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ABSTRACT
We describe a general radiative equilibrium and temperature correction procedure for use in Monte

Carlo radiation transfer codes with sources of temperature-independent opacity, such as astrophysical
dust. The technique utilizes the fact that Monte Carlo simulations track individual photon packets, so
we may easily determine where their energy is absorbed. When a packet is absorbed, it heats a particular
cell within the envelope, raising its temperature. To enforce radiative equilibrium, the absorbed packet is
immediately reemitted. To correct the cell temperature, the frequency of the reemitted packet is chosen
so that it corrects the temperature of the spectrum previously emitted by the cell. The reemitted packet
then continues being scattered, absorbed, and reemitted until it Ðnally escapes from the envelope. As the
simulation runs, the envelope heats up, and the emergent spectral energy distribution (SED) relaxes to its
equilibrium value without iteration. This implies that the equilibrium temperature calculation requires no
more computation time than the SED calculation of an equivalent pure scattering model with Ðxed tem-
perature. In addition to avoiding iteration, our method conserves energy exactly because all injected
photon packets eventually escape. Furthermore, individual packets transport energy across the entire
system because they are never destroyed. This long-range communication, coupled with the lack of iter-
ation, implies that our method does not su†er the convergence problems commonly associated with "-
iteration. To verify our temperature correction procedure, we compare our results with standard
benchmark tests, and Ðnally we present the results of simulations for two-dimensional axisymmetric
density structures.
Subject headings : circumstellar matter È dust, extinction È radiative transfer È scattering

1. INTRODUCTION

There is an ever increasing wealth of observational evi-
dence indicating the nonsphericity of almost every type of
astronomical object (e.g., extended circumstellar environ-
ments, novae shells, planetary nebulae, galaxies, and active
galactic nuclei). To interpret this data accurately, detailed
two- and three-dimensional radiation transfer techniques
are required. With the availability of fast workstations,
many researchers are turning to Monte Carlo techniques to
produce model images and spectra for the asymmetric
objects they are investigating. In Monte Carlo radiation
transfer simulations, packets of energy or ““ photons ÏÏ are
followed as they are scattered and absorbed within a pre-
scribed medium. One of the features of this technique is that
the locations of the packets are known when they are
absorbed, so we can determine where their energy is depos-
ited. This energy heats the medium, and to conserve radi-
ative equilibrium, the absorbed energy must be reradiated
at other wavelengths, depending on the opacity sources
present. Tracking these photon packets, while enforcing
radiative equilibrium, permits the calculation of both the
temperature structure and the emergent spectral energy dis-
tribution (SED) of the envelope. The ability of Monte Carlo
techniques to easily follow the transfer of radiation through
complex geometries makes them very attractive methods
for determining the temperature structure within non-
spherical environmentsÈa task that is very difficult with
traditional ray-tracing techniques.

Previous work on this problem for spherical geometries
includes the approximate solutions by Scoville & Kwan

(1976), who ignored scattering, and Leung (1976), and the
di†usion approximations by Yorke (1980). The spherically
symmetric problem has been solved exactly by Rowan-
Robinson (1980), WolÐre & Cassinelli (1986), and &Ivezic�
Elitzur (1997), who used a scaling technique. Extensions of
the exact solution to two dimensions have been performed
by Efstathiou & Rowan-Robinson (1990, 1991), while
approximate two-dimensional models have been pres-
ented by Sonnhalter, Preibisch, & Yorke (1995) and
MenÏshchikov & Henning (1997).

Radiative equilibrium calculations using the Monte
Carlo technique have been presented by Lefevre, Bergeat, &
Daniel (1982), Lefevre, Daniel, & Bergeat (1983), Wolf,
Henning, & Secklum (1999), and Lucy (1999). Most of these
authors (Lucy being exceptional) use a technique in which
stellar and envelope photon packets are emitted separately.
The number of envelope packets to be emitted is deter-
mined by the envelope temperature, while the envelope tem-
perature is determined by the number of absorbed packets.
Consequently, these techniques require iteration, usually
using the absorbed stellar photons to provide an initial
guess for the envelope temperature. The iteration proceeds
until the envelope temperatures converge. Note that the
stellar luminosity is not automatically conserved during the
simulation ; only after the temperatures converge is the
luminosity approximately conserved.

In contrast, Lucy adopts a strategy in which absorbed
photon packets are immediately reemitted, using a fre-
quency distribution set by the current envelope tem-
perature. Although the frequency distribution of the
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reprocessed photons is incorrect (until the temperatures
have converged), his method automatically enforces local
radiative equilibrium and implicitly conserves the stellar
luminosity. The insight of LucyÏs method is that conserva-
tion of the stellar luminosity is more important than the
SED when calculating the radiative equilibrium tem-
peratures. Nonetheless, this method requires iteration.

