## Lecture 9: Supernova Rates Star-Formation Efficiency, Yield

How many supernovae per year for each galaxy type ?
Use power-law IMF, Salpeter slope $-7 / 3=-2.33$


## Integrating a Power-Law IMF

## Number of stars :

$N=\int N(M) d M=A \int M^{B} d M=\frac{A}{B+1} M^{B+1} \quad($ if $B \neq-1)$
Fraction of stars with $M>\boldsymbol{8} \mathbf{M}_{\odot}($ for $B=-7 / 3)$
$f_{N} \equiv \frac{\text { number of SNe }}{\text { number of stars }}=\frac{\int_{8}^{20} M^{B} d M}{\int_{0.1}^{20} M^{B} d M}$

$\Rightarrow \quad f_{N}=0.2 \%$

## SN Mass Fraction

Supernovae are rare, but each is very massive.
What fraction of the mass goes into SNe?

$$
\begin{aligned}
& f_{M}=\frac{\int_{8}^{20} M \times M^{-7 / 3} d M}{\int_{0.1}^{20} M \times M^{-7 / 3} d M} \\
&=\frac{\left.M^{-1 / 3}\right|_{8} ^{20}}{\left.M^{-1 / 3}\right|_{0.1} ^{20}}=\frac{0.37-0.50}{0.37-2.15} \text { Most of mass is in } \\
& \text { low-mass stars. } \\
& \Rightarrow f_{M}=7.2 \%
\end{aligned}
$$

## "Typical" SN Mass

Median mass:

$$
\begin{aligned}
& \frac{1}{2}=\frac{\int_{8}^{\bar{M}_{S V}} M \times M^{-7 / 3} d M}{\int_{8}^{20} M \times M^{-7 / 3} d M}=\frac{\bar{M}_{S N}^{-1 / 3}-0.50}{0.37-0.50} \\
\Rightarrow & \bar{M}_{S N}=12.2 \mathrm{M}_{\odot}
\end{aligned}
$$

Mean mass:
$\langle M\rangle=\frac{\int_{8}^{20} M \times M^{-7 / 3} d M}{\int_{8}^{20} M^{-7 / 3} d M}=\frac{\left.\frac{1}{-1 / 3} M^{-1 / 3}\right|_{8} ^{20}}{\left.\frac{1}{-4 / 3} M^{-4 / 3}\right|_{8} ^{20}}$

$$
=\frac{4 \times\left(20^{-1 / 3}-8^{-1 / 3}\right)}{20^{-4 / 3}-8^{-4 / 3}}=\frac{4 \times(0.37-0.50)}{0.018-0.062}=12 \mathrm{M}_{\odot}
$$

## SN Rates vs Galaxy Type

Spiral Galaxy: SFR: $\sim 8 \mathrm{M}_{\odot} \mathrm{yr}^{-1} . \quad 7.2 \%$ have $M>8 \mathrm{M}_{\odot}$ $\Rightarrow \quad\left(8 \mathrm{M}_{\odot} \mathrm{yr}^{-1}\right) \times 0.072 \sim 0.6 \mathrm{M}_{\odot} \mathrm{yr}^{-1}$ go into SNe
SN rate:

$$
\frac{0.6 \mathrm{M}_{\odot} \mathrm{yr}^{-1}}{12.2 \mathrm{M}_{\odot}} \sim \frac{1}{20} \mathrm{yr}^{-1} \quad \text { (fewer seen due to dust) }
$$

Irregular Galaxy: $\sim 10 \mathrm{x}$ this rate during bursts ( 1 SN per 2 yr )! No SNe between bursts.


Estimates for efficiency $\alpha$, yield in $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$
Assume:

1. Type-II SNe enrich the ISM.
(Neglect: Type-I SNe, stellar winds, PNe, ....)
2. Closed Box Model:
(Neglect: Infall from the IGM, outflow to the IGM)
3. SN 1987A is typical Type-II SN.

Better models include these effects.

What do we know about SN 1987A?


## What Star Formation Efficiency $\alpha$ and Yields of H , He and Metals?




## SN 1987A

23 Feb 1987 in LMC
Brightest SN since 1604!
First SN detected in neutrinos.
Visible (14 --> 4.2 mag ) to naked eye, in southern sky.
Progenitor star visible:
~20 Msun blue supergiant.
3- ring structure (pre-SN wind)
UV flash reached inner ring in 80 d . Fastest ejecta reached inner ring in $\sim 6$ yr. Fast ejection velocity $\mathrm{v} \sim \mathrm{c} / 30 \sim 11,000 \mathrm{~km} / \mathrm{s}$. Slower (metal-enriched) ejecta asymmetric.


## Star Formation Efficiency

Use SN 1987A to calculate $\alpha$ and yield.
SN 1987A: progenitor star mass $=20 \mathrm{M}_{\odot}$ remnant neutron star mass $=1.6 \mathrm{M}_{\odot}$ mass returned to the $\mathrm{ISM}=18.4 \mathrm{M}_{\odot}$
From IMF, $7.2 \%$ of $M_{S}$ is in stars with $M>8 \mathrm{M}_{\odot}$ $\beta=$ Fraction of $M_{S}$ returned to ISM:

$$
\beta=\frac{\text { mass returned to gas }}{\text { mass turned into stars }}=0.072 \times \frac{18.4}{20} \approx 6.6 \%
$$

Star Formation Efficiency
$\alpha=$ fraction of $M_{S}$ retained in stars:

$$
\alpha=1-\beta=93 \%
$$



X, Y, Z of ejecta from SN1987A
Initial mass $\sim 20 \mathrm{M}_{\odot}$
NS mass $\quad \sim 1.6 \mathrm{M}_{\odot}$
Mass ejected $\sim 18.4 \mathrm{M}_{\odot}$
in $\mathrm{H} \quad 9.0 \mathrm{M}_{\odot}$
$\left.\begin{array}{cc}\mathrm{He} & 7.0 \mathrm{M}_{\odot} \\ \mathrm{Z} & 2.4 \mathrm{M}_{\odot}\end{array}\right\}=18.4 \mathrm{M}_{\odot}$
$\Rightarrow \mathrm{X}=\frac{9}{18.4} \approx 0.49 \quad \mathrm{Y}=\frac{7}{18.4} \approx 0.38$
$\mathrm{Z}=\frac{2.4}{18.4} \approx 0.13$

