ADA 13 -- 9am Tue 11 Oct 2022

Time Series Analysis, Ephemerides

Fourier Analysis: Fourier frequencies and basis functions, Nyquist sampling.

Periodogram analysis (part 1): sidelobes, aliasing, harmonics

Timing Analysis - Defining an Ephemeris

Timings: Observed times of a fiducial point in a periodic lightcurve, e.g. mid-eclipse.

$$t_i \pm \sigma_i$$

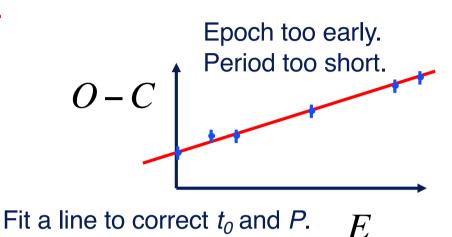
The Ephemeris:

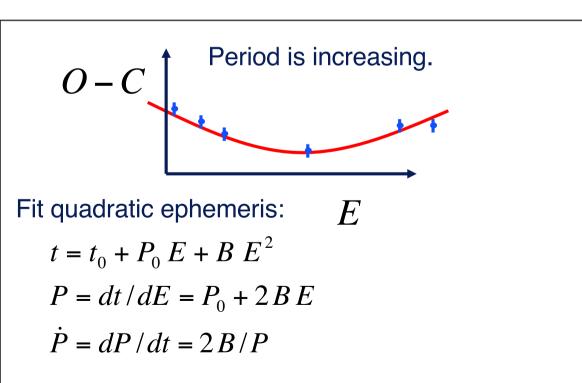
$$t = t_0 + PE$$
 = predicted time
 t_0 = epoch of phase 0
 P = period
 $E = n + \phi$ = cycle number + phase

O-C = observed - calculated

$$= t_i - (t_0 + P E_i)$$
$$n_i = \text{NINT}\left[\frac{t_i - t_0}{P}\right]$$

phase: $\phi_i = \frac{t_i - t_0}{P} - n_i, \quad 0 < \phi < 1$



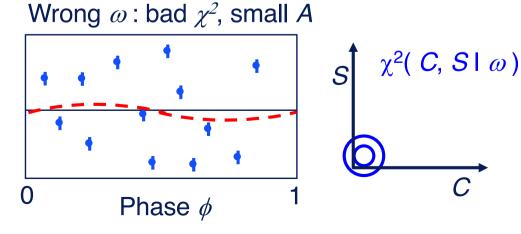


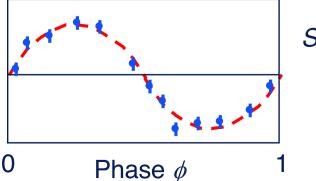
Hunting for Sinusoidal Signals (e.g. Planet hunting -- circular orbit radial velocity curve)

- Search a time series for a sinusoidal oscillation of unknown frequency ω :
- Fit a sinusiod (scale 3 patterns):

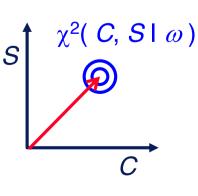
 $X(t) = X_{\circ} + A\cos(\omega t + \phi_{\circ})$

• "Fold" data on a trial period $P = 2\pi/\omega$





S



Sinusoid + Background

Data : $X_i \pm \sigma_i$ at $t = t_i$ Model : $X(t) = X_0 + S \sin(\omega t) + C \cos(\omega t)$ 3 Patterns : 1, $s_i = \sin(\omega t_i)$, $c_i = \cos(\omega t_i)$ 3-parameter linear regression + 1 non-linear parameter **Iterated Optimal Scaling:**

