Lecture 7. Galaxy Formation
After decoupling, overdense regions collapse IF

Collapse time $\quad t_{G} \sim(G \rho)^{-1 / 2} \sim 10^{7} \mathrm{yr} \quad$ for all sizes.
More small ripples than large waves.
--> Universe dominated by globular clusters (?!)

Caveats

Dimensional Analysis --> scaling laws
leaving out dimensionless factors (e.g. ~ 10).
We ignored:
angular momentum -- slows and can halt the collapse
--> Spiral Galaxies.
cosmological expansion -- delays collapse until
expansion time $>$ collapse time.

$$
t>(G \rho)^{-1 / 2}
$$

--> Need "Dark Matter halos" (which begin collapsing before decoupling) into which baryon gas falls.

The Dark Ages ($1100<z<20$)

Uniform neutral IGM
(Inter-Galactic Medium)
Proto-globular clusters.
Rare larger objects:
proto-galaxies
proto-clusters
$T_{\mathrm{CMB}}=2.7(1+z) \mathrm{K}$
No stars!

As regions collapse and merge, stars form, and their ultra-violet light can re-ionise the IGM.

CMB $\sim 15 \%$ Polarised

2003 WMAP discovery
Free electrons have scattered $\sim 15 \%$ of CMB photons.
--> IGM was re-ionised by redshift $\quad z \sim 20$.

Redshift of Galaxy Formation

Recombination:

$$
t_{\mathrm{Rec}}=3 \times 10^{5} \mathrm{yr} \quad \mathrm{z}_{\mathrm{Rec}}=1100
$$

Galaxy formation (collapse time):

$$
t_{G}=10^{7} \mathrm{yr} \quad \mathrm{z}_{\mathrm{G}}=?
$$

History of Galaxy Formation
CMB (z ~ 1100) \Downarrow
First (smaller) galaxies form (GCs?)

Reionisation ($\mathrm{z} \sim 20$) by first UV sources
(first stars and/or accreting black holes) \downarrow
Main phase of galaxy formation ($\mathrm{z} \sim 2-3$)
\downarrow
Today $(\mathrm{z}=0)$

Star-Formation Rates (SFR)

Consider a condensation of primordial mix
[$X=0.75, Y=0.25, Z=0.0]$
Total mass: $M_{\text {gas }}$
Star formation: $M_{g a s} \longrightarrow \quad M_{\text {stars }}$
How quickly? With what efficiency?

Star Formation Histories

Stellar populations (old vs young stars) reveal SF histories. Three main galaxy types:

Elliptical exponential SFR
Spiral constant SFR
Irregular episodic SFR

Spirals

Red halo, blue disc $\quad \Rightarrow$ Old and young stars.
Emission \& absorption lines \Rightarrow Star formation + old stars
Dust lanes \& HI $\quad \Rightarrow$ Gas available to form stars
Moderate surface brightness \Rightarrow Form via collapse with
Rotating disk $\quad \Rightarrow$ high angular momentum.
Fewer spirals in clusters. $\quad \Rightarrow$ Destroyed by mergers.

In dimensionless form

$\mu(t) \equiv \frac{M_{G}(t)}{M_{0}}=$ fraction of M_{0} in gas
$S(t) \equiv \frac{M_{S}(t)}{M_{0}} \quad \begin{gathered}\text { fraction of } M_{0} \text { that has been } \\ \text { turned into stars }\end{gathered}$

$$
\begin{aligned}
M_{G} & =M_{0}-\alpha M_{S} \\
\mu & =1-\alpha S
\end{aligned}
$$

Since $\alpha<1, S(t) \rightarrow S_{\infty}>1$
OK, since some gas is recycled.

SFR in Ellipticals

Assume $d S / d t \propto \mu \quad$ (more gas $->$ more stars form) $\mu(t)=1-\alpha S(t)$
$\frac{d \mu}{d t}=-\alpha \frac{d S}{d t}=-\alpha C \mu \quad \frac{d S}{d t}=C \mu$
$\frac{d \mu}{\mu}=-\alpha C d t=-\frac{d t}{t_{*}} \quad t_{*} \equiv \frac{1}{\alpha C}$
$\begin{array}{cc}\ln \mu=-\frac{t}{t_{*}}+A & A=\ln \mu(0)=0 \text { for } \mu(0)=1 \\ \text { gas } & \mu(t)=e^{-t / t_{*}}\end{array} \quad$ stars $\alpha S(t)=1-e^{-t / t_{*}}$

Star Formation Timescale

$t_{*}=$ "e-folding time"
$=$ time to turn mass M_{0} / e
into stars. Typically:
$t_{*} \sim 1-5 \mathrm{Gyr}$

Q: If $t_{*}=2 \mathrm{Gyr}$, how long to turn 90% of gas into stars?
$\mathrm{A}: \quad \mu(t)=e^{-t / t_{*}}=0.1$
$t=-t_{*} \ln (\mu)$
$=-2 \ln (0.1)=4.6 \mathrm{Gyr}$

SFR in Spirals

Assume $S F R=$ constant

$$
\frac{d S}{d t}=\frac{\dot{M}}{M_{0}}
$$

$$
S(t)=\frac{\dot{M}}{M_{0}} t
$$

$$
\mu(t)=1-\alpha S(t)
$$

$$
=1-\alpha \frac{\dot{M}}{M_{0}} t
$$

SFR in Irregulars

Typically bursts of $100 \mathrm{M}_{\odot} \mathrm{yr}^{-1}$ for 0.5 Gyr at intermittent intervals

$$
\mu(t)=1-\alpha f \frac{\dot{M}}{M_{0}} t
$$

Star-formation histories

For ellipticals most stars form early on. Stars all roughly same age (co-eval).

Ages from main-sequence turn-off stars

B-V

Luminosity at the top of the main sequence (turn-off stars) gives the age t.

Multiple Ages of stars in Omega Cen

Ages from main-sequence turn-off stars

$$
\mathrm{M}_{\mathrm{V}}(\mathrm{TO})=2.70 \log (\mathrm{t} / \mathrm{Gyr})+0.30[\mathrm{Fe} / \mathrm{H}]+1.41
$$

Summary of Star Formation Models

$$
\begin{array}{rlrl}
\mu_{\mathrm{Ell}} & =e^{-\frac{t}{t_{*}}} & t_{*} & =\text { e-folding time } \\
\mu_{\mathrm{Sp}} & =1-\alpha \frac{\dot{M}}{M_{0}} t & \alpha & =\text { star-forming efficiency } \\
\mu_{\mathrm{Irr}}= & \dot{M} & =\text { mass conversion } \mathrm{yr}^{-1} \\
\tau_{M S}=7 \times 10^{9}\left[\frac{M}{M_{\odot}}\right]\left[\frac{\dot{M}}{M_{0}} t\right. & f & =\begin{array}{c}
\text { fraction of time spent } \\
\\
\text { star-bursting }
\end{array} \\
L_{\odot}^{-1} & =7 \times 10^{9}\left[\frac{L}{L_{\odot}}\right]^{-\frac{3}{4}} \mathrm{yr}
\end{array}
$$

