
Introduction to Monte Carlo
Radiation Transfer

Kenneth Wood, Barbara Whitney, Jon Bjorkman, & Michael Wolff

Updated July 2013

1

Contents

1 Introduction 3

2 Basic Concepts and Definitions 4
2.1 Photon Packets, Cross Sections, Optical Depths 4
2.2 I’ve travelled L, what happens now? . 5
2.3 Sampling from Probability Distribution Functions 6

2.3.1 Sampling from the Cumulative Distribution Function 6
2.3.2 The Rejection Method . 7

2.4 Random Numbers . 7

3 A Plane Parallel Atmosphere 8
3.1 Emitting New Photons . 8
3.2 Plane Parallel Geometry and Distances Travelled 8
3.3 Isotropic Scattering . 9
3.4 Binning Photons . 9
3.5 Flux Normalization . 9
3.6 Errors . 10
3.7 Intensity Moments . 10
3.8 A Plane Parallel, Isotropic Scattering Monte Carlo Code 11

3.8.1 Output Results . 12

4 Anisotropic Scattering and Polarization 12
4.1 Scattering in the Monte Carlo Code . 14
4.2 Electron Scattering . 14
4.3 Dust Scattering . 15
4.4 Total Opacity and Dust Properties . 15

5 Three Dimensional Cartesian Grid Codes 16
5.1 Grid Setup . 16
5.2 Optical Depth Integration . 16
5.3 Making Images . 17
5.4 Weighting Scheme for Increasing S/N of Images 17
5.5 3D Radiation Transfer: Point Sources . 18

5.5.1 Example: Circumbinary disk . 19
5.6 3D Radiation Transfer: Diffuse Emission . 19

5.6.1 Example: Disk Galaxy . 20
5.7 Limitations of Cartesian Grids . 20

2

1 Introduction

This booklet accompanies several Monte Carlo radiation transfer codes that we have written
and used in various astronomy research projects. These codes are written in FORTRAN and
are publicly available. They have been run on many different platforms. Prior to describing
the codes we provide a crash course in Monte Carlo radiation transfer that is intended to
bring the programmer to the stage where they may modify the programs to suit their own
particular research area.

To begin with we introduce the basic concepts and techniques of radiation transfer using
the Monte Carlo method. We will deal with the propagation of “photon energy packets”
and their interaction with matter within a medium. For readers familiar with the traditional
radiation transfer nomenclature, we will show how counting photons, weighted by their
directions of travel, yields the source function and intensity moments of the radiation field
throughout the medium.

First of all we wish to convey the conceptual simplicity of radiation transfer: a photon
is emitted, it travels a distance, and then something happens to it. The difficulties arise in
determining the source and direction of emission, the distance travelled, and what happens
to the photon after this point.

Having been introduced to and trained in radiation transfer techniques using specific in-
tensities, source functions, and intensity moments (which at times can appear rather abstract
and removed from the basic physics) our outlook to the physical processes behind radiation
transfer changed when we began to work with photons and the probabilistic nature of their
interactions. In order to determine the paths and fates of photons we must understand
the concepts of optical depths, albedos, absorption and scattering cross sections and phase
functions. Since these are all based on probability distribution functions, this brings us to
the crux of all Monte Carlo methods, random numbers. Photon paths and interactions are
simulated by sampling randomly from the various probability distribution functions that
determine the interaction lengths, scattering angles, and absorption rates.

The first chapter of this book lays out the basic algorithm for Monte Carlo radiation
transfer and introduces cross sections, optical depths, scattering phase functions, and the
various methods for sampling randomly from their probability distribution functions. These
techniques are then applied to radiation transfer in a plane parallel, homogeneous, isotropic
scattering slab. A computer program is presented that calculates the emergent energy and
intensity as a function of viewing angle of the slab. These results may be compared with the
classical solution of this problem. We also demonstrate how the counting of photons and their
directions of travel leads to a determination of the source function and intensity moments
throughout the atmosphere — thus relating the results of the Monte Carlo radiation transfer
to traditional techniques.

Subsequent chapters extend these techniques to axisymmetric and inhomogeneous media,
thus exploiting the fully three dimensional nature of the Monte Carlo technique. Codes are
developed that include scattering, absorption, and re-emission from extended regions. In ad-
dition to unresolved spectral applications, we show how it is straightforward to extend these

3

codes to produce images of the systems being simulated. These techniques are applicable
to many diverse areas of astronomy such as circumstellar disks, bipolar outflows, the local
interstellar medium, reflection nebulae, molecular clouds, and external galaxies. We hope
that this book will provide the reader with the basic tools necessary to pursue their own
particular research interests in the study of radiation transfer in a variety of situations.