$$\hat{X}_{0} = \frac{\sum \left(X_{i} - \hat{S}s_{i} - \hat{C}c_{i}\right) / \sigma_{i}^{2}}{\sum 1 / \sigma_{i}^{2}}, \quad \operatorname{Var}\left[\hat{X}_{0}\right] = \frac{1}{\sum 1 / \sigma_{i}^{2}}$$
$$\hat{S} = \frac{\sum \left(X_{i} - \hat{X}_{0} - \hat{C}c_{i}\right)s_{i} / \sigma_{i}^{2}}{\sum s_{i}^{2} / \sigma_{i}^{2}}, \quad \operatorname{Var}\left[\hat{S}\right] = \frac{1}{\sum s_{i}^{2} / \sigma_{i}^{2}}$$
$$\hat{C} = \frac{\sum \left(X_{i} - \hat{X}_{0} - \hat{S}s_{i}\right)c_{i} / \sigma_{i}^{2}}{\sum c_{i}^{2} / \sigma_{i}^{2}}, \quad \operatorname{Var}\left[\hat{C}\right] = \frac{1}{\sum c_{i}^{2} / \sigma_{i}^{2}}$$

Variance formulas assume orthogonal parameters, otherwise give too small error bars.

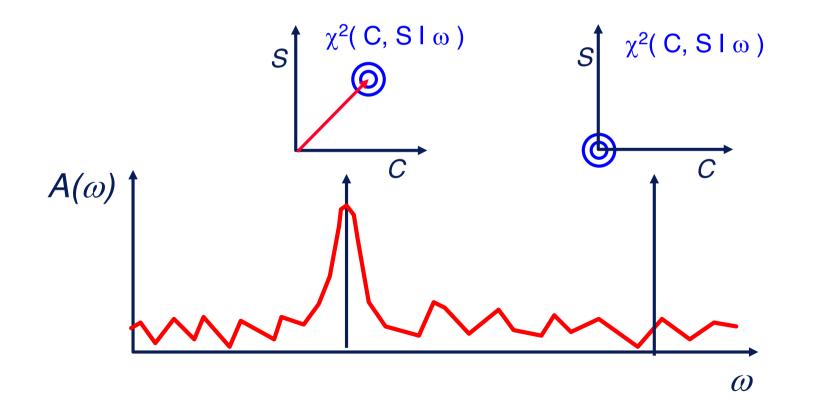
Use the inverse-Hessian matrix, e.g. when phase coverage is not close to uniform.

Iterate (if patterns not orthogonal).

Periodogram : grid scan in frequency

Model is non-linear in ω (or $P = 2 \pi / \omega$, or f = 1 / P). Use **grid-search**: fit sine curve for a grid of ω values.

Periodogram: plot $A(\omega)$ and/or $\chi^2(\omega)$.

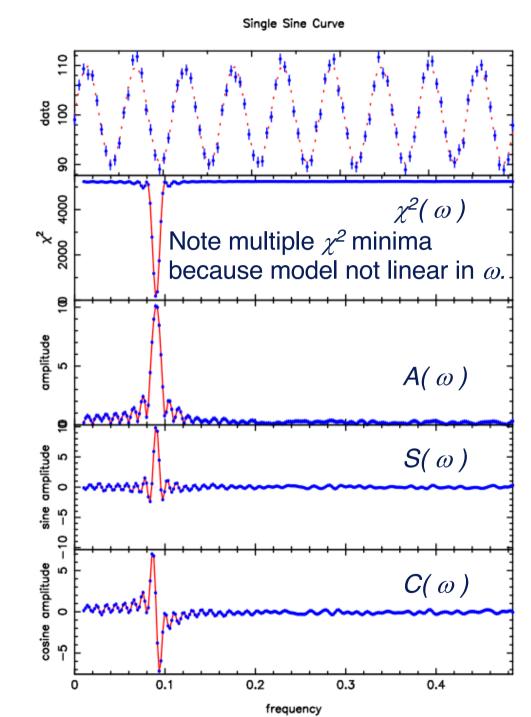


Periodogram of a finite data train

- Purely sinusoidal time variation.
- Sampled at *N* regularly spaced time intervals *∆t*

The **periodogram**:

- Note χ^2 minimum and peak in *A* at correct ω .
- Use $\Delta \chi^2 = 1$ to find $\sigma(\omega)$.
- Note sidelobes and finite width of peak.
- Why not a delta function?
- (Spectral leakage)



