# Lecture 10: <br> Chemical Evolution of Galaxies 

Metalicity evolution $Z(t) \quad$ (vs galaxy type)
Processes that alter the metalicity:

1. Type-II SNe enrich the ISM.
2. Low-mass stars form from enriched ISM and "lock-up" metals.
3. Primordial gas falls in from IGM.
4. ISM ejected into IGM.
(e.g. SN explosions, galaxy collisions)

Closed Box model: 1 and 2 only.
Accreting Box: 1,2,3. Leaky Box: 1,2,4.

## Metalicity Evolution: $\quad Z(t)$

$M_{0}=$ total mass
$M_{G}(t)=$ mass of gas in ISM
$M_{Z}(t)=$ mass of metals in ISM
$M_{*}(t)=$ mass locked up in stars and remnants
Mass conservation: $\quad M_{*}(t)=M_{0}-M_{G}(t)$
We also know: $\quad \mu(t) \equiv \frac{M_{G}(t)}{M_{0}} \quad \mu(0)=1$
To derive:

$$
Z(t) \equiv \frac{M_{Z}(t)}{M_{G}(t)} \quad Z(0)=0
$$

We will find:

$$
Z(\mu(t))
$$

## ISM Recycling Model



Yield: $y$ = mass of metals returned to ISM per mass turned into low-mass stars and remnants

## ISM Recycling Model



## The "Yield"

Mass is conserved (gas $\Rightarrow$ stars )

$$
d M_{G}=-d M_{*}=-\alpha d M_{S}
$$

Metals are lost to stars, but enriched gas is returned by SNe:

$$
\begin{aligned}
d M_{Z} & =-Z d M_{S}+Z_{S N}(1-\alpha) d M_{S} \\
& =\left[(-\alpha Z+\alpha Z)-Z+Z_{S N}(1-\alpha)\right]\left(\frac{d M_{*}}{\alpha}\right) \\
& =\left[\frac{\left(Z_{S N}-Z\right)(1-\alpha)}{\alpha}-Z\right] d M_{*} \equiv(y-Z) d M_{*}
\end{aligned}
$$

Yield: $y=\left(Z_{S N}-Z\right)\left(\frac{1-\alpha}{\alpha}\right)$

From Salpeter IMF and SN1987A:
Initial yield: $y_{0}=Z_{S N}\left(\frac{1-\alpha}{\alpha}\right)=(0.13) \frac{0.07}{0.93}=0.01$

## Metalicity Evolution $\boldsymbol{Z}(t)$

$$
\begin{aligned}
& \text { Differentiate: } \begin{aligned}
Z(t) \equiv \frac{M_{\mathrm{Z}}(t)}{M_{\mathrm{G}}(t)} \\
\left.\begin{array}{rl}
\delta Z=\delta\left(\frac{M_{\mathrm{Z}}}{M_{\mathrm{G}}}\right) & =\frac{\delta M_{\mathrm{Z}}}{M_{\mathrm{G}}}+M_{\mathrm{Z}} \delta\left(\frac{1}{M_{G}}\right) \\
= & \frac{\delta M_{\mathrm{Z}}}{M_{\mathrm{G}}}+M_{\mathrm{Z}}\left(-\frac{\delta M_{\mathrm{G}}}{M_{\mathrm{G}}^{2}}\right)
\end{array}\right]
\end{aligned}
\end{aligned}
$$

$$
\begin{array}{l|r}
=\frac{1}{M_{\mathrm{G}}}\left(\delta M_{\mathrm{Z}}-\frac{M_{\mathrm{Z}}}{M_{\mathrm{G}}} \delta M_{\mathrm{G}}\right) \\
\left.=\frac{1}{( }(Z-y) \delta M_{C}-Z \delta M_{C}\right) & \begin{array}{r}
\text { Definition of yield: } \\
\delta M_{\mathrm{Z}}=(y-Z) \delta M_{*} \\
=(Z-y) \delta M_{\mathrm{G}}
\end{array}
\end{array}
$$

$$
=\frac{1}{M_{\mathrm{G}}}\left((Z-y) \delta M_{\mathrm{G}}-Z \delta M_{\mathrm{G}}\right)
$$

$$
=-y \frac{\delta M_{\mathrm{G}}}{M_{\mathrm{G}}}=-y \delta\left(\ln \left(M_{\mathrm{G}}\right)\right)
$$

