
ADA10 - 9am Tue 04 Sep 2022

Vector Space Perspective
Data Space Metric

FITEXY : data with errors in both X and Y

Error Bars in both X and Y

€

Wrong ways to fit a line :

1. y(x) = a x +b (σ x = 0)

2. x(y) = c y + d (σ y = 0)

3. split difference between 1 and 2.

Example: Primordial He abundance:

Extrapolate fit line to [O / H] = 0.

Correct method is to minimise :

[O / H]

[He / H]

χ 2 (a,b) =
Yi − (a Xi + b)()2

σ 2 (Yi)+ a
2σ 2 (Xi)i=1

N

∑
Let’s see why.

Vector Space Perspective

€

µ α()
€

XN data points, M parameters. (M < N)

Model µ(a) defines a parameterised
M-dimensional surface in the
N-dimensional data space.

With the “data-space metric” (distance
in sigma units along each axis in data
space), then
c2(a) = squared distance from the
observed data to the model surface.

Best-fit model is the one closest to the
data.

For linear models (scaling
patterns), the model surface is a
flat M-dimensional hyper-plane.

Review: Vector Spaces
Vectors have a direction and a length.
Addition of vectors gives another vector.
Scaling a vector stretches its length.
Dot product:

“Length” of a vector:

(=distance from base to tip)

“Distance” between 2 vectors: | a – b |

€

 a •b = a b cosθ

 θ = "angle" between vectors a, b.

€

a
2

≡ a •a

a

b
q

a - b

Ortho-normal Basis Vectors
Ortho-normal basis vectors ei :

Any vector a is a linear combination of the N basis
vectors ei , with scale factors ai

Example:€

e i •e j = δi j =
1 i = j

0 i ≠ j

e1

e2

e3

y

x

3

2

1

1 2 3 4
ey

ex

x = a . ex = 4
a

y = a . ey = 3
€

a = a
i
e
i

i=1

N

∑ = a •e
i()

i=1

N

∑ e
i

Data Space is a Vector Space
N data points define a vector in N-dimensional “data space”:

N basis vectors:

• Basis is ortho-normal if:

• Basis vector ei selects data point xi :

• Data point xi is the projection of data vector x along the basis vector ei .

€

x = {x
1
,x

2
,...,x

N
}

= x
1
e1 + x

2
e2 + ...+ x

N
e
N

€

e1 = {1,0,...,0}

e2 = {0,1,...,0}

...

e
N

= {0,0,...,1}

x2

e2

e1

x

x1

€

e i •e j = δi j

€

x •e
i
= x

i

Non-orthogonal Basis Vectors
In the non-orthogonal case,

Two ways to measure coordinates:
• Contravariant coordinates (index high):

xi project parallel to basis vectors:

• Covariant coordinates (index low):
xi project perpendicular to basis vectors.

• Metric tensor:
Dot product:

€

gi j ≡ e i •e j

€

x =x
1
e
1
+x

2
e
2

+ ...+x
N
e
N

€

x • y = x
i
y
j

i, j

∑ e i •e j = x
i
y
j

i, j

∑ gi j = x
i
yi

i

∑ = x j y
j

j

∑€

xi = gi j x
j

j

∑

€

e
1
•e

2
= cosθ ≠ 0

 x
1
= x

1
+ x

2
cosθ

 x
2
= x

2
+ x

1
cosθ

x
1

x
2

=

1 cosθ

cosθ 1

x
1

x
2

e2

e1 x1

x2

x2

x1

q

x

Metric for non-orthonormal Basis Vectors

€

gi j ≡ e i •e j =
e
1

2

e
1
e
2
cosθ

e
1
e
2
cosθ e

2

2

Metric is symmetric: gi j = gj i .

Off-diagonal terms vanish if the basis vectors are orthogonal.
Diagonal terms define the lengths of the basis vectors.

e2

e1 x1

x2

x2

x1

q

x

Data sets and Functions as Vector Spaces
• A data set, Xi, i = 1, ..., N, is also an N-component vector

(X1, X2, ..., XN), one dimension for each data point.
• The data vector is a single point in the N-dimensional

data space.

• A function, f(t), is a vector in an infinite-dimensional
vector space, one dimension for each value of t.

• The “dot product” between 2 functions depends on a
weighting function w(t):

f ,g ≡ f (t) g(t)w(t) dt
−∞

∞

∫

Weighting
function

Each weighting function w(t)
gives a different dot product,
a different distance measure,
a different vector space.

Which w(t) to use
for data analysis?

c2 as (distance)2 in function space
• The (absolute value)2 of a function f(t) :

• The (distance)2 between f(t) and g(t) :

• A dataset (Xi +/- si) at t = ti defines a specific weighting function:

• With this w(t), the (distance)2 from data X(t) to model µ(t) is c2 :

f
2
≡ f , f = f

2
(t)w(t) dt∫

f − g
2
≡ f − g, f − g = f (t)− g(t)()

2
w(t) dt∫

w(t) ≡
δ(t − t

i
)

σ
i

2

i=1

N

∑

X −µ
2
=

X
i
−µ(t

i
)

σ
i

i=1

N

∑
2

= χ 2
. Each dataset defines its

own weighting function.