2 Basic Concepts and Definitions

As we stated in the introduction, radiation transfer is easy: a photon is emitted, it travels
a distance, and something happens to it. In this chapter we start with the assumption that
a photon has been emitted and determine how far it will travel in a medium. Once this
distance has been reached we discuss what can happen next. First of all we define a few
basic terms that are central to any study of radiation transfer — photons, intensities, fluxes,
cross sections and optical depths.

2.1 Photon Packets, Cross Sections, Optical Depths

In simulating the transfer of radiation we follow photon packets as they are scattered and
absorbed within a medium. We start with a given total energy and split this equally among
the photon packets that we follow. Each packet, which has a dircetion of travel, then posseses
a definite total energy (and partial polarization) and these packets are related to the specific
intensity, Iν . The specific intensity of the radiation field is defined as the radiant energy dEν
passing through a unit surface area dA at an angle θ to the surface normal within a solid
angle dΩ in a frequency range dν in time dt, viz

Iν =
dEν

cos θ dAdt dν dΩ
. (1)

The units of specific intensity are [ergs cm−2 s−1 Hz−1 sr−1]. Thus the photon packet (here-
after referred to as a photon) represents the energy dEν . Another quantity is the flux

Fν =
∫
Iν cos θ dΩ , (2)

which is the rate of energy flow across dA per unit time per unit frequency interval and has
units [ergs cm−2 s−1 Hz−1].

The photons interact according to probabilistic interactions determined by the scattering
and absorption cross sections of the particles within the medium. These cross sections are
related to the difference between the incoming and outgoing energy (or number of photons)
at a point. A cross section, σ is defined by the energy per second per frequency per solid
angle (number of photons) that is removed from the direction of travel, by either scattering
or absorption thus

Energy removed per second per frequency = Iν σ . (3)

4

A cross section thus has dimensions of area [cm2].
Consider now a homogeneous medium filled with scatterers or absorbers of number den-

sity, n, and cross section σ. The number of photons scattered per second by an infinitessimal
volume is Iν σ nAdl, so the number of photons scattered per second per area is Iν σ n dl.
Therefore the intensity differential along a length dl is

dIν = −Iν nσ dl , (4)

giving the familiar relation between the incident and outgoing intensity

Iν(l) = Iν(0) e−nσl . (5)

The fraction of photons scattered or absorbed per unit length is thus nσ and this quantity
is called the volume absorption coefficient. It is related to the opacity or mass absorption
coefficient, κ, by

nσ = ρκ , (6)

where ρ is the mass density of scatterers or absorbers. A related quantity is the photon mean
free path, 1/nσ, which is the average distance a photon travels between interactions.

The probability that a photon interacts (is scattered or absorbed by the particles) over
a length dl is thus nσ dl, so the probability of travelling dl without interacting is therfore
1 − nσ dl. If we now divide a length L into N sections of equal length, the probability of
travelling the distance L without an interaction occuring is

P (L) = (1− nσ L/N)N = e−nσ L = e−τ , (7)

as N → ∞, where we have introduced the optical depth τ = nσ L. Physically, the optical
depth over a distance L in a given direction is the number of photon mean free paths over
that distance. In general the optical depth is defined as

τ =
∫ L

0
nσ ds . (8)

The optical depth will in general be be wavelength dependent due to continuum and line
opacity depending on the the absorbing and scattering species present.

2.2 I’ve travelled L, what happens now?

After the photon has travelled the interaction length one of two things can occur, it is either
absorbed or scattered. The photon’s fate is determined by the albedo which is the probability
that the photon is scattered. The albedo is defined as

a =
ns σs

ns σs + na σa
, (9)

where the subscripts refer to the number densities and cross sections of scatters and absorbers
respectively.

5

There are several different types of absorption (continuous absorption, line absorption,
resonance line scattering, etc.) and in general the photon will be absorbed at a certain
frequency and will be re-emitted at another frequency in a different direction of travel. The
frequency and angular redistribution functions associated with different absorption processes
will be dealt with in more detail in later chapters. For the present we shall not concern
ourselves with the photon’s ultimate fate and will assume that if a photon is absorbed we
will terminate it and emit a new photon from the source. In this way the absorbed photon
will not contribute to the emergent flux, but it can contribute to the mean intensities as it
scatters throughout the atmosphere until it is absorbed.

If a photon is scattered it then travels in a new direction that is determined by the angular
phase function of the scattering particle. The phase function is the probability that a photon
will be scattered from one direction to another, P (cosχ), where χ is the scattering angle.
Two of the most common phase functions used for modeling scattering atmospheres are the
isotropic phase function, P (µ) = 1

2
, and the Rayleigh phase function, P (µ) = 3

8
(1 + µ2),

where µ = cosχ. Note that, as with all phase functions, they are normalized over scattering
angles such that ∫ 1

−1
P (µ) dµ = 1 , (10)

that is, the probability that the photon is scattered into 4π steradians is unity.