## Closed Box with constant Yield

Integrate $\quad \delta Z=-y \frac{\delta M_{\mathrm{G}}}{M_{\mathrm{G}}} \quad($ with $y=$ constant $)$ :

$$
Z=-y \ln \left(M_{G}\right)+C
$$

At $Z=0, M_{G}=M_{0}$ :

$$
0=-y \ln \left(M_{0}\right)+C \quad \Rightarrow \quad C=y \ln \left(M_{0}\right)
$$

$$
\therefore \quad Z=-y \ln \left(\frac{M_{\mathrm{G}}}{M_{0}}\right)=-y \ln (\mu)
$$



Note that as $\mu=>0, Z=>\infty$
Impossible! :-(
What went wrong? Yield is not quite constant.

## Closed Box with varying Yield

$$
\begin{aligned}
& y=\left(Z_{S N}-Z\right)\left(\frac{1-\alpha}{\alpha}\right) \quad y_{0}=Z_{S N}\left(\frac{1-\alpha}{\alpha}\right) \\
& \delta Z=-y \delta(\ln \mu)=\left(Z-Z_{S N}\right)\left(\frac{1-\alpha}{\alpha}\right) \delta(\ln \mu) \\
& \frac{\delta Z}{Z-Z_{S N}}=\left(\frac{1-\alpha}{\alpha}\right) \delta(\ln \mu) \\
& \ln \left(Z-Z_{S N}\right)=\left(\frac{1-\alpha}{\alpha}\right) \ln (\mu)+C \\
& Z-Z_{S N}=A \mu^{\left(\frac{1-\alpha}{\alpha}\right)} \quad A=e^{C}=-Z_{S N} \\
& Z=Z_{S N}\left(1-\mu^{\left(\frac{1-\alpha}{\alpha}\right)}\right) \quad y=y_{0} \mu^{\left(\frac{1-\alpha}{\alpha}\right)} \\
& Y \text { Yield is approx constant: }(1-\alpha) / \alpha \sim 0.075,
\end{aligned}
$$ But $y=>0$ and $Z=>Z_{S N}$ as $\mu=>0($ from the last SN$)$.

## Metalicity distribution of the Stars

$\begin{aligned} & \text { Metalicity of stars }= \\ & \text { Metalicity of gas } \\ & \text { from which they } \\ & \text { formed. }\end{aligned}$
$y_{0} \quad Z_{S N}$

"G dwarf problem": very few sun-like stars (spectral type G) have metalicity below $1 / 2$ solar.

Closed Box Model FAILS: predicts that $>1 / 4$ of stars with $Z<Z_{\odot}$ have $Z<1 / 2 Z_{\odot}$

Why are there so few low-metalicity stars?
What caused the rapid initial enrichment?

## What caused the initial enrichment?

IGM somehow enriched before galaxies form?
First generation (Pop III) $Z=0$ stars all high mass? Accreting Box model with low initial gas mass and $Z=>y$ ?


Accreting Box varying Yield

$$
\begin{gathered}
\text { Yield }=y \equiv \frac{\left(Z_{\mathrm{SN}}-Z\right)(1-\alpha)}{\alpha} \\
\alpha=0.93 \quad Z_{\mathrm{SN}}=0.13
\end{gathered}
$$

Assume star formation proportional to gas mass ( e.g. Elliptical galaxy)

Accrete $Z=0$ gas, constant $\mathrm{d} M_{\mathrm{IN}} / \mathrm{d} t$, until $t=100$.