Spectral Leakage due to finite timespan T

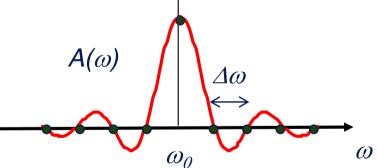
A pure sinusoid at frequency ω_0 "leaks" into adjacent frequencies ω due to the finite timespan T of the data.

$$\hat{A}(\omega) \approx A_0 \frac{\sum (\sin \omega_0 t_i) (\sin \omega t_i) / \sigma_i^2}{\sum (\sin \omega t_i)^2 / \sigma_i^2}$$

Special case : Evenly spaced data, at times $t_i = t_0 + i \Delta t$ for i = 1,..N, and Equal error bars, $\sigma_i = \sigma$:

$$\hat{A}(\omega) = A_0 \frac{\sin \pi x}{\pi x}$$
 where $x = \frac{\omega - \omega_0}{\Delta \omega}$

= Optimal Scaling of the pattern sin(ωt) to fit data varying as $A_0 \sin(\omega_0 t)$.

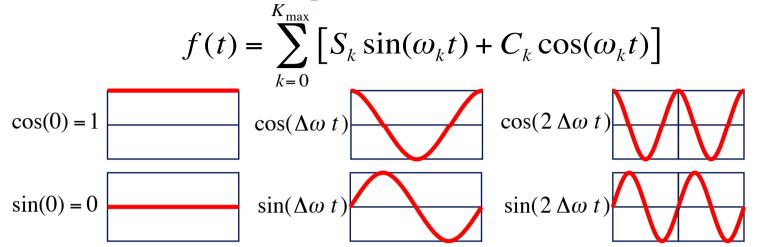


This "Sinc" function has a **1/x envelope** and **evenly spaced zeroes** at frequency step

$$\Delta \omega = 2 \pi / N \Delta t = 2 \pi / T$$

"De-tuning" by $\Delta \omega$ gives an **orthogonal function** with 1 extra cycle per time $T = N \Delta t$.

Fourier Frequencies and Basis Functions



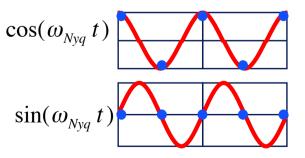
De-tuning by $\Delta \omega$ gives an orthogonal function with 1 extra cycle during time *T*.

Orthogonal for evenly-spaced data with equal error bars.

$$t_i = t_0 + i\Delta t \quad i = 1, 2, \dots, N \qquad T = N\Delta t$$

Fourier frequencies:

 $\omega_{k} = k \Delta \omega \quad k = 0, 1, ..., K_{\max} \quad \Delta \omega = 2 \pi / T$ Nyquist frequency = 1 cycle / 2 data points $\omega_{Nyq} = \frac{2\pi}{2\Delta t} = \frac{N \pi}{T} = \frac{N}{2} \Delta \omega \implies K_{\max} = \frac{N}{2}$ Degrees of freedom: $2(1 + K_{\max}) - 2 = N$ since $\sin(\omega_{0} t_{i}) = 0 \quad \sin(\omega_{Nyq} t_{i}) = 0$



Exact fit possible !