2.3 Sampling from Probability Distribution Functions

We now have all the basics necessary to build a simple Monte Carlo radiation transfer code
– we emit a photon, send it a distance L, then either absorb (terminate) it or scatter it into
a new direction. However, the distances travelled and scattering angles are not uniformly
chosen from all space L{0,∞} or all angles χ{0, π}, since there are probability distribution
functions associated with the interaction length and scattering angle as we described above.
We must therefore sample the optical depths and scattering angles such that the chosen τs
and χs “fill in” the respective P (τ) and P (χ). In order to sample a quantity (in our case τ
and χ) randomly from a probablilty distribution function there are several techniques which
will now be explained.

2.3.1 Sampling from the Cumulative Distribution Function

To sample a quantity x0 from a probability distribution function P (x), which is normalized
over all x, we use the fundamental principle which is

ξ =
∫ x0

a
P (x) dx = ψ(x0) , (11)

where ξ is a random number sampled uniformly from the range 0 to 1, a is the lower limit of
the range over which x is defined, and ψ is the cumulative probability distribution function.

We need to sample how far a photon travels before being absorbed or scattered. The
probability that a photon travels an optical depth τ without an interaction is e−τ . The

6

probability of scattering prior to τ is 1 − e−τ = ψ(τ). Therefore we can sample from the
cumulative probability according to ξ = 1− e−τ , giving

τ = − log(1− ξ) . (12)

Having sampled a random optical depth in this manner we may then calculate the physical
distance L that the photon travels from

τ =
∫ L

0
nσ dl . (13)

Finding L from the above equation accounts for the largest percentage of CPU time in
most Monte Carlo codes. This is because in general L cannot be found analytically from
equation 13 and we must use numerical techniques which can be computationally intensive.
However, for certain densities we can find L analytically and this enables us to generate
large numbers of photons in a fraction of the time required if we had to solve equation 13
numerically.

2.3.2 The Rejection Method

The rejection method is used when equation 11 either cannot be solved easily or does not
have an analytic solution for x0. This method works for any probability distribution function
if we know the peak value and is like throwing darts at a graph of the probability distribution.

To sample x0 from P (x) with peak Pmax over the range x[a, b], sample from a uniform
distribution for x0 between a and b, sample from a uniform distribution for y between 0 and
Pmax, then reject values of x0 for which y > p(x0).

2.4 Random Numbers

When simulating photon interactions we are constantly calling upon random number gener-
ators to choose optical depths and scattering angles and we hope that the random number
generators are truly random and fair. Since our random numbers are generated by comput-
ers it is interesting to note John von Neumann’s comment that “anyone wishing to produce
random numbers with a computer is truly in a state of sin”. This comment is based on
the fact that all computers follow set algorithms and hence no output can truly be random.
However, algorithms can be developed that produce sequences of numbers that pass tests for
randomness. Such sequences generally have very long periods, thus minimizing the danger
of repeating the same photons. There are many excellent articles on computer generated
random numbers. For a quick introduction Chapter 7 of Numerical Recipes presents some
of the more common algorithms and the random number generator that we use throughout
this book is the Numerical Recipes routine ran2 presented in this chapter. Anywhere this
routine is used the reader may substitute their own favourite random number generator in
its place.

7

3 A Plane Parallel Atmosphere

We now apply the concepts and definitions presented in Chapter 1 to radiation transfer within
a plane parallel isotropic scattering atmosphere. The solution for the angular dependence
of the intensity and polarization of the emergent radiation from a semi-infinite slab was
presented by Chandrasekhar (1960). In what follows we shall develop a code that determines
the emergent energy and intensity from a slab illuminated from below, as well as the mean
intensities of the radiation field within the slab.

3.1 Emitting New Photons

For a slab illuminated from below we need to inject photons from the origin such that the
flux in any direction of emission is isotropic. To achieve this we must sample the angles such
that

ξ = 2
∫ µ

0
µ dµ , (14)

where the specific intensity is independent of direction and the lower limit is 0 since we are
injecting photons in only upward directions. This then gives

µ = cos θ =
√
ξ , φ = 2π ξ . (15)

The initial photon position is the origin and the direction cosines of the photon are

nx = sin θ cosφ , ny = sin θ sinφ , nz = cos θ . (16)

3.2 Plane Parallel Geometry and Distances Travelled

We shall investigate the propagation of photons within a homogeneous planar slab of height
zmax. The slab may be parameterized by its total vertical optical depth τmax = nσ zmax,
where σ is the scattering cross section. The distance L travelled by a photon along any ray
is then simply

L =
τ zmax
nσ zmax

=
τ zmax
τmax

, (17)

where the optical depth is sampled from τ = − log ξ. The photon’s position is then updated
according to

x = x+ L sin θ cosφ , y = y + L sin θ sinφ , z = z + L cos θ . (18)

At this point the photon may be absorbed, scattered, or escape from the atmosphere (i.e.,
z > zmax or z < 0). Since we are considering a pure scattering atmosphere the albedo a = 1
and every interaction will be a scattering event.