The Data-Space Metric:
s is the unit of distance. c2 is (distance)2

• Define the data-space dot product with
inverse-variance weights:

• Then, the (distance)2 between data x
and parameterised model µ(a) is:

€

w
i
=
1

σ
i

2
⇒ a •b = a

i
b
i
w
i

i=1

N

∑ =
a
i
b
i

σ
i

2

i=1

N

∑

a −b 2
=

a
i
− b

i

σ
i

i=1

N

∑
2

.

χ 2 =
Xi −µi (α)

σ i

"

#
$

%

&
'

i=1

N

∑
2

= X−µ(α)
2
.

€

µ α()
€

X

• Minimise c2 -> pick model closest to the data.
• Scaling a pattern: µ(a) = a P :

• The pattern P is a vector in data space.
• The model a P is a line in data space, multiples of P .
• The best fit is the point along the line closest to the data X

• Unit vector along P :

Optimal Scaling in Vector Space Notation

α̂ =
Xi Pi /σ i

2∑
Pi

2 /σ i
2∑
=
X•P
P •P

µ(α̂) = α̂ P = X •P
P •P
"

#
$

%

&
'P = X•eP() eP

 eP ≡
P
P

Xi = µi (α) =αPi

P

a = –1
a = 0

a = 1
a = 2

a = 3

X

α̂ P

Stretching the Basis Vectors
Using the vector notation,

So the ei basis vectors are orthogonal but not unit length, given
the data-space metric

i.e. si is the natural unit of distance on the ith axis of data space!
We can “stretch” basis vectors ei by factor si

to define a new set of ortho-normal basis vectors bi :

α̂ =
P •X
P •P

=

Xi P j gi j
j
∑

i
∑

Pi P j gi j
j
∑

i
∑

=
Xi Pi σ i

2

i
∑

Pi()
2
σ i
2

i
∑

€

gi j = ei •e j =
1

σ i

2
δi j

€

b1 = {σ
1
,0,...,0}

b
2

= {0,σ
2
,...,0}

...

b
N

= {0,0,...,σ
N
}

€

bi ≡σ i e i bi •b j = δi j

€

e1 = {1,0,...,0}

e2 = {0,1,...,0}

...

e
N

= {0,0,...,1}

Stretch basis vectors
to make c2 ellipses become circles

Old basis vectors:

Orthogonal, but not normalised.
“Stretched” basis vectors are orthonormal:

x2

x1

e2

e1

x

c2 contours
are ellipses

b2

b1

x2 /s2

b2

b1

x

c2 contours
are circles

x1 /s1
x = x, b

i

i=1

N

∑ b
i
=

x
i

σ
i

b
i

i=1

N

∑

x = x
i
ei

i=1

N

∑ g
i j
= ei •e j =

δ
i j

σ
i

2

bi ≡σ i ei gi j ≡ bi •b j = δi j

Error Bars in both X and Y

€

Wrong ways to fit a line :

1. y(x) = a x +b (σ x = 0)

2. x(y) = c y + d (σ y = 0)

3. split difference between 1 and 2.

Example: Primordial He abundance:

Extrapolate fit line to [O / H] = 0.

[O / H]

[He / H]

Key concept: X +/- sX and Y +/- sY
are 2 independent dimensions of
the 2N-dimensional data space.

For sX ≠ sY, where is the point
of closest approach ?

Not obvious. L

Line Fit with error bars in both X and Y

Δ ′x =
σ
Y

σ
X

Δx ′a =
Δy

Δ ′x
=
σ

X

σ
Y

a = tanθ

Closest approach at R = Δy cosθ

R

Δy

2

=
cos2θ

cos2θ + sin2θ
=

1

1+ tan2θ
=

σ
Y

2

σ
Y

2
+ a

2σ
X

2

R

σ
Y

2

=
Δy

σ
Y

R

Δy

2

=
Δy2

σ
Y

2
+ a

2σ
X

2

y = a’ x’ + b

Dy

Dx’

q R
q

Circle radius is sY = sX’

y = a x + b

Dy

Dx

Dy = Y - (a X + b)
Dx = X - (Y–b) / a

Data: X ±σ X Y ±σY

Model: y = a x + b

Horizontal stretch by factor sY / sX
makes the probability cloud round.

Also changes the slope: a => a’

Horizontal stretch makes probability cloud round.
Circle radius is sY = sX’ .

Distance R at closest approach is :

Note: Need a different stretch for each data point.
Total (distance)2 in the 2 N - dimensional data space:

Defining c2 for errors in both X and Y

R

σ
Y

2

=
Δy2

σ
Y

2
+ a

2σ
X

2

χ 2
=

ε(Y
i
)

σ (Y
i
)

22

+
ε(′X

i
)

σ (′X
i
)

2

i=1

N

∑ =
ε(Y

i
)
2
+ε(′X

i
)
2

σ 2
(Y

i
)

i−1

N

∑

=
R

σ (Y
i
)

2

=
i=1

N

∑
Y
i
− (a X

i
+ b)()

2

σ 2
(Y

i
)+ a

2σ 2
(X

i
)

i=1

N

∑

y = a’ x’ + b

Dy

Dx’

R

e(Y)

e(X’)

R

Circle radius is sY = sX’

Fini -- ADA 10

