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Vector Space Perspective
Data Space Metric

FITEXY : data with errors in both X and Y



Error Bars in both X and Y

€ 

Wrong ways to fit a line :

1. y(x) = a x +b (σ x = 0)

2. x(y) = c y + d (σ y = 0)

3. split difference between 1 and 2.

Example:  Primordial He abundance:

Extrapolate fit line to [ O / H ] = 0.

Correct method is to minimise :

[ O / H ]

[ He / H ]

χ 2 (a,b) =
Yi − (a Xi + b)( )2

σ 2 (Yi )+ a
2σ 2 (Xi )i=1

N

∑
Let’s see why.



Vector Space Perspective
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µ α( )
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XN data points, M parameters. (M < N)

Model µ(a) defines a parameterised
M-dimensional surface in the              
N-dimensional data space.

With the “data-space metric” (distance 
in sigma units along each axis in data 
space), then
c2(a) = squared distance from the 
observed data to the model surface.

Best-fit model is the one closest to the 
data.

For linear models (scaling 
patterns), the model surface is a 
flat M-dimensional hyper-plane.



Review:  Vector Spaces
Vectors have a direction and a length.
Addition of vectors gives another vector.
Scaling a vector stretches its length.
Dot product:

“Length” of a vector: 

(=distance from base to tip)

“Distance” between 2 vectors:   | a – b |
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          a •b = a b cosθ 

 θ =  "angle" between vectors  a,  b.
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Ortho-normal Basis Vectors
Ortho-normal basis vectors ei :

Any vector a is a linear combination of the N basis 
vectors ei , with scale factors ai

Example:€ 

e i •e j = δi j =
1 i = j
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Data Space is a Vector Space
N data points define a vector in N-dimensional “data space”:

N basis vectors:

• Basis is ortho-normal if:

• Basis vector ei selects data point xi :

• Data point xi is the projection of data vector x along the basis vector ei .
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Non-orthogonal Basis Vectors
In the non-orthogonal case,

Two ways to measure coordinates:
• Contravariant coordinates (index high):

xi project parallel to basis vectors:

• Covariant coordinates (index low): 
xi project perpendicular to basis vectors.

• Metric tensor:
Dot product:
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gi j ≡ e i •e j
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Metric for non-orthonormal Basis Vectors
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Metric is symmetric: gi j = gj i  .

Off-diagonal terms vanish if the basis vectors are orthogonal.
Diagonal terms define the lengths of the basis vectors.
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Data sets and Functions as Vector Spaces
• A data set, Xi, i = 1, ..., N, is also an N-component vector           

( X1, X2, ..., XN  ), one dimension for each data point.
• The data vector is a single point in the N-dimensional 

data space.

• A function, f( t ), is a vector in an infinite-dimensional 
vector space, one dimension for each value of t.

• The “dot product” between 2 functions depends on a 
weighting function w( t ):

f ,g ≡ f (t) g(t)w(t) dt
−∞

∞

∫

Weighting
function

Each weighting function w( t )
gives a different dot product,         
a different distance measure,        
a different vector space.

Which w( t )  to use               
for data analysis?



c2 as (distance)2 in function space
• The (absolute value)2 of a function f( t ) :

• The (distance)2 between f( t ) and g( t ) :

• A dataset ( Xi +/- si ) at t = ti defines a specific weighting function:

• With this w( t ), the (distance)2 from data X( t ) to model µ( t ) is c2 :
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The Data-Space Metric:  
s is the unit of distance.   c2 is (distance)2

• Define the data-space dot product with 
inverse-variance weights:

• Then, the (distance)2 between data x
and parameterised model µ(a) is:
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• Minimise c2 -> pick model closest to the data.
• Scaling a pattern:  µ( a ) = a P :

• The pattern P is a vector in data space.
• The model a P is a line in data space, multiples of P .
• The best fit is the point along the line closest to the data X

• Unit vector along P :

Optimal Scaling in Vector Space Notation
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Stretching the Basis Vectors
Using the vector notation,

So the ei basis vectors are orthogonal but not unit length,   given 
the data-space metric                             

i.e. si is the natural unit of distance on the ith axis of data space!
We can “stretch” basis vectors ei by factor si

to define a new set of ortho-normal basis vectors bi :
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Stretch basis vectors
to make  c2 ellipses become circles

Old basis vectors: 

Orthogonal, but not normalised.
“Stretched” basis vectors are orthonormal:
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Error Bars in both X and Y
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Wrong ways to fit a line :

1. y(x) = a x +b (σ x = 0)

2. x(y) = c y + d (σ y = 0)

3. split difference between 1 and 2.

Example:  Primordial He abundance:

Extrapolate fit line to [ O / H ] = 0.

[ O / H ]

[ He / H ]

Key concept:  X +/- sX and Y +/- sY
are 2 independent dimensions of 
the 2N-dimensional data space.



For sX ≠ sY, where is the point 
of closest approach ?

Not obvious.   L

Line Fit with error bars in both X and Y
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Circle radius is sY = sX’

y = a x + b

Dy

Dx

Dy = Y  - (a X + b)
Dx = X - (Y–b) / a

Data:   X ±σ X Y ±σY

Model:     y = a x + b

Horizontal stretch by factor sY  / sX
makes the probability cloud round.

Also changes the slope:    a => a’



Horizontal stretch makes probability cloud round. 
Circle radius is sY = sX’ .

Distance R at closest approach is :

Note: Need a different stretch for each data point.
Total (distance)2 in the 2 N - dimensional data space:

Defining c2 for errors in both X and Y
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