frac{R}{\sigma_{Y}}\right)^{2}=\left(\frac{\Delta y}{\sigma_{Y}} \frac{R}{\Delta y}\right)^{2}=\frac{\Delta y^{2}}{\sigma_{Y}^{2}+a^{2} \sigma_{X}^{2}}
\end{aligned}
$$

Defining χ^{2} for errors in both X and Y

Horizontal stretch makes probability cloud round.
Circle radius is $\sigma_{Y}=\sigma_{X}$.
Distance R at closest approach is :

$$
\left(\frac{R}{\sigma_{Y}}\right)^{2}=\frac{\Delta y^{2}}{\sigma_{Y}^{2}+a^{2} \sigma_{X}^{2}}
$$

Note: Need a different stretch for each data point.
Total (distance) ${ }^{2}$ in the 2 N - dimensional data space:

$$
\begin{aligned}
\chi^{2} & =\sum_{i=1}^{N}\left[\left(\frac{\varepsilon\left(Y_{i}\right)}{\sigma\left(Y_{i}\right)}\right)^{2}+\left(\frac{\varepsilon\left(X_{i}^{\prime}\right)}{\sigma\left(X_{i}^{\prime}\right)}\right)^{2}\right]=\sum_{i=1}^{N}\left(\frac{\varepsilon\left(Y_{i}\right)^{2}+\varepsilon\left(X_{i}^{\prime}\right)^{2}}{\sigma^{2}\left(Y_{i}\right)}\right) \\
& =\sum_{i=1}^{N}\left(\frac{R}{\sigma\left(Y_{i}\right)}\right)^{2}=\sum_{i=1}^{N} \frac{\left(Y_{i}-\left(a X_{i}+b\right)\right)^{2}}{\sigma^{2}\left(Y_{i}\right)+a^{2} \sigma^{2}\left(X_{i}\right)}
\end{aligned}
$$

Fini -- ADA 10