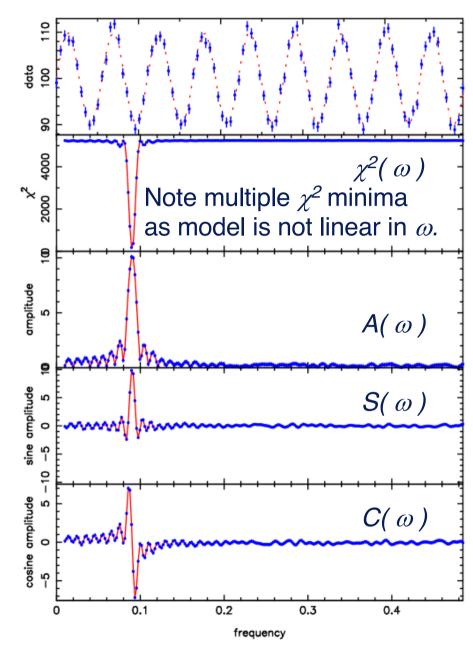
Aliasing above the Nyquist Frequency $\cos(3\,\Delta\omega\,t)$ $sin(3\Delta\omega t)$ $\cos(\omega_{Nyq} t)$ $\sin(\omega_{Nva} t)$ $sin(\Delta \omega t)$ $\cos(\Delta \omega t)$ Sampled pattern is the same at $\omega_{Nvq} + k \Delta \omega$ and $\omega_{Nvq} - k \Delta \omega$. $\cos\left[\left(\omega_{Nyq} + k\Delta\omega\right)t_{i}\right] = \cos\left[\left(\omega_{Nyq} - k\Delta\omega\right)t_{i}\right]$ Frequencies above Nyquist frequency $\sin\left[\left(\omega_{Nyq} + k\,\Delta\omega\right)t_{i}\right] = -\sin\left[\left(\omega_{Nyq} - k\,\Delta\omega\right)t_{i}\right]$ duplicate those below. $A(\omega)$

Periodogram

Pure sinusoid signal. Sampled at *N* regularly spaced time intervals *∆t*

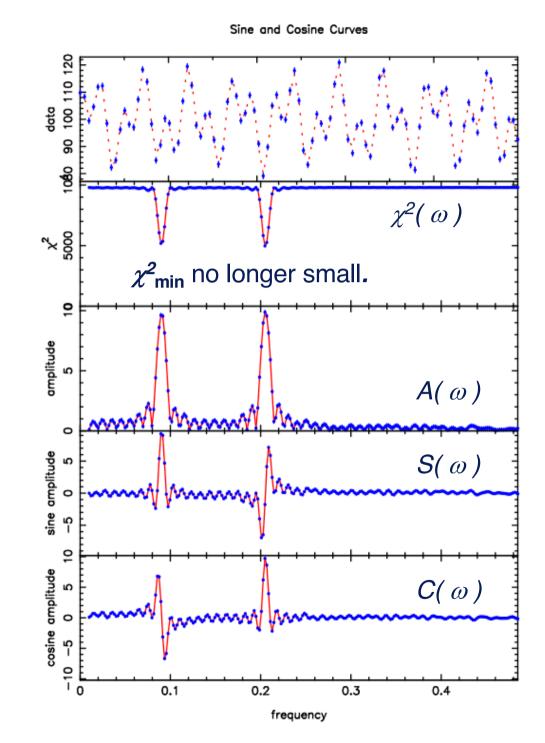
The **periodogram**: Note χ^2 minimum and peak in *A* at correct ω . Use $\Delta \chi^2 = 1$ to find $\sigma(\omega)$.

Sidelobe spacing: $\Delta \omega = 2 \pi / T = 2 \pi / N \Delta t$ Nyquist frequency: $\omega_N = (N/2) \Delta \omega$ $= N \pi / T = \pi / \Delta t$



Widely spaced frequencies

- Sum of sine and cosine curves at well-separated frequencies.
- Periodogram shows two well separated peaks.
- $\chi^2_{\rm min}$ is high, but can still use $\Delta \chi^2 = 1$ to find $\sigma(\omega)$.
- (This is how we find multiple planets in Doppler data)

