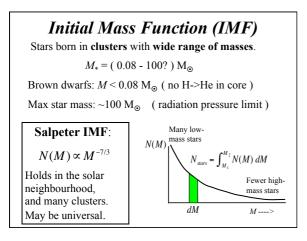
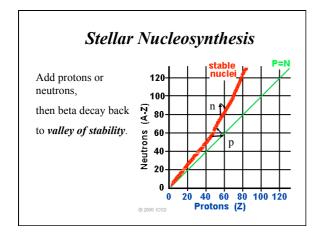
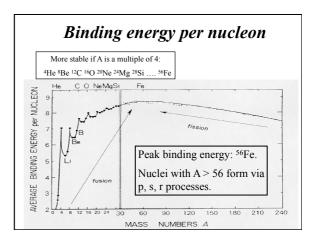
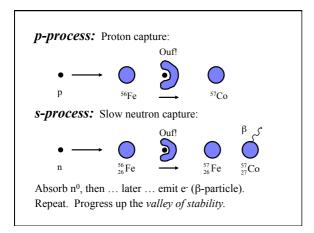

Enrichment of Primordial Abundances • Emission lines from H II regions in low-metalicity galaxies. • From emission-line ratios; measure abundance ratios; He/H, O/H, N/H, ... • Stellar nucleosynthesis increases He along with metal abundances. • Find $Y_p = 24.5\%$ by extrapolating to zero metal abundance.

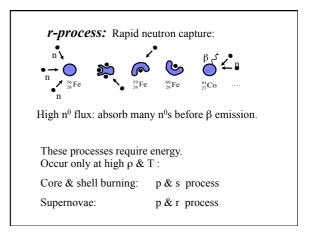
10⁷(N/H

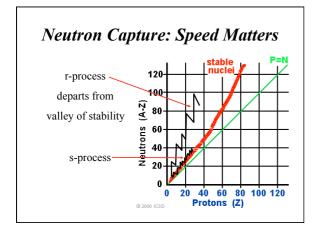

	Galaxy	Solar cylinder
Age $t \sim 10 - 15$ G	· · · · · · · · · · · · · · · · · · ·	Surface area $\pi R_0^2 R_0 = 8.5 \text{ kpc}$
Mass now in stars:	$\alpha M_{\rm S} = 7 \text{ x } 10^{10} \text{ M}_{\odot}$	$\alpha \Sigma_{\rm S} \sim 45 \rm M_{\odot} pc^{-2}$
Mass now in gas:	$M_{\rm G} \sim 7 \text{ x } 10^9 \text{ M}_{\odot}$	$\Sigma_{G} \sim 7 - 14 M_{\odot} pc^{-2}$
Gas fraction:	$\mu = M_{G/} M_0 \sim 0.1$	$\mu \sim 0.14 - 0.25$
~ 90%	of original gas has been co	nverted to stars.
	Star formation depletes t	he gas:
Average past SFR:	$M_{\rm S}/t \sim (5 - 7) \alpha^{-1} M_{\odot} {\rm yr}^{-1}$	(3 - 4.5) α ⁻¹ M _☉ Gyr ⁻¹ pc ⁻²
Gas consumption time	: $M_G/(\alpha M_S/t) \sim 1 \text{ Gyr}$	1.5 - 5 Gyr
Sta	r formation could stop in as	little as 1 Gyr
	Processes that restore the	gas:
AGB star winds + Plan	netary Nebulae:	0.8 M _☉ Gyr ⁻¹ pc ⁻²
O stars winds:		$\sim 0.05 \ M_{\odot} \ Gyr^{-1} \ pc^{-2}$
Supernovae:	~ 0.15 M _☉ yr ⁻¹	$\sim 0.05~M_\odot~Gyr^{-1}~pc^{-2}$
Total mass ejection fr	om stars:	~ 1 M _o Gyr ⁻¹ pc ⁻²
Inflow from IGM	$< 2 M_{\odot} yr^{-1}$	< 1 M _☉ Gyr ⁻¹ pc ⁻²

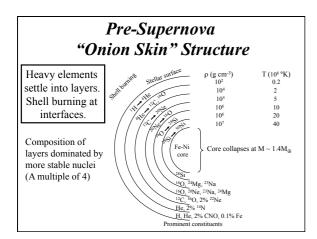


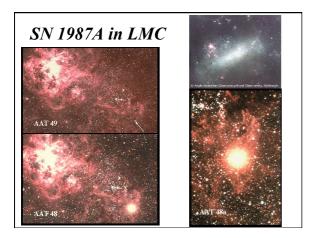




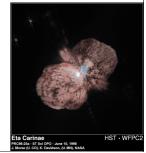



Role	of Supernovae
Many low-mass stars	s. Long lives (> Hubble time).
A few <i>high-mass sta</i> enrich the ISM with	rs: Quickly go Supernova (SN), a metals.
$M_* > 8 \mathrm{M}_{\odot}$	SN => enrichment of ISM
$M_* < 8 \mathrm{M}_{\odot}$	retain most of their metals, => little enrichment of ISM
Make He, C, N, C Some ISM enrichme but <i>most metals stay</i>	tars: $(1 < M_*/M_{\odot} < 8)$),, Fe, but no SN. nt (stellar wind, planetary nebulae) locked up in collapsed remnant 0.8 M _{\odot} white dwarf).





Main pro	ocesses (fusion	n):	
	pp-chain	→ ⁴ He	H-burning
[als	o CNO-cycle	→ ⁴ He	in metal rich stars
			T (4 00 T
M/M_{\odot}	Fuel	Products	T / 10 ⁸ K
0.08	Н	He	0.2
1.0	He	С, О	2
1.4	С	O, Ne, Na	8
5	Ne	O, Mg	15
10	0	Mg S	20
20	Si	Fe	30
> 8	Supernovae	all!	



Hot star winds also enrich the ISM

- *Stellar winds:* radiation pressure blows gas from the surfaces of hot massive stars.
- Can be very eruptive!

l-process: Spallation

D, Li, Be, B are destroyed in stars:

Low binding energies, burn quickly to heavier nuclei. (Li convects to the core and is destroyed, depleting gradually at star surface, used to estimate ages of low-mass stars).

But, we observe D close to Big Bang predictions, and often higher abundances of Li, Be, B.

Must be produced somewhere after the Big Bang.

l-process (*spallation*):

Accelerate a nucleus to $V \sim c$ (i.e. cosmic rays) Collide with a heavy nucleus. Splits yield some Li, Be, B as fragments. Nucleosynthesis Flowchart