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Time Series Analysis, Ephemerides

Fourier Analysis: 
Fourier frequencies and basis functions, 

Nyquist sampling.

Periodogram analysis (part 1):
sidelobes, aliasing, harmonics



Timing Analysis - Defining an Ephemeris
Timings:   Observed times of a fiducial point in a 
periodic lightcurve, e.g. mid-eclipse.   

The Ephemeris:
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t = t0 +PE = predicted time
t0 = epoch of phase 0
P=period
E=n+φ = cycle number + phase
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phase: φi =
ti − t0
P

− ni , 0 < φ <1
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Epoch too early. 
Period too short.
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Period is increasing.
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˙ P = dP /dt = 2B /P

Fit a line to correct t0 and P.

Fit quadratic ephemeris:



Hunting for Sinusoidal Signals 
(e.g. Planet hunting -- circular orbit radial velocity curve )

Search a time series for a sinusoidal 
oscillation of unknown frequency w :

• Fit a sinusiod ( scale 3 patterns ):

• “Fold” data on a trial period P = 2p / w
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X(t) = X0 + Acos(ω t + φ0)

= X0 + Ccosω t + S sinω t

Amplitude :          A2
= C

2
+ S

2

Phase at t = 0 :     φ0 = tan−1(−S /C)

Programming hint:
Use phi=atan2(–S,C)
if you care about which
quadrant f ends up in!

Phase f0 1

Correct w : good c2, large A
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Wrong w : bad c2, small A
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Sinusoid + Background
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 Model :  X(t) = X0 + S sin(ω t) + Ccos(ω t)
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Iterated Optimal Scaling:

Iterate ( if patterns not orthogonal ).

Variance formulas 
assume orthogonal 
parameters, 
otherwise give too 
small error bars.

Use the inverse-
Hessian matrix, 
e.g. when phase 
coverage is not 
close to uniform.

3-parameter linear regression + 1 non-linear parameter



Periodogram : grid scan in frequency 
Model is non-linear in w ( or P = 2 p / w, or f = 1 / P ).
Use grid-search:  fit sine curve for a grid of w values.
Periodogram: plot A( w ) and/or c 2( w ).
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Periodogram of a 
finite data train

Purely sinusoidal time 
variation. 

Sampled at N regularly 
spaced time intervals Dt

The periodogram: 
Note c2 minimum and peak 

in A at correct w.
Use Dc2 = 1 to find s(w).
Note sidelobes and finite 

width of peak.
Why not a delta function?
(Spectral leakage)

A( w )

S( w )

C( w )

c2( w )
Note multiple c2 minima 
because model not linear in w.



Spectral Leakage due to finite timespan T
A pure sinusoid at frequency w0 “leaks” into adjacent
frequencies w due to the finite timespan T  of the data.

Special case : Evenly spaced data ,
at times ti = t0 + i Dt   for    i =1,..N , 

and Equal error bars,   si = s :

This “Sinc” function has a 1/x envelope and 
evenly spaced zeroes at frequency step

Dw =  2 p / N Dt   =  2 p / T .  
“De-tuning” by Dw gives an orthogonal function
with 1 extra cycle per time T = N Dt .

Â(ω) ≈ A0
(sinω0 ti ) (sinω ti ) /σ i

2∑
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Â(ω) = A0
sinπ x
π x

   where   x = ω −ω0

Δω

= Optimal Scaling of  
the pattern sin( w t ) 
to fit data varying as 
A0 sin( w0 t ).
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Fourier Frequencies and Basis Functions

Orthogonal for evenly-spaced data with equal error bars.
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f (t) = Sk sin(ωkt) + Ck cos(ωkt)[ ]
k= 0

Kmax
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cos(0) =1
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cos(Δω t )
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sin(Δω t )
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cos(2 Δω t )
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sin(2 Δω t )
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sin(0) = 0

ti = t0 + iΔt i =1, 2,...,N T = N Δt
Fourier frequencies:

ωk = kΔω k = 0,1,...,Kmax Δω = 2π /T
Nyquist frequency = 1 cycle / 2 data points

ωNyq =
2π
2Δt

=
N π
T

=
N
2
Δω ⇒ Kmax =

N
2

Degrees of freedom: 2(1+Kmax )− 2 = N
since   sin(ω0 ti ) = 0 sin(ωNyq ti ) = 0
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cos(ωNyq t )

€ 

sin(ωNyq t )

Exact fit possible !