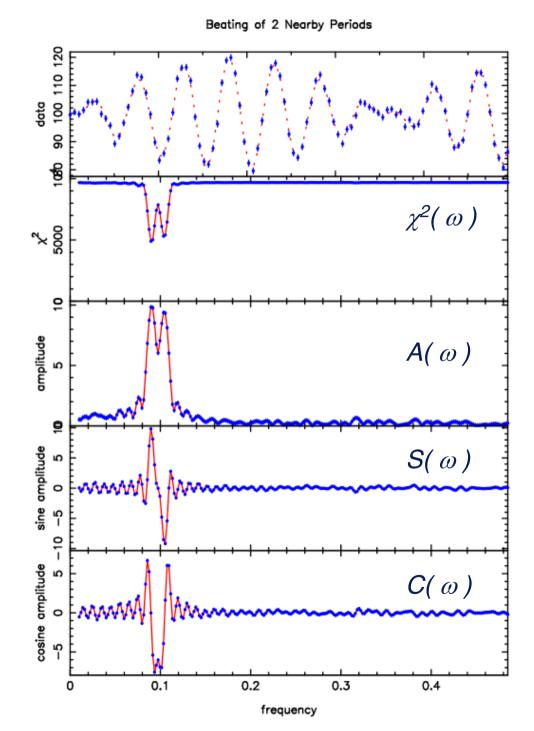


Closely spaced frequencies

- Wave trains drift in and out of phase.
- Constructive and destructive interference produces "beating" in the light curve.

Beat frequency $\omega_{\rm B} = |\omega_1 - \omega_2|$

Peaks overlap in periodogram.



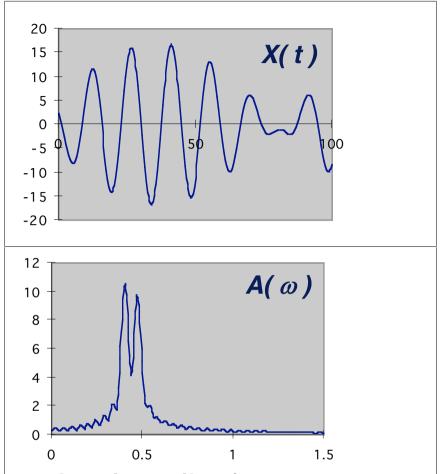
"Pre-whitening"

Disentangle closely-spaced frequencies by "*pre-whitening*" the data.

Fit and subtract strongest period, then fit the next, etc.

Subtract $A_1 \sin(\omega_1 t - \phi_1)$ Fit $A_2 \sin(\omega_2 t - \phi_2)$ to residuals Subtract $A_2 \sin(\omega_2 t - \phi_2)$ Fit $A_1 \sin(\omega_1 t - \phi_1)$ to residuals

