Lecture 8: Stellar Nucleosynthesis and Chemical Evolution of The Galaxy

- Chemical evolution of the Galaxy:
- Star Formation
- Nucleosynthesis in Stars
- Enrichment of the ISM (interstellar medium)
 - Supernova explosions
 - Planetary nebulae
 - Stellar winds

Enrichment of Primordial Abundances

- Emission lines from H II regions in low-metalicity galaxies.
- From emission-line ratios, measure abundance ratios: He/H, O/H, N/H, ...
- Stellar nucleosynthesis increases He along with metal abundances.
- Find $Y_p = 24.5\%$ by extrapolating to zero metal abundance.

Star Formation in our Galaxy

Galaxy		Solar cylinder			
Age $t \sim 10 - 15 \text{ Gy}$	yr	Surface area πR_0^2 $R_0 = 8.5$ kpc			
Mass now in stars:	$\alpha M_{\rm S} = 7 \ {\rm x} \ 10^{10} \ {\rm M}_{\odot}$	$lpha \Sigma_{ m S} \sim 45 \ { m M}_{\odot} \ { m pc}^{-2}$			
Mass now in gas:	$M_{ m G}\sim 7~{ m x}~10^9~{ m M}_{\odot}$	$\Sigma_{ m G}$ \sim 7 - 14 ${ m M}_{\odot}~{ m pc}^{-2}$			
Gas fraction:	$\mu = M_{\rm G/} M_0 \sim 0.1$	μ \sim 0.14 - 0.25			
~ 90% of original gas has been converted to stars.					
Star formation depletes the gas:					
Average past SFR:	$M_{\rm S}/t \sim (5$ - 7) $lpha$ - l M $_{\odot}$ yr	¹ (3 - 4.5) α^{-1} M _{\odot} Gyr ⁻¹ pc ⁻²			
Gas consumption time	$H_{\rm G}/\left(\alpha M_{\rm S}/t\right) \sim 1 {\rm Gyr}$	1.5 - 5 Gyr			
Star formation could stop in as little as 1 Gyr					
Processes that restore the gas:					
AGB star winds + Plan	netary Nebulae:	0.8 M _☉ Gyr ⁻¹ pc ⁻²			
O stars winds:		$\sim 0.05~M_{\odot}~Gyr^{-1}~pc^{-2}$			
Supernovae:	$\sim 0.15 \ M_{\odot} \ yr^{-1}$	$\sim 0.05~M_{\odot}~Gyr^{-1}~pc^{-2}$			
Total mass ejection from stars:		$\sim 1 M_{\odot} \text{ Gyr}^{-1} \text{ pc}^{-2}$			
Inflow from IGM	$< 2 M_{\odot} yr^{-1}$	$< 1 M_{\odot} \text{ Gyr}^{-1} \text{ pc}^{-2}$			
Recycling (and inflow from IGM) extends the star formation era.					

ISM in Spiral Galaxies

Whirlpool Galaxy • M51

Edge-On Galaxy NGC 4013

Spiral shocks

Hubble Heritage

NASA and The Hubble Heritage Team (STScI/AURA) Hubble Space Telescope WFPC2 • STScI-PRC01-07

NASA and The Hubble Heritage Team (STScl/AURA) Hubble Space Telescope WFPC2 • STScl-PRC01-07

Shocks induce Star Formation

Shocks: supersonic collisions in gas. Galaxy collisions, spiral arms, SN explosions. Compress the ISM. Gas then cools.

Lower Jeans mass: $M_J \propto \rho^{-1/2} T^{3/2}$

Overdense regions with $L > L_J$ collapse --> stars!

Initial Mass Function (IMF)Stars born in clusters with wide range of masses. $M_* = (0.08 - 100?) M_{\odot}$ Brown dwarfs: $M < 0.08 M_{\odot}$ (no H->He in core)Max star mass: ~100 M_{\odot} (radiation pressure limit)

Salpeter IMF:

 $N(M) \propto M^{-7/3}$

Holds in the solar neighbourhood, and many clusters. May be universal.

Role of Supernovae

Many low-mass stars. Long lives (> Hubble time).

A few *high-mass stars*: Quickly go *Supernova (SN)*, enrich the ISM with *metals*.

 $M_* > 8 M_{\odot}$ SN => enrichment of ISM

 $M_* < 8 M_{\odot}$ retain most of their metals, => little enrichment of ISM

Intermediate mass stars: $(1 < M_*/M_{\odot} < 8)$ Make He, ... C, N, O, ..., Fe, but no SN. Some ISM enrichment (*stellar wind, planetary nebulae*) but most metals stay locked up in collapsed remnant $(\sim 0.5-0.8 M_{\odot} white dwarf)$.

Stellar Nucleosynthesis

Add protons or neutrons,

then beta decay back to *valley of stability*.

High n⁰ flux: absorb many n⁰s before β emission.

These processes require energy. Occur only at high $\rho \& T$:

Core & shell burning: p & s process

Supernovae: p&r process

Neutron Capture: Speed Matters

Stellar Nucleosynthesis

Main processes (fusion):

pp-chain	→	⁴ He	H-burning
[also CNO-cycle	→	⁴ He	in metal rich stars]

M/M_{\odot}	Fuel	Products	$T / 10^8 { m K}$
0.08	Н	Не	0.2
1.0	He	С, О	2
1.4	С	O, Ne, Na	8
5	Ne	O, Mg	15
10	Ο	Mg S	20
20	Si	Fe	30
> 8	Supernovae	all!	

Pre-Supernova "Onion Skin" Structure

Heavy elements settle into layers. Shell burning at interfaces.

Composition of layers dominated by more stable nuclei (A multiple of 4)

SN 1987A in LMC

• AAT 48a

Hot star winds also enrich the ISM

- *Stellar winds:* radiation pressure blows gas from the surfaces of hot massive stars.
- Can be very eruptive!

l-process: Spallation

D, Li, Be, B are destroyed in stars: Low binding energies, burn quickly to heavier nuclei. (Li convects to the core and is destroyed, depleting gradually at star surface, used to estimate ages of low-mass stars).

But, we observe D close to Big Bang predictions, and often higher abundances of Li, Be, B.

Must be produced somewhere after the Big Bang.

l-process (*spallation*):

Accelerate a nucleus to $V \sim c$ (i.e. cosmic rays) Collide with a heavy nucleus. Splits yield some Li, Be, B as fragments.

