ADA10 - 9am Tue 04 Sep 2022

Vector Space Perspective Data Space Metric FITEXY : data with errors in both X and Y

Error Bars in both X and Y

Wrong ways to fit a line :

- 1. y(x) = a x + b ($\sigma_x = 0$)
- 2. $x(y) = c \ y + d \ (\sigma_y = 0)$
- 3. split difference between 1 and 2.

Example: **Primordial He abundance:** Extrapolate fit line to [O / H] = 0.

Correct method is to minimise :

$$\chi^{2}(a,b) = \sum_{i=1}^{N} \frac{\left(Y_{i} - (a X_{i} + b)\right)^{2}}{\sigma^{2}(Y_{i}) + a^{2}\sigma^{2}(X_{i})}$$

Let's see why.

Vector Space Perspective

N data points, *M* parameters. (M < N)

Model $\mu(\alpha)$ defines a parameterised *M*-dimensional surface in the *N*-dimensional data space.

With the "data-space metric" (distance in sigma units along each axis in data space), then

 $\chi^2(\alpha)$ = squared distance from the observed data to the model surface.

Best-fit model is the one closest to the data.

For linear models (scaling patterns), the model surface is a flat *M*-dimensional hyper-plane.

Review: Vector Spaces

Vectors have a **direction** and a **length**. Addition of vectors gives another vector. Scaling a vector stretches its length. Dot product:

 $\underline{\mathbf{a}} \bullet \underline{\mathbf{b}} = |\underline{\mathbf{a}}| |\underline{\mathbf{b}}| \cos \theta$

 θ = "angle" between vectors $\underline{\mathbf{a}}, \underline{\mathbf{b}}$.

"Length" of a vector: $\left|\underline{\mathbf{a}}\right|^2 = \underline{\mathbf{a}} \cdot \underline{\mathbf{a}}$

(=distance from base to tip)

"Distance" between 2 vectors: $I \underline{a} - \underline{b} I$

Ortho-normal Basis Vectors

Ortho-normal basis vectors $\underline{\mathbf{e}}_i$:

$$\underline{\mathbf{e}}_{i} \bullet \underline{\mathbf{e}}_{j} = \delta_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

Any vector \underline{a} is a linear combination of the *N* basis vectors \underline{e}_i , with scale factors a_i

Data Space is a Vector Space

N data points define a vector in *N*-dimensional "data space":

e₁

- Basis is ortho-normal if: $\underline{\mathbf{e}}_i \bullet \underline{\mathbf{e}}_i = \delta_{ii}$ •
- Basis vector $\underline{\mathbf{e}}_i$ selects data point x_i : $\underline{\mathbf{X}} \bullet \underline{\mathbf{e}}_i = \mathcal{X}_i$
- Data point x_i is the *projection* of data vector <u>x</u> along the basis vector <u>e</u>_i.

Non-orthogonal Basis Vectors

In the non-orthogonal case,

$$\mathbf{e}_1 \bullet \mathbf{e}_2 = \cos\theta \neq 0$$

Two ways to measure coordinates:

Contravariant coordina x^i project **parallel** to be

$$\underline{\mathbf{x}} = x^1 \underline{\mathbf{e}}_1 + x^2 \underline{\mathbf{e}}_2 + \dots + x^N \underline{\mathbf{e}}_N$$

Covariant coordinates (index low): x_i project **perpendicular** to basis vectors.

$$x_i = \sum_j g_{ij} x^j$$

 $g_{i\,j} \equiv \underline{\mathbf{e}}_i \bullet \underline{\mathbf{e}}_j$ Metric tensor: • Dot product:

$$\underline{\mathbf{x}} \bullet \underline{\mathbf{y}} = \sum_{i,j} x^i \ y^j \ \underline{\mathbf{e}}_i \bullet \underline{\mathbf{e}}_j = \sum_{i,j} x^i \ y^j \ g_{ij} = \sum_i x^i \ y_i = \sum_j x_j \ y^j$$

X2 **x**² <u>X</u> **e**₂ θ X^1 **X**₁ **e**₁

$$x_1 = x^1 + x^2 \cos \theta$$
$$x_2 = x^2 + x^1 \cos \theta$$

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 & \cos\theta \\ \cos\theta & 1 \end{bmatrix} \begin{bmatrix} x^1 \\ x^2 \end{bmatrix}$$

Metric for non-orthonormal Basis Vectors

$$g_{ij} \equiv \underline{\mathbf{e}}_i \bullet \underline{\mathbf{e}}_j = \begin{cases} |\underline{\mathbf{e}}_1|^2 & |\underline{\mathbf{e}}_1| |\underline{\mathbf{e}}_2 | \cos\theta \\ |\underline{\mathbf{e}}_1| |\underline{\mathbf{e}}_2 | \cos\theta & |\underline{\mathbf{e}}_2|^2 \end{cases}$$

Metric is symmetric: $g_{ij} = g_{ji}$.