8

3.3 Isotropic Scattering

In an isotropic scattering atmosphere the photons are scattered uniformly into 4π steradians.
We generate the new direction by sampling uniformly for φ in the range 0 to 2π and µ in
the range −1 to 1, thus

φ = 2π ξ , µ = 2ξ − 1 , (19)

where ξ is a random number in the range 0 to 1, as before.

3.4 Binning Photons

Once the photon exits the slab we must place it into a “bin” depending on its direction
of travel. We are trying to measure continuous distributions such as the emergent flux or
intensity using a discrete set of events. In other words we are sampling (in the statistical
sense) the distribution function we wish to measure. We do this by binning the photons to
produce histograms of the distribution function. For resolved objects we can make images
by noting also the final position of the photon before it exited the medium (see Chapter 4).
For unresolved objects we choose to place the photon into (µ, φ) bins. Binning in cos θ and
φ ensures that each bin is of equal solid angle since dΩ = sin θdθdφ = dµdφ. The number
of bins depends on the symmetry of the radiation source and the scattering medium, and
for fully three dimensional systems we must choose enough bins to give resolution on scales
of the smallest variation with solid angle. In the case of the plane parallel slab, each φ
direction of exit is equally probable (the system is axisymmetric) so we need only bin in µ.
In addition, since we are interested in the radiation emerging from the top of the slab, we
bin the photons in the range 0 < µ < 1 (i.e., 0◦ < θ < 90◦).

3.5 Flux Normalization

We wish to compute the output flux or intensity. Other radiation transfer methods work
in intensity to solve the problem and then compute flux when comparing to observations.
Monte Carlo naturally works in flux/energy units and so we only need to compute intensity
when comparing to other radiation transfer methods.

The outgoing energy in the ith bin, normalized to the total energy, is just

dEi
dE

=
Ni

N0

, (20)

where Ni is the number of photons in the ith bin and N0 is the total number of photons. In
order to calculate the emergent intensity from the top of our slab we note that the energy
per area through the slab surface is

dE

dA
= Fν = πBν , (21)

9

where πBν is the physical flux. Suppose the energy in the ith bin is dEi = Ni dE/N0, then
taking equation 1 relating the energy per area per solid angle we then get the intensity in
the ith bin as

Iν =
dEi

µ dΩ dA
=

Ni πBν

N0 µ dΩ
. (22)

For our plane parallel slab our elemental solid angle is dΩ = 2πdµ and dµ = 1/Nµ, with Nµ

being the number of µ bins. This then gives,

Iν
Bν

=
NiNµ

2N0 µi
, (23)

where µi is the µ value at the center of the ith bin.

3.6 Errors

Since the Monte Carlo method employs a stochastic approach, the results for the emergent
energies in each bin contain random sampling errors. Consequently, in all Monte Carlo
simulations, a large number of events (i.e., photons) must be generated until the physical
properties under investigation (in our case the emergent energy) have small statistical fluc-
tuations. It is therefore necessary to estimate the errors on the results stored in each bin.
In our investigation we calculate the total energy, E, for each direction bin. The number of
photons in each bin obeys Poisson statistics, so the error in the total energy in each direction
bin is simply σE = Ei/

√
Ni, where E is the energy and Ni is the number of photons in the

bin.

3.7 Intensity Moments

One of the criticisms we have frequently heard levelled at Monte Carlo radiation transfer is
that it is a “black box” and it is difficult to “get at” the physics. This criticism may stem
from Monte Carlo’s feature that there are no output equations and we simulate individual
situations.

As we have outlined in the previous sections, the Monte Carlo technique tracks each and
every photon packet as it propagates through an atmosphere. Clearly the black box criticism
can be removed to any desired level (depending on memory storage) by tabulating quantities
of interest throughout the medium. Astrophysically important quantities are the intensity
moments J , H, and K that measure the mean intensity, flux, and radiation pressure at
points throughout the medium.

J =
1

4π

∫
I dΩ , H =

1

4π

∫
I µ dΩ , K =

1

4π

∫
I µ2 dΩ . (24)

These intensity moments are used in heating and force calculations, and in the equations of
statistical equilibrium.

10

Keeping with the plane parallel slab, we may compute the intensity moments as a function
of optical depth through the slab. First of all we split the slab into layers of equal width,
then tally the number of photons, weighted by powers of their direction cosines, to obtain
the three moments. We note that the contribution to the specific intensity from a single
photon is

∆I =
∆E

|µ| ∆A∆Ω
=

Fν
|µ| N0 dΩ

=
πBν

|µ| N0 dΩ
, (25)

which may be substituted into the intensity moment equations. Converting the integral to
a summation we then get

J =
Bν

4N0

∑
i

1

|µi|
, H =

Bν

4N0

∑
i

µi
|µi|

, K =
Bν

4N0

∑
i

µ2
i

|µi|
. (26)

Note that the mean flux, H, is simply the net energy (number of photons travelling up minus
the number travelling down) passing each level. These summations may be implemented in
the Monte Carlo code and this demonstrates how Monte Carlo techniques return the same
quantities as the more traditional methods.