Iterate to convergence

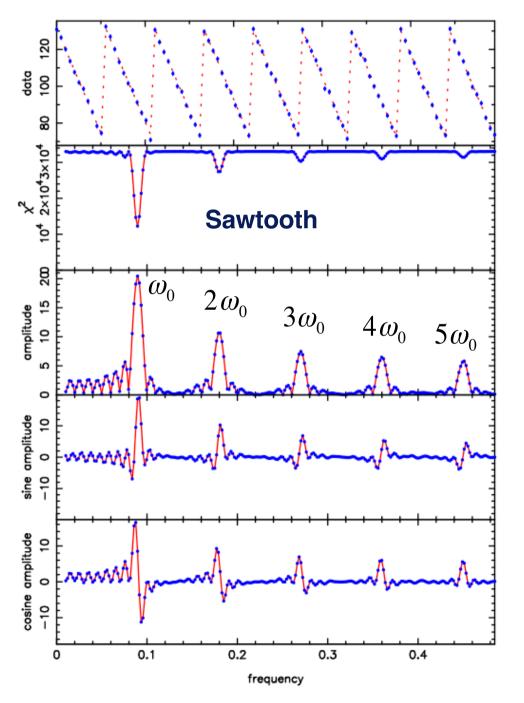


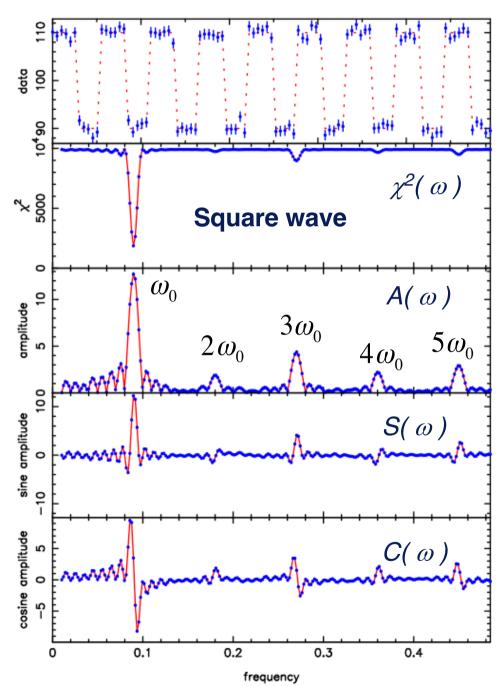
Fits a 7-parameter model (e.g. by iterated optimal scaling): $X(t) = X_0 + A_1 \sin(\omega_1 t + \phi_1) + A_2 \sin(\omega_2 t + \phi_2)$ $= X_0 + S_1 \sin(\omega_1 t) + C_1 \cos(\omega_1 t)$ $+ S_2 \sin(\omega_2 t) + C_2 \cos(\omega_2 t)$

2 non-linear params: ω_1 , ω_2 , 5 linear params: X_0, S_1, C_1, S_2, C_2

Sawtooth Harmonics

Square Wave Harmonics





Non-sinusoidal Waveforms => Harmonics

- Fundamental frequency: ω₀
- Harmonics at $\omega = k \omega_0$, for k = 2, 3, ...modify the shape of the waveform.
- Fit any shape periodic function by including amplitudes for :
 - $-\sin(2\omega_0 t),\cos(2\omega_0 t)$
 - $-\sin(3\omega_0 t),\cos(3\omega_0 t)$
 - etc

$$X(t) = \hat{X}_0 + \sum_{k=1}^{\infty} \left[\hat{S}_k \sin(k\omega_0 t) + \hat{C}_k \cos(k\omega_0 t) \right]$$
$$\hat{A}_k^2 = \hat{S}_k^2 + \hat{C}_k^2, \quad \hat{\phi}_k = \operatorname{atan} 2(-\hat{S}_k, \hat{C}_k)$$

• Harmonics are approximately orthogonal well-sampled data with uniform phase coverage).

- Add harmonics to the model until their amplitudes become poorly determined Occam's razor, simplest model that fits.
- Use e.g. the **BIC** to decide which terms to include/omit.
- Harmonics above the Nyquist frequency will be aliased, by "folding back" across ω_{Nyq} , from ω to ω_{Nyq} (ω ω_{Nyq}).

Data gaps and aliasing

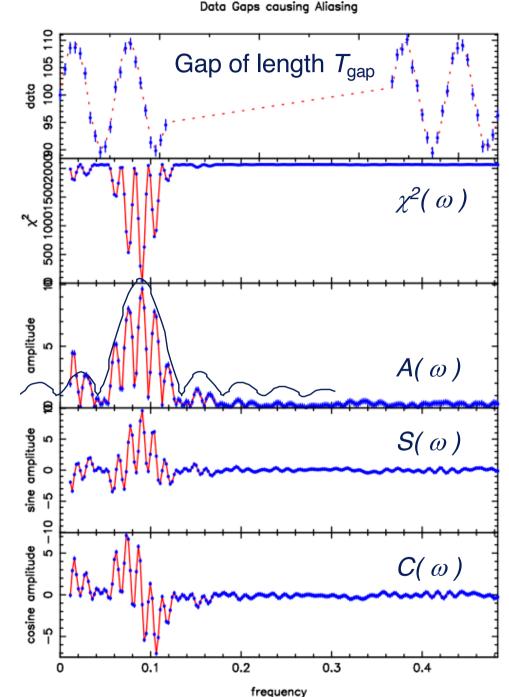
Cycle-count ambiguity:

How many cycles elapse in the gap between two data segments?

 Periodogram has sidelobes (aliases) spaced by

$$\Delta \omega = \frac{2\pi}{T_{gap}} \quad \Delta f = \frac{1 \text{ cycle}}{T_{gap}}$$

 Sidelobes appear within a broader envelope determined by duration of data segments.



Fini -- ADA 13