Off-diagonal terms vanish if the basis vectors are orthogonal.

Diagonal terms define the lengths of the basis vectors.

Data sets and Functions as Vector Spaces

- A data set, X_i, i = 1, ..., N, is also an N-component vector (X₁, X₂, ..., X_N), one dimension for each data point.
- The data vector is a single point in the *N*-dimensional data space.
- A function, f(t), is a vector in an infinite-dimensional vector space, one dimension for each value of t.
- The "dot product" between 2 functions depends on a weighting function w(t):

$$\langle f,g \rangle \equiv \int_{-\infty}^{\infty} f(t) g(t) w(t) dt$$

Weighting function

Each weighting function w(t)gives a different dot product, a different distance measure, a different vector space.

Which w(t) to use for data analysis?

χ^2 as (distance)² in function space

• The (absolute value)² of a function f(t):

$$\left\| f \right\|^2 \equiv \langle f, f \rangle = \int f^2(t) w(t) dt$$

• The (distance)² between f(t) and g(t):

$$\left\| f - g \right\|^2 \equiv \left\langle f - g, f - g \right\rangle = \int \left(f(t) - g(t) \right)^2 w(t) dt$$

• A dataset ($X_i + - \sigma_i$) at $t = t_i$ defines a specific weighting function:

$$w(t) \equiv \sum_{i=1}^{N} \frac{\delta(t-t_i)}{\sigma_i^2}$$

• With this w(t), the (distance)² from data X(t) to model $\mu(t)$ is χ^2 .

$$||X - \mu||^2 = \sum_{i=1}^N \left(\frac{X_i - \mu(t_i)}{\sigma_i}\right)^2 = \chi^2.$$

Each dataset defines its own weighting function.

The Data-Space Metric: σ is the unit of distance. χ^2 is (distance)²

• Define the data-space dot product with inverse-variance weights:

$$w_{i} = \frac{1}{\sigma_{i}^{2}} \implies \underline{\mathbf{a}} \cdot \underline{\mathbf{b}} = \sum_{i=1}^{N} a_{i} b_{i} w_{i} = \sum_{i=1}^{N} \frac{a_{i} b_{i}}{\sigma_{i}^{2}}$$
$$\left|\underline{\mathbf{a}} - \underline{\mathbf{b}}\right|^{2} = \sum_{i=1}^{N} \left(\frac{a_{i} - b_{i}}{\sigma_{i}}\right)^{2}.$$

• Then, the (distance)² between data $\underline{\mathbf{x}}$ and parameterised model $\underline{\mu}(\alpha)$ is:

$$\chi^{2} = \sum_{i=1}^{N} \left(\frac{X_{i} - \mu_{i}(\alpha)}{\sigma_{i}} \right)^{2} = \left| \underline{\mathbf{X}} - \underline{\mu}(\alpha) \right|^{2}.$$

Optimal Scaling in Vector Space Notation

- Minimise χ^2 -> pick model closest to the data.
- Scaling a pattern: $\underline{\mu}(\alpha) = \alpha \underline{\mathbf{P}}$: $\langle X_i \rangle = \mu_i(\alpha) = \alpha P_i$
- The pattern **P** is a **vector** in data space.
- The model $\alpha \mathbf{P}$ is a **line** in data space, multiples of \mathbf{P} .
- The best fit is the point along the line closest to the data \underline{X}

$$\hat{\alpha} = \frac{\sum X_i P_i / \sigma_i^2}{\sum P_i^2 / \sigma_i^2} = \frac{\underline{X} \cdot \underline{P}}{\underline{P} \cdot \underline{P}}$$

$$\underline{\mu}(\hat{\alpha}) = \hat{\alpha} \underline{P} = \left(\frac{\underline{X} \cdot \underline{P}}{\underline{P} \cdot \underline{P}}\right) \underline{P} = \left(\underline{X} \cdot \underline{e}_P\right) \underline{e}_P$$
Unit vector along \underline{P} : $\underline{e}_P = \frac{\underline{P}}{|\underline{P}|}$
 $\alpha = -1$

Stretching the Basis Vectors

Using the vector notation,

$$\hat{\alpha} = \frac{\underline{\mathbf{P}} \cdot \underline{\mathbf{X}}}{\underline{\mathbf{P}} \cdot \underline{\mathbf{P}}} = \frac{\sum_{i} \sum_{j} X^{i} P^{j} g_{ij}}{\sum_{i} \sum_{j} P^{i} P^{j} g_{ij}} = \frac{\sum_{i} X^{i} P^{i} / \sigma_{i}^{2}}{\sum_{i} \left(P^{i} \right)^{2} / \sigma_{i}^{2}} \qquad \underline{\mathbf{e}}_{1} = \{1, 0, \dots, 0\}$$