Closed box for $t>100$.
Result: $Z(t)$ rises

$$
\text { until } Z \sim y(Z(t))
$$

$M_{0}(t)=\dot{M} t=$ total mass


Metalicity Evolution


## Accreting Box, constant gas mass



Insert $\mu(t)$ for each galaxy type into

$$
\begin{array}{r}
\hline Z(t)=-y \ln (\mu(t)) \\
\\
\text { for } Z<y
\end{array}
$$

Ellipticals:

$$
\mu(t)=e^{\left(-t / t_{*}\right)}
$$

$$
\begin{array}{ll}
Z(t)=-y \ln \left(e^{-t / t_{0}}\right)=y \frac{t}{t_{*}} & \text { for } \quad \mathrm{Z} \leq y \\
Z(t)=y & \text { otherwise }
\end{array}
$$

Spirals:

$$
\mu(\mathrm{t})=1-\frac{\alpha \dot{M} t}{M_{0}}
$$

$$
\begin{array}{ll}
Z(t)=-y \ln \left(1-\frac{\alpha \dot{M} t}{M_{0}}\right) & \text { for } \quad \mathrm{Z} \leq y \\
Z(t)=\mathrm{y} & \text { otherwise }
\end{array}
$$

Irregulars:

$$
\langle\mu(t)\rangle=f \frac{\alpha M t}{M_{0}}
$$

$$
\begin{array}{ll}
Z(t)=-y \ln \left(1-f \frac{\alpha \dot{M} t}{M_{0}}\right) & \text { for } \quad \mathrm{Z} \leq y \\
Z(t)=\mathrm{y} & \text { otherwise }
\end{array}
$$



$$
\begin{array}{r}
Z(t)=-y \ln (\mu(t) \\
\\
\text { for } Z<y
\end{array}
$$



$$
\langle\mu(t)\rangle \approx 1-t / t_{s}
$$



$$
t_{m}=f \frac{M_{0}}{\alpha \dot{M}_{\text {bust }}} \quad f<1
$$

$$
Z(t) \approx-y \ln \left(1-t / t_{*}\right)
$$



## Initial and Effective Yield

$$
y \equiv-\frac{\delta Z}{\delta(\ln \mu)}=\left(Z_{S N}-Z\right) \frac{1-\alpha}{\alpha}
$$

First generation: $Z=0$ later generations $Z \ll Z_{S N}$ :
From Salpeter IMF and SN 1987A: $\alpha=0.93$
From SN 1987A:

$$
Z_{S N}=0.13
$$

$$
\Longrightarrow \quad \text { Initial yield }=y_{0} \approx 0.13 \frac{0.07}{0.93}=0.01
$$

Solar metals : $Z_{\odot} \approx 0.02$
Milky Way has used

$$
\begin{aligned}
& y_{\mathrm{eff}} \equiv \frac{Z_{\mathrm{obs}}}{\ln (1 / \mu)} \sim \frac{0.02}{\ln (10)}=0.01 \\
& \mu \approx \frac{M_{G}}{M_{*}+M_{G}} \sim 0.1
\end{aligned}
$$

## Effective Yield vs Galaxy Mass

Tully-Fisher: $\left(M / 10^{11} \mathrm{M}_{\odot}\right) \sim\left(V_{\text {rot }} / 200 \mathrm{~km} / \mathrm{s}\right)^{4}$
Lower yield in small galaxies because SN ejecta excape.

$$
\begin{aligned}
& y_{\mathrm{eff}} \equiv \frac{Z_{\mathrm{obs}}}{\ln (1 / \mu)} \\
& \mu \approx \frac{M_{G}}{M_{*}+M_{G}}
\end{aligned}
$$



Garnett 2002

## Summary

- Simple models for $Z(\mu(t))$ (Closed Box, Accreting Box, Leaky Box)
- Yield: $y=$ mass of metals returned to ISM per mass turned into low-mass stars and remnants

$$
Z=-y \ln (\mu)=y \ln (1 / \mu)
$$

- "G dwarf problem" Closed Box model fails, predicts too many low- $Z$ stars.
- Infall of $Z=0$ material causes $Z=>y$.
- $y_{\text {eff }}=Z_{\text {obs }} / \ln (1 / \mu) \sim 0.01$
- 0.001 for small Galaxies (SN ejecta escape)

