AS1001:Extra-Galactic Astronomy

Lecture 7: The Development of Cosmology

The Copernican Revolution

- Cosmology is the study of the Universe.
- Once upon a time, ... (<1600)
 most Western science was done by
 the Church, influenced by dogma, Scripture.
- Church's (Aristotle's) cosmological model:

 Earth at centre, Moon, Sun, 5 planets
 (MVMJS), fixed stars on 8 rotating spheres.
- Copernicus, Galileo and Kepler challenged the Church's authority, placing the Sun at the centre, seeing comets as orbiting Sun, craters on Moon, Venus phases, moons of Jupiter, ...
- (Church recently apologised for persecuting Galileo to suppress his heretical views.)

The Copernican Principle Modern Cosmology assumes:

There is nothing special about our location in the cosmos.

A simple but powerful concept extending the Copernican Revolution:

Our Sun, on outskirts of a galaxy.

Our galaxy, one of zillions.

Our view is typical, not special.

Olber's Paradox

The idea of "permanency of the Heavens" persisted. In 1826 Olber voiced a well known paradox:

Why is the sky dark at night?

This question, 100 years before Einstein and Hubble, undermines the concept of an eternal, unchanging, infinite Universe.

Olber's Paradox

If the Universe is infinite, with a uniform distribution of stars, every line of sight eventually encounters a star.

WHOLE SKY AS BRIGHT AS THE SUN ®

Olber's Paradox

But, more distant stars are fainter.

- Flux $\sim L/d^2$
- $I = \text{Flux per square arcsec} \sim (L / d^2) / \theta^2$
- But $\theta \sim r/d$, so: $I \sim L/r^2$ Intensity is independent of distance.
- If the Universe is infinite, then the entire sky should be as bright as the surface of the sun!

Olber's Paradox: Version 2

- n = density of stars[stars/pc³]
- · No of stars within shell:

$$dN = n \, 4\pi r^2 dr$$

• Flux from one star:

$$f = \frac{L}{4\pi r^2}$$

$$dF = f dN = \frac{L n 4\pi r^2}{4\pi r^2} dr = L n dr$$

Olber's Paradox: Version 2

Add up flux from shells out to radius R.

Integrate:

$$F = \int dF = \int_{0}^{R} L n \, dr$$

$$F = L n \left[r \right]_0^R$$

$$F = L n R$$

- Equal flux dF from each shell dR.
- If shells extend to R = infinity,
 the flux from the sky is infinite.

BUT THEN WHY IS THE NIGHT SKY DARK?

Solutions to Olber's Paradox

Finite size

- Yes. But we would then be "at the centre", a preferred location.
- Intervening dust
- No. The dust would heat up and also radiate as brightly as a star

Finite age

- Yes. But this violates the "permanency of the Heavens"
- Expansion redshifts light to longer λs
- Helps. But not enough.

Solutions to Olber's Paradox

Finite size

- Yes. But we would then be "at the centre", a preferred location.
- Intervening dust
- No. The dust would heat up and also radiate as brightly as a star

Finite age

- Yes. But this violates the "permanency of the Heavens"
- Expansion redshifts light to longer λs
- · Helps. But not enough.

Correct Solution: Universe has a finite age

Finite age: We can see sources within a sphere whose radius is the *light travel time* for the age of the Universe

Problems with Permanency

- Before Hubble discovered the Universal Expansion (next lecture), there were already several problems:
 - Olber's Paradox
 - Energy Conservation (to shine forever, stars would need an infinite fuel reserve)
 - Age of Earth rocks, meteorites.

 These all point to a Universe with a beginning (or at least to a problem with permanency!)

Modern Cosmology

Modern Cosmology:

- 1) Einstein's gravity theory: General Relativity (1916)
- 2) Hubble's discovery: Expanding Universe (1929)

Together they resolve
Olber's Paradox (1826)
"Why is the sky dark at night?"

Einstein's Special Relativity

- Laws of Physics are the same for all constant-velocity observers. There is no absolute reference frame.
- Light speed (in the vacuum) is a fundamental limit.

- All observers see the same photon velocity!
- Moving objects compressed in direction of motion.
- Moving clocks run slower!
- Counter-intuitive but extensively tested!
- e.g. Relativistic particles travel farther before decay.

The Equivalence Principle

You cannot distinguish (by local measurements) between acceleration and a uniform gravitational field. i.e., gravity and inertia are indistinguishable

 $F = G M m / r^2$

F = m a

Both see the apple fall.

GR equates gravitational mass with inertial mass and explains why they are identical.

Einstein's Gravity: General Relativity

- In GR, Newton's "action at a distance" gravity is replaced by warping space and slowing time.
- Space and time inextricably linked
 => "SPACETIME"
- GR1: Warped spacetime tells matter how to move.
- GR2: Mass/energy tells spacetime how to warp.

3 Classic Tests of GR

• 1. Precession of Mercury's Orbit

Known to be too fast since mid-1800s.
 General Relativity explains the discrepancy

Newton: 531"/century

Observed: 574"/century

Precession

2. Gravitational Lensing

 GR predicts that a mass bends light rays. Prediction confirmed in 1919, by Eddington photography of star positions during vs after solar eclipses.

3. Gravitational Redshift

- Clocks run slow in a gravitational field
- Light is redshifted leaving a massive object
- Seen in white dwarf spectra, also our GPS network.

Gravitational Lensing

- By stars:
 - The Sun
 - Planet Hunting
 - Dark Matter searches
- By galaxies:
 - Time-delay => cosmological parameters
- By galaxy clusters:
 - Mass probe
 - Natural Telescope

Abell 2218 a giant gravitational lens

NASA, A. Fruchter and the ERO Team (STScl, ST-ECF) • STScl-PRC00-08

Cosmology in the 1920s

 Einstein's GR, applied to the Universe as a whole, (uniform density ρ, pressure p) gives 2 equations:

- These describe a Dynamical Universe: R(t)
- Universe must be expanding or collapsing.
- If ρ (density) and p (pressure) are positive,
 then an expanding Universe decelerates.

Einstein's blunder: The Cosmological Constant Λ

- Despite Olber's paradox, etc.
 Einstein believed in "permanency of the Heavens".
- To allow a steady-state Universe (R = constant), he tweaked his equations, adding a Cosmological

Constant (Λ):

$$\frac{R}{R} = -\frac{4\pi G}{3} \left(\rho + \frac{3p}{c^2}\right) + \frac{\Lambda}{3}$$

$$\left(\frac{\dot{R}}{R}\right)^2 = \frac{8\pi G\rho}{3} - \frac{kc^2}{R^2} + \frac{\Lambda}{3}$$

Don't need to remember these. Interest only

- 1929: Hubble discovers Expansion of the Universe.
- Einstein's regret: " Λ was my Greatest Blunder".
- 1998: Λ returns as Dark Energy driving acceleration.

Summary

- Extending the Copernican principle:
 - Olber's Paradox => A finite Universe
 - Finite Age measures => A beginning
 - General Relativity => A dynamical Universe
- These all point to a dynamic Universe
 R(t) with a beginning and a finite age.
- Despite this, Hubble's discovery of the Expansion (next lecture) was a great surprise that shocked the world.