3.8 A Plane Parallel, Isotropic Scattering Monte Carlo Code

As will become apparent, implementing a plane parallel, isotropic scattering code is a
straightforward task. One example of such a code which we now describe, is available on the
website,

www-star.st-and.ac.uk/∼kw25/research/montecarlo/montecarlo.html

The driver program which tracks the photons is planepar.f. This program calls various
subroutines to generate new photons, intensity moments, scattering angles, and finally the
emergent energy and intensity. The input parameters for the code are supplied in the pa-
rameter file slab.par. This contains the total number of photons (nphotons), the random
number seed (i1) required by ran2.f, the number of µ bins (mubins), the number of levels
(nlevel) at which the intensity moments are to be calculated, the albedo (set equal to one
for pure isotropic scattering), and the total vertical optical depth (taumax) of the slab. The
steps in the program are as follows:

• Having read in these parameters, we then initialize the energy, and intensity arrays to
zero with iarray.f. Here we also calculate the angle θi at the centre of each µ bin.

• We then proceed with the loop over all photons. The routine newphot.f initializes the
photon position to be at the origin and assigns the photon a direction isotropically
according to equation 15.

11

• An optical depth is generated via τ = − log ξ. This optical depth corresponds to a
physical distance L = τ/τmax within the slab and then the photon position is updated
according to equation 18. Note that in a plane parallel slab we only need to know the
z coordinate of the photon, but we have left in x and y to demonstrate that the code
truly is three dimensional.

• Once the photon position has been updated we calculate the intensity moments with the
subroutine moments.f. This calculates how many levels the photon crosses and updates
the intensity moments in these levels according to the summations in equation 26, note
that we calculate the moments in the upward and downward directions.

• We then determine whether to scatter or absorb the photon. Since we are simulating a
pure scattering atmosphere we call the subroutine isoscatt.f which generates a random
scattering direction for the photon from 4π steradians.

• We then repeat steps 3 through 5 until the photon exits the slab, i.e. z > zmax or
z < 0. If z > zmax then the photon exits the top of the slab and we place it into the
relevant µ bin. If the photon exits the bottom of the slab, we re-emit a new photon
isotropically from the origin. In this way we match the lower boundary condition that
the photon number flux is given by N0.

• Finally when all photons have exited the slab we calculate the intensity and write out
the files as energy.dat and moments.dat.

3.8.1 Output Results

In Figure 1 we show results of a run of the code for a slab of optical depth τmax = 10.
The diamonds in the left panel show the intensity as a function of exit angle, the solid line
is Chandrasekhar’s result for a semi-infinite slab. We see that at an optical depth of 10,
our slab model very closely approximates the semi-infinite solution. In the middle panel we
show the intensity moments as a function of optical depth measured from the top of the
slab. The right panel shows the Eddington factors (f = K/J , g = H/J), note that deep in
the atmosphere J = 3K as expected.

4 Anisotropic Scattering and Polarization

We introduced the Monte Carlo technique with the simplest scattering phase function —
isotropic and no polarization. For most problems isotropic scattering is not a good ap-
proximation and we now describe the two phase functions we will use the most, Rayleigh
scattering and the Henyey-Greenstein phase function which is often used to approximate
dust scattering. We use a general method for calculating the scattering matrix, following
Chandrasekhar (1960). As we will see, this allows us to incorporate many different types of
scattering and therefore solve a range of astrophysical problems.

12

Figure 1: Plane parallel slab, τmax = 10. (a) Emergent intensity, diamonds are Monte Carlo
results, solid line is Chandrasekhar’s result for a semi-infinite atmosphere. (b) Internal
intensity moments. (c) Eddington factors.

The Stokes vector S consists of the four Stokes parameters (I,Q, U, V), where I is the
total intensity, Q and U are the linear, and V is the circular polarization, defined in detail
by Chandrasekhar (1960) and van de Hulst (1957). Q = Ip − Ip measures the flux with
polarization parallel or perpendicular to the z-axis and U measures the polarization 45◦

away from this axis.
The scattering geometry and angles are shown in Chandrasekhar (1960; Ch. I, Fig. 8).