So the $\underline{\mathbf{e}}_i$ basis vectors are **orthogonal but not unit length**, given the data-space metric $g_{ij} = \underline{e}_i \bullet \underline{e}_j = \frac{1}{\sigma_i^2}$

$$\mathbf{\underline{\delta}}_{i\,j} \qquad \mathbf{\underline{e}}_N = \{0, 0, \dots, 1\}$$

. . .

i.e. σ_i is the natural unit of distance on the i_{th} axis of data space! We can "stretch" basis vectors \underline{e}_i by factor σ_i to define a new set of **ortho-normal basis vectors b**_{*i*} :

$$\underline{\mathbf{b}}_i \equiv \boldsymbol{\sigma}_i \ \underline{\mathbf{e}}_i \qquad \underline{\mathbf{b}}_i \bullet \underline{\mathbf{b}}_j = \boldsymbol{\delta}_{ij}$$

 $\mathbf{\underline{b}}_{1} = \{\sigma_{1}, 0, \dots, 0\}$ $\mathbf{b}_{2} = \{0, \sigma_{2}, \dots, 0\}$

$$\underline{\mathbf{b}}_{N} = \{0, 0, \dots, \sigma_{N}\}$$

Stretch basis vectors to make χ^2 ellipses become circles

X₂

e₂

 χ^2 contours

are ellipses

X₁

Old basis vectors:

$$\underline{\mathbf{x}} = \sum_{i=1}^{N} x_i \; \underline{\mathbf{e}}_i \quad g_{ij} = \underline{\mathbf{e}}_i \bullet \underline{\mathbf{e}}_j = \frac{\delta_{ij}}{\sigma_i^2}$$

Orthogonal, but not normalised. "Stretched" basis vectors are orthonormal:

Error Bars in both X and Y

Wrong ways to fit a line :

- 1. $y(x) = a x + b \quad (\sigma_x = 0)$
- 2. $x(y) = c \ y + d \ (\sigma_y = 0)$
- 3. split difference between 1 and 2.

Example: Primordial He abundance:

Extrapolate fit line to [O/H] = 0.

Key concept: X +/- σ_X and Y +/- σ_Y are 2 independent dimensions of the 2N-dimensional data space.

Line Fit with error bars in both X and Y

Data:
$$X \pm \sigma_X$$
 $Y \pm \sigma_Y$
Model: $y = ax + b$

$$\Delta x = Y - (a X + b)$$

$$\Delta y = X - (Y-b) / a$$

For σ_X ≠ σ_Y, where is the point of closest approach ?

Not obvious.

Horizontal stretch by factor $\sigma_{\rm Y} / \sigma_{\rm X}$ makes the probability cloud round. Also changes the slope: $a \Rightarrow a'$ <u>Δx'</u> θ y = a'x' + bCircle radius is $\sigma_Y = \sigma_{X'}$ $\Delta x' = \frac{\sigma_Y}{\sigma_X} \Delta x$ $a' = \frac{\Delta y}{\Delta x'} = \frac{\sigma_X}{\sigma_y} a = \tan \theta$ Closest approach at $R = \Delta y \cos \theta$ $\left(\frac{R}{\Delta v}\right)^2 = \frac{\cos^2\theta}{\cos^2\theta + \sin^2\theta} = \frac{1}{1 + \tan^2\theta} = \frac{\sigma_Y^2}{\sigma_y^2 + a^2\sigma_y^2}$ $\left(\frac{R}{\sigma_{v}}\right)^{2} = \left(\frac{\Delta y}{\sigma_{v}}\frac{R}{\Delta v}\right)^{2} = \frac{\Delta y^{2}}{\sigma_{v}^{2} + \sigma^{2}\sigma^{2}}$

Defining χ^2 for errors in both X and Y

Horizontal stretch makes probability cloud round. Circle radius is $\sigma_Y = \sigma_{X'}$.

Distance R at closest approach is :

$$\left(\frac{R}{\sigma_Y}\right)^2 = \frac{\Delta y^2}{\sigma_Y^2 + a^2 \sigma_X^2}$$

Note: Need a different stretch for each data point.

Total (distance)² in the 2 N - dimensional data space:

$$\chi^{2} = \sum_{i=1}^{N} \left[\left(\frac{\varepsilon(Y_{i})}{\sigma(Y_{i})} \right)^{2} + \left(\frac{\varepsilon(X_{i}')}{\sigma(X_{i}')} \right)^{2} \right] = \sum_{i=1}^{N} \left(\frac{\varepsilon(Y_{i})^{2} + \varepsilon(X_{i}')^{2}}{\sigma^{2}(Y_{i})} \right)^{2}$$
$$= \sum_{i=1}^{N} \left(\frac{R}{\sigma(Y_{i})} \right)^{2} = \sum_{i=1}^{N} \frac{\left(Y_{i} - (a X_{i} + b)\right)^{2}}{\sigma^{2}(Y_{i}) + a^{2}\sigma^{2}(X_{i})}$$

Fini -- ADA 10