De-tuning by Dw
gives an orthogonal 
function with 1 extra 
cycle during time T.



Aliasing above the Nyquist Frequency
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sin(ωNyq t )
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cos(ωNyq t )
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sin(3Δω t )
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cos(Δω t )
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cos(3Δω t )
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sin(Δω t )

Sampled pattern is the same at wNyq + k Dw and wNyq - k Dw .
cos ωNyq + kΔω( ) ti"# $% = cos ωNyq − k Δω( ) ti"# $%

sin ωNyq + k Δω( ) ti"# $% = − sin ωNyq − k Δω( ) ti"# $%

Frequencies above 
Nyquist frequency 
duplicate those below.

A(w)

wwNyq



Periodogram
Pure sinusoid signal. 
Sampled at N regularly 

spaced time intervals Dt

The periodogram: 
Note c2 minimum and 
peak in A at correct w.
Use Dc2 = 1 to find s(w).

Sidelobe spacing:
Dw = 2 p / T = 2 p / N Dt
Nyquist frequency:
wN = ( N / 2 ) Dw

=  N p / T = p / Dt 

A( w )

S( w )

C( w )

c2( w )
Note multiple c2 minima     
as model is not linear in w.



Widely spaced 
frequencies

Sum of sine and cosine 
curves at well-separated 
frequencies.

Periodogram shows two well 
separated peaks.

c2 
min is high, but can still 
use Dc2 = 1 to find s(w).

(This is how we find multiple 
planets in Doppler data)

A( w )

S( w )

C( w )

c2( w )

c2min no longer small.



Closely spaced 
frequencies

Wave trains drift in and out of 
phase.

Constructive and destructive 
interference produces 
“beating” in  the light curve.

Beat frequency wB = |w1 - w2|
Peaks overlap in periodogram.

A( w )

S( w )

C( w )

c2( w )
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“Pre-whitening”
Disentangle closely-spaced frequencies by  
“pre-whitening” the data.

Fit and subtract strongest period,                
then fit the next, etc.
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Subtract A1 sin(ω1 t −φ1)

Fit A2 sin(ω2t −φ2) to residuals

Subtract A2 sin(ω2 t −φ2)

Fit A1 sin(ω1t −φ1) to residuals

Iterate to convergence

Fits a 7-parameter model (e.g. by iterated optimal scaling):         
X( t ) = X0 + A1 sin( w1 t + f1 ) + A2 sin( w2 t + f2 )

= X0 + S1 sin( w1 t ) +C1 cos( w1 t ) 
+ S2 sin( w2 t ) +C2 cos( w2 t ) 

2 non-linear params: w1 , w2 , 5 linear params: X0,S1,C1,S2,C2
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Sawtooth and Square Wave

Sawtooth

ω0 2ω0 3ω0 4ω0 5ω0

Square wave

A( w )

S( w )

C( w )

c2( w )
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Non-sinusoidal Waveforms => Harmonics
• Fundamental frequency: w0
• Harmonics at w = k w0 , for k = 2, 3, ...

modify the shape of the waveform.
• Fit any shape periodic function by including amplitudes for :

– sin(2w0t), cos(2w0t)
– sin(3w0t), cos(3w0t)
– etc

• Harmonics are approximately orthogonal                            (for 
well-sampled data with uniform phase coverage).

• Add harmonics to the model until their amplitudes become 
poorly determined – Occam’s razor, simplest model that fits.

• Use e.g. the BIC to decide which terms to include/omit.
• Harmonics above the Nyquist frequency will be aliased,         

by “folding back” across wNyq , from w to wNyq - (w -wNyq) .

X(t) = X̂0 + Ŝk sin kω0 t( )+ Ĉk cos kω0 t( )!
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Âk
2 = Ŝk
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Data gaps 
and aliasing

Cycle-count ambiguity:        
How many cycles elapse in 
the gap between two data 
segments?

• Periodogram has sidelobes
(aliases) spaced by

• Sidelobes appear within a 
broader envelope determined 
by duration of data segments.

Gap of length Tgap

Δω =
2π
Tgap

Δf = 1 cycle
Tgap

A( w )

S( w )

C( w )

c2( w )
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