A photon with Stokes vector S ′, propagating in direction (θ′, φ′) which then scatters into
direction (θ, φ) obtains a new set of Stokes parameters, S, given by,

S = L(π − i2)RL(−i1)S ′ (27)

where R is the matric which describes the scattering probability in the frame of the particle
with respect to the incident photon direction. L is a Mueller matrix which rotates to and
from the observer’s frame. The rotation matrix, L, for the Stokes parameters described with
(I,Q, U, V), is (Chandrasekhar 1960; Ch. I, Eqs. 185, 186)

L(ψ) = a

1 0 0 0
0 cos 2ψ sin 2ψ 0
0 − sin 2ψ cos 2ψ 0
0 0 0 1

 (28)

The scattering matrix for either scattering by electrons or by dust is relatively simple.
We shall describe the elements of this matrix as:

R(Θ) = a

P1 P2 0 0
P2 P1 0 0
0 0 P3 −P4

0 0 P4 P3

 (29)

13

where Θ is the scattering angle measured from the incident photon direction. Note that
this matrix can be completely filled in, and is when magnetic fields are included. This is
coded up leaving as variables θ′, φ′, i1, i2, P1, P2, . . ., Pn. Separate subroutines can then
be called which supply the Pi values for different scattering processes. If we do not include
polarization, the calculation of the scattered flux simplifies to I = P1 I

′.

4.1 Scattering in the Monte Carlo Code

We implement scattering in our Monte Carlo code as follows,

• Sample i1 from a uniform distribution: i1 = 2πξ.

• Sample Θ from the scattering matrix R.

• Calculate new i2, θ, φ.

• Calculate new Stokes parameters S.

4.2 Electron Scattering

For electron scattering, the elements of the marix are

a = 3/4,
P1 = cos2 Θ + 1,
P2 = cos2 Θ− 1,
P3 = 2 cos Θ,
P4 = 0 (30)

The elctron cross section is σT = 6.65 × 10−25cm2 and the optical depth along a given
direction is τ = σT

∫ s
0 neds, where ne is the electron number density in units of cm−3.

We can use the rejection method and sample from the exact distribution for the scattered
radiation, I. Multiplying thriugh the matrices gives,

I = P1I + P2 cos(2i1)Q
′ − P2 sin(2i1)U

′ (31)

The rejection method using this equation has an efficiency of 66%. Recall, to use the rejection
method:

• Sample Θ from a uniform distribution: cos Θ = 1− 2ξ

• Calculate I from the above equation.

• Is ξ < I/2 (the peak value of I is 2)

– If yes, continue with this scattering angle Θ

– If no, choose another Θ

14

4.3 Dust Scattering

The dust scattering phase function is often described with a single-peaked Henyey-Greenstein
(HG) function (e.g., White 1979). The scattering matrix has elements

a = 3/4,

P1 =
1− g2

(1 + g2 − 2g cos Θ)3/2
,

P2 = −pl P1
1− cos2 Θ

1 + cos2 Θ
,

P3 = P1
2 cos Θ

1 + cos2 Θ
,

P4 = −pc P1
1− cos2 Θf

1 + cos2 Θf

. (32)

The variables are defined as follows

• g — scattering asymmetry parameter, rangeing from 0 for isotropic scattering to 1 for
forward-throwing.

• pl — peak linear polarization.

• pc — peak circular polarization.

• Θf = Θ(1 + 3.13 s exp[−7Θ/π]), where s is the skew factor which we take to be unity
following White (1979).

The other grain property is the albedo a, the ratio of scattering to total extinction, and
as in the isotropic case previously, is the probability of scattering at the point of interaction.
The first order HG function is a good approximation to Mie scattering in the ultraviolet,
but at optical wavelengths the second order function, which has a backscattering peak, is a
better approximation. The circular polarization is a second order effect, dependent on the
amount of linear polarization.

We can sample the scattering angle directly from P1 which is the exact distribution for
I if the incident radiation is unpolarized:

cos Θ =
1 + g2 − [(1− g2)/(1− g + 2gξ)]2

2g
(33)

The scattered Stokes’ parameters are then normalized to P1.

4.4 Total Opacity and Dust Properties

Recall that the photon travels optical depth τ =
∫ s
0 ρκ ds, where κ is the total opacity

(dust+gas) with units cm2/g. By convention astronomers usually use χ to denote total
opacity and κ to denote absorptive opacity, but in this booklet we are using κ for total
opacity. The tables below list opacity and scattering properties generally used for the the
diffuse interstellar medium.

15

Band λ(µm) κ a g pl
U (0.34) 360 0.54 0.48 0.26
B (0.44) 286 0.54 0.48 0.31
V (0.55) 219 0.54 0.44 0.43
R (0.73) 156 0.53 0.37 0.58
I (0.85) 105 0.49 0.29 0.70
J (1.25) 65 0.43 0.16 0.75
H (1.65) 38 0.33 0.06 0.87
K (2.20) 20 0.21 0.02 0.93

5 Three Dimensional Cartesian Grid Codes

The explosion of high resolution imaging data from HST and the new large aperture ground
based telescopes reveals very complicated densities and illumination patterns in every field
of astronomy. In order to accurately analyze and model this data requires three dimensional
radiation transfer techniques, to which Monte Carlo is very well suited. We now describe a
general three dimensional grid code that we have developed and used to model observations
including solar coronal loops, planetary and reflection nebulae, star forming regions, and
the interstellar medium in the Millky Way and other galaxies. In the following sections we
describe the grid setup, optical depth integrations, techniques for obtaining high resolution
images. We then present two codes. The first code considers the illumination by multiple
point sources and the second code is for diffuse illumination.

