ADA10 - 9am Tue 04 Sep 2022

Vector Space Perspective
Data Space Metric
FITEXY : data with errors in both X and Y



Error Bars in both Xand Y

Wrong ways to fit a line :

l. y(x)=ax+b (0, =0)

2. x(y)=cy+d (o,=0)

3. split difference between 1 and 2.

A

A

Example: Primordial He abundance: [He /H]

Extrapolate fitlineto[O/H]=0. I I_/
Correct method is to minimise :
(Y, -(a X, + b)) "

X (@b)= Ea(Y)+a o (X))

[O/H]

Let’s see why.



Vector Space Perspective

N data points, M parameters. (M < N)

Model u(«) defines a parameterised
M-dimensional surface in the
N-dimensional data space.

With the “data-space metric” (distance
in sigma units along each axis in data
space), then

For linear models (scaling
7?(a) = squared distance from the patterns), the model surface is a
observed data to the model surface. flat M-dimensional hyper-plane.

Best-fit model is the one closest to the
data.



Review: Vector Spaces

Vectors have a direction and a length.
Addition of vectors gives another vector.
Scaling a vector stretches its length.
Dot product:

a*b=|a||b|cosO

0 = "angle" between vectors a, b.

“Length” of a vector: |a |2 =a°a
(=distance from base to tip)

“Distance” between 2 vectors: la—bl



Ortho-normal basis vectors e; :
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Any vector a is a linear combination of the N basis €1

vectors e;, with scale factors a;
Example:
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Data Space is a Vector Space

N data points define a vector in N-dimensional “data space”:

X ={X, X500, Xy )}

=X, € +X,€ +..+X, €y 1
N basis vectors: e ={1.0,...,0}
92 = {O,l,...,O}

e, ={0,0,...,1}

Vv

Basis is ortho-normal if: e.*e. =9, .
Basis vector e; selects data point x;: xee. = x.

Data point x; is the projection of data vector x along the basis vector e, .



Non-orthogonal Basis Vectors ,,_

Inthe non-orthogonal case, e ee =cosf@=0 7 _* X
Two ways to measure coordinates: e, o
- Contravariant coordinates (index high): \ 0 el |:| .
X' project parallel to basis vectors: e, X X
X=x'e +x°e, +..+x" ey, o
. . . =X +
- Covariant coordinates (index low): X, =X +x°C0s0
x; project perpendicular to basis vectors. x, =x"+x' cosf
X, = E g . x’ - 1T 1
VRSN X 1 cos6 X
J = )
- Metric tensor: 8 =€, %€, _ Xy | 1 cos6 1 I X

Dot product:

xey=>x'ylece,=Yx'y g =Yxy=Yx y
i,j i J

I,]




Metric for non-orthonormal Basis Vectors

e []ex]cos0

e, ‘2

Metric is symmetric: g;;=g;, .

Off-diagonal terms vanish if the basis vectors are orthogonal.

Diagonal terms define the lengths of the basis vectors.




Data sets and Functions as Vector Spaces

- Adataset, X, i=1, ..., N, is also an N-component vector
( X4, X5, ..., Xy ), one dimension for each data point.

- The data vector is a single point in the N-dimensional
data space.

- A function, f(t ), is a vector in an infinite-dimensional
vector space, one dimension for each value of t.

» The “dot product” between 2 functions depends on a

Welghtmg function W( t)' Each weighting function w('t)
> gives a different dot product,
<f,g> = ff(t) g(t)w(t) dt a different distance measure,
. \ a different vector space.
—— Which w(t) to use
Weighting for data analysis?
function




v2 as (distance)? in function space

- The (absolute value)? of a function f( t ) :

£ =(f )= [ o wedr
+ The (distance)? between f(t)and g(t) :

| £-g| =(f-g.f-8)=[(F()-g®) w(t)dt

- A dataset ( X +/- 0', ) at t = t; defines a specific weighting function:

i=1 i
 With this w('t ), the (distance)? from data X( t ) to model x(t)is ;(2+

H X - MH i X; — u(, )) 52 Each dataset defines its

own weighting function.

=1 i




The Data-Space Metric:

ois the unit of distance. #?is (distance)?
 Define the data-space dot product with

Inverse-variance weights:
N N
a. b.
nd a.l—)=2aibiwi E =)
, . O
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- Then, the (distance)? between data x
and parameterised model y(a) is:

3 = E(Xi _x“i(a)) =‘X—E((x) ‘2.

i=1 oF

l




Optimal Scaling in Vector Space Notation

+ Minimise y? -> pick model closest to the data.
- Scaling a pattern: y(a)=aP :
<Xi> =y, (a)=oaPf,
ne pattern P is a vector in data space.
ne model « P is a line in data space, multiples of P .

ne best fit is the point along the line closest to the data X




Stretching the Basis Vectors

Using the vector notation,

EE X' Plg, E X' P'/o;}

27 I ~i =i =]

5_PeX
PP EEP Plg, S (P) o e, = {L0....0}
’ ={0.1,...,0}
So the e, basis vectors are orthogonal but not unlt length, glven
the data -space metric
g, =e¢%¢e;= 0—5 e, ={0,0,....1}
l.e. o;is the natural unit of distance on the i, axis of data space!
We can “stretch” basis vectors e; by factor o;
to define a new set of ortho-normal basis vectors b; : b, = {.0,....0}
b.=0.e, b.*b. 5 b, ={0,0,,...,0}

=4{0,0,...,0, }



Stretch basis vectors
to make # - ellipses become circles

x, 4 2 contours

Old basis vectors: .
are ellipses
0 CE/

N
_ _ _ij
X=yx¢€ g;=¢€°€=—12

i=1 Oi €,
L) >

Orthogonal, but not normalised. e X
“Stretched” basis vectors are orthonormal:

A v2 contours

Xo /62
b, T @ .~ are circles
b,




Error Bars in both Xand Y

Wrong ways to fit a line :

l. y(x)=ax+b (0, =0)

2. x(y)=cy+d (o,=0)

3. split difference between 1 and 2.

A

A

Example: Primordial He abundance: [He /H]

Extrapolate fitlineto[O/H]=0. — I

Key concept: X +/- oy and Y +/- oy [O/H]
are 2 independent dimensions of
the 2N-dimensional data space.




Line Fit with error bars in both Xand Y

Data: X+o, Y=o,

Model: y=ax+b

y=ax+b

Ay=Y -(@aX+Db)
Ax=X-(Y-b)/a

For oy # oy, wWhere is the point
of closest approach ?

Not obvious. @

Horizontal stretch by factor oy / oy
makes the probability cloud round.

Also changes the slope: a=>a’

o o
Ax'= =L Ax a = - = X a=tan@
Oy Ax" o,

Closest approach at R = Ay cosf

2 2 2
R\ cos 0 _ 1 I o
Ay) cos’@+sin’0 l1+tan’0 oO.+a’0.
2 2 2
Rl [&rR)___ &
o, o, Ay] o,+a’o;




Defining »* for errors in both X and Y

Horizontal stretch makes probability cloud round.
Circle radius is Oy = Oy’ .

Distance R at closest approachis: | q-——}--—————— y=a' x' +b
2 2
R Ay
— "2 2 2 Ay
Oy Oy +d Oy Circle radius is Oy = Oy

Note: Need a different stretch for each data point.

Total (distance)? in the 2 N - dimensional data space:

_ i e(Y)’ +&(X))’
o’ (Y,

i-1

ex)\
o(X))

R\ X (Y-(aX +b)
LorY)+a*o(X)

i=1
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