5.1 Grid Setup

We discretize the density structure for the radiation transfer onto a Cartesian grid consisting
of (nxg, nyg, nzg) grid cells and (nxg + 1, nyg + 1, nzg + 1) cell faces. The code allows for
different spatial resolution in (x, y, z). The density is set to a constant value within each cell
and may be specified by an analytic formula or could be the output density from an MHD
code, for example.

5.2 Optical Depth Integration

In the plane parallel Monte Carlo code of the previous section, the optical depth integrations
to determine the distance L to the interaction locations in the constant density medium
were trivial, namely L = τ/τmax. For two and three dimensional density distributions it is
generally not possible to solve for the interaction locations analytically. We have developed a
three dimensional Monte Carlo code in which the density is discretized on a linear Cartesian
grid. Discretizing the density means that the optical depth along any pathlength within a
single cell may be easily calculated: τcell = ρcellκcells, where ρcell and κcell are the cell density,
opacity, and s is the pathlength through the cell. The Cartesian grid we are using makes it
easy to determine the distance to cell walls as required in the optical depth integrations. The

16

distance to the next x, y, and z cell faces from photon position (x, y, z) along propagation
direction unit vector (nx, ny, nz) are

sx =
xface− x

nx
; sy =

yface− y
ny

; sz =
zface− z

nz
. (34)

The next face that the photon will hit is just the minimum of these three distances. As the
photon is tracked along its path the cumulative optical depth, τrun, is tallied. At each cell
we test whether the randomly chosen optical depth has been exceeded, i.e., τrun + τcell > τ .
If it has, the photon will scatter in the cell at a distance into the cell s = (τ − τrun)/ρcellκcell.

5.3 Making Images

Up until now we have investigated spatially unresolved systems, that is we only concerned
ourselves with the photon exit direction and not the position from where it came. For most
stellar applications this is sufficient, since stars are essentially point sources and we observe
their spectra and polarization, which depend on viewing angle (i.e., photon direction). How-
ever, the growing number of high resolution images that are being returned from HST make
an imaging code desirable. With the information available on individual photons from the
Monte Carlo technique, generating images is a straightforward task — we note the position
and direction of exit of the photon, and project this onto a plane, with the positioning of
the plane depending on the photon’s direction. By placing planes around the object through
which the radiation transfer is being simulated, we may build up 2D images of it from all
viewing angles. The number of images required depends on the degree of symmetry of the
system.

In the previous chapter we binned the photons according to their angle of exit. Now we
must also bin the exiting photons into x and y bins on the viewing plane. Having determined
the viewing angle via µ and φ binning, we calculate the x and y coordinates of the photon
on the image plane according to

ximage = z sin θ − y cos θ sinφ− x cos θ cosφ , yimage = y cosφ− x sinφ , (35)

where (x, y, z) is the final position of the photon prior to exiting the medium, (θ, φ) is the
direction of travel, and (ximage, yimage) is the position on the plane centered on (θ, φ) that the
photon will hit. By generating many photons and projecting them onto planes we will build
up an image, the same principle behind taking a picture.

5.4 Weighting Scheme for Increasing S/N of Images

In some previous Monte Carlo investigations we were simulating the transfer of photons
within an axisymmetric medium and formed images for external viewing. Upon exiting the
simulation, scattered light images were formed by projecting the photons into (x, y) locations
on image planes. Such a technique is efficient for axisymmetric, external viewing situations.

17

However, for 3D systems such a technique is inefficient since we must place viewing planes
all around the system and run large numbers of photons to get decent signal to noise in
the images. We have therefore modified our codes to incorporate forced first scattering and
“peeling off” procedures using weighted photons so we may obtain high resolution images
from a particular direction.

Direct photons are emitted in a direction towards the observer and have a weight

Wdirect = e−τ/4πd2 (36)

where τ and d are the optical depth and physical distance from the point of emission to the
observer.

To calculate the scattered light contribution we first choose a random direction of travel
from 4π steradians and calculate the optical depth, τ1, from the point of emission to the edge
of our grid. We then force the photon to scatter at an optical depth less than τ1, sampled
from

τ = − log[1− ξ(1− e−τ1)] (37)

this reproduces the correct probability distribution for optical depths and ensures that all
photons scatter at least once. The photons are subsequently allowed to scatter until they
either leave the medium or are absorbed (terminated) by comparing a random number with
the albedo at each interaction location. At each scattering location we “peel off” and direct
towards the observer a fraction of the photon’s energy. The weight of this “peeled off”
photon is

Wscatt = a(1− e−τ1)e−τ2HG(θ) (38)

where τ1 is the first optical depth, and τ2 is the optical depth from the scattering location
to the observer. The function HG(θ) weights the photon by the scattering phase function,
where θ is the angle through which we force the photon to scatter towards the observer. The
total intensity is the sum of the weights of the direct (Eq. 36) and scattered (Eq. 38) photons.
We have tested this algorithm for external viewing situations against several “regular” Monte
Carlo codes that do not employ any forced scattering or weighting algorithms and find it to
be accurate and efficient.

5.5 3D Radiation Transfer: Point Sources

The Makefile compiles and links the fortran files and produces the executable file mcgrid.
Several compiler options are provided for different architectures. The programs have been
commented to explain the various parameters and what different sections of the code does.
A brief explanation of the routines is given here.

The driver program is mcpolar.f which reads in the parameters defining the density,
scattering properties, image size, etc. This program calls subroutines to initialize arrays
to zero (iarray.f), set up the density grid (gridset.f), location and luminosity of the point
sources (pointset.f). The code then loops over scattered photons first and then the direct
photons using the forced first scattering, weighting, and peeling off procedures described

18

above. Rather than emitting identical photons from the point sources, the optical depth, τ1,
from each source to the edge of the grid is calculated once and the corresponding flux from
the ith point source is then Nie

−τ1/4π, where Ni is the number of photons to be emitted
from the source.

The subroutine sourceph.f emits photons isotropically from the source locations. The
relative number of photons released from each point source is determined by the source
luminosity. After a forced first scattering, the photons are tracked until they either exit the
grid or have scattered a specified number of times

There are three optical depth integration routines. All three routines follow the same
algorithm for integrating through the grid, but are used to determine slightly different optical
depths or locations.

• tauint1.f finds the optical depth from the current photon location to the edge of the
grid along a specified direction. This routine is used for finding the optical depths, τ1,
for forcing the first scattering and τ2 used in weighting the photon in the peeling off
procedure described above.

• tauint.f finds the location of the first forced scattering event.

• tauint2.f is used while tracking the photons within the grid. It generates a random
optical depth and finds the scattering location within the grid

While tracking photons within the grid, the routine peeloff.f calculates the weighted
contribution of scattered photons according to Eq. 38. From this routine the subroutines
scatt1.f, scattp.f, and tauint1.f are called. The new scattering direction is chosen using
stokes.f, which also updates the Stokes polarization parameters.

The output files contain the Stokes fluxes: image.dat, qimage.dat, and uimage.dat are
the total flux image, Q, and U flux images respectively. The IDL routine display.pro reads
in and displays these images and generates a resolved polarization map.

5.5.1 Example: Circumbinary disk

As an example we have set up the code to have two point sources at the centre of a circumbi-
nary disk. The source locations, luminosities, and circumbinary density structure have been
hardcoded in for this example. This code works in units of AU, the density (dust plus gas)
has been specified in g/cm3, and the opacity (dust plus gas) is in units of cm2/g. To convert
the output images to fluxes, multiply by L/d2, where L is the total luminosity of all sources
and d is the distance to the system.

5.6 3D Radiation Transfer: Diffuse Emission

The program for diffuse emission is essentially the same as the point source program except
that the emission comes from grid cells and not point sources. Therefore, instead of looping
over the point sources for emitting photons, we loop over the grid cells and emit photons

19

from each cell depending on the emissivity of the cell. To set up the emissivity on in the grid,
gridset.f calls the subroutine setemit.f which sets the luminosity of each grid cell. gridset.f
then calculates the total system luminosity which is used in mcpolar.f to determine how many
photons to release from each cell. The photon emission routine diffuse.f emits photons from
each cell, first picking a random location within the cell and then emitting then choosing an
isotropic emission direction.

5.6.1 Example: Disk Galaxy

The code is set up to simulate a double-exponential galactic disk. The stellar emissivity and
dust are smoothly distributed with a double exponential distribution. The dust and stars
have the same scalelength (5kpc), but the dust scaleheight (250pc) is half the stellar one
(500pc) yielding the prominent dust lane in the flux image.

5.7 Limitations of Cartesian Grids

While the 3D Cartesian grid codes are very flexible to setup and run, care must be taken when
applying them. They are not well suited for systems where the density variations cannot
be resolved by the grid. The circumbinary disk simulation is OK, because of the large
inner radius. However, for disks around Classical T Tauri stars this code is not suitable.
CTTS disks have a very wide range of sizescales: the scaleheight ranges from less than a
stellar radius to many AU. For these problems, a more desirable gridding would incorporate a
logarithmic radial grid and latitudinal gridding that becomes finer towards the disk midplane.
Rather than gridding in (x, y, z) it is better to grid in spherical coordinates (r, θ, φ). Such
codes have been described and made publicly available by Barbara Whitney (HO-CHUNK)
and Tom Robitaille (HYPERION).

20