The primary problem faced by LucyÏs method is the
incorrect frequency distribution of the reemitted photons.
In this paper we develop an adaptive Monte Carlo tech-
nique that corrects the frequency distribution of the reemit-
ted photons. Essentially, our method relaxes to the correct
frequency and temperature distribution. Furthermore, it
requires no iteration as long as the opacity is independent of
temperature. Such is the case for astrophysical dust. In ° 2,
we describe the temperature correction algorithm. We
compare the results of our code with a spherically sym-
metric code in ° 3, and in ° 4 we present results for two-
dimensional axisymmetric density structures.

2. MONTE CARLO RADIATIVE EQUILIBRIUM

We wish to develop a method to calculate the tem-
perature distribution throughout an extended dusty
environment for use with Monte Carlo simulations of the
radiation transfer. The radiation transfer technique we
employ has been described in detail in other papers (Code
& Whitney 1995 ; Whitney & Hartmann 1992, 1993 ; Wood
et al. 1996), so we only summarize it here. The basic idea is
to divide the luminosity of the radiation source into equal-
energy, monochromatic ““ photon packets ÏÏ that are emitted
stochastically by the source. These packets are followed to
random interaction locations, determined by the optical
depth, where they are either scattered or absorbed with a
probability given by the albedo. If the packet is scattered, a
random scattering angle is obtained from the scattering
phase function (di†erential cross section). If instead the
packet is absorbed, its energy is added to the envelope,
raising the local temperature. To conserve energy and
enforce radiative equilibrium, the packet is reemitted imme-
diately at a new frequency determined by the envelope tem-
perature. These reemitted photons comprise the di†use
radiation Ðeld. After either scattering or absorption plus
reemission, the photon packet continues to a new inter-
action location. This process is repeated until all the packets
escape the dusty environment, whereupon they are placed
into frequency and direction-of-observation bins that
provide the emergent SED. Since all the injected packets
eventually escape (either by scattering or absorption fol-
lowed by reemission), this method implicitly conserves the
total energy. Furthermore, it automatically includes the
di†use radiation Ðeld when calculating both the tem-
perature structure and the emergent SED.

We now describe in detail how we calculate the tem-
perature structure and SEDs of dusty environments illumi-
nated by a radiation source. This radiation can come from
any astrophysical source, either internal or external, point-
like or extended.

2.1. Radiative Equilibrium Temperature
Initially, we divide the source luminosity L into Ncphoton packets emitted over a time interval *t. Each

photon packet has the same energy soEc,

Ec\ L *t/Nc . (1)

Note that the number of physical photons in each packet is
frequency-dependent.

When the monochromatic photon packet is injected into
the envelope, it will be assigned a random frequency chosen
from the SED of the source. This frequency determines the
dust absorptive opacity and scattering opacity (bothil plper mass), as well as the scattering parameters for the
ensuing random walk of the packet through the envelope.
The envelope is divided into spatial grid cells with volume

where i is the cell index. As we inject source photonV
i
,

packets, we maintain a running total of how manyN
ipackets are absorbed in each grid cell. Whenever a packet is

absorbed in a grid cell, we deposit its energy in the cell and
recalculate the cellÏs temperature. The total energy
absorbed in the cell

E
i
abs\ N

i
Ec . (2)

We assume that the dust particles are in local thermody-
namic equilibrium (LTE), and for simplicity, we adopt a
single temperature for the dust grains. Note that although
we use dust for the continuous opacity source, we could
replace the dust with any continuous LTE opacity source
that is independent of temperature. In radiative equi-
librium, the absorbed energy must be reradiated. TheE

i
abs

thermal emissivity of the dust where isjl \ iloBl(T ), Bl(T )
the Planck function at temperature T , so the emitted energy
is

E
i
em \ 4n*t

P
dV

i

P
oil Bl(T ) dl (3)

\ 4n*t
P

iP(T )B(T )o dV
i
, (4)

where is the Planck mean opacity andiP\ / il Bl dl/B
B\ pT 4/n is the frequency integrated Planck function. If
we adopt a temperature that is constant throughout the
grid cell, thenT

i
,

E
i
em \ 4n*tiP(Ti

)B(T
i
)m

i
, (5)

where is the mass of the cell.m
iEquating the absorbed (eq. [2]) and emitted (eq. [5])

energies, we Ðnd that after absorbing packets, the dustN
itemperature is given by

pT
i
4\ N

i
L

4Nc iP(Ti
)m

i
. (6)

Note that the Planck mean opacity is a function of tem-iPperature, so equation (6) is actually an implicit equation for
the temperature, which must be solved every time a packet is
absorbed. Since this equation is solved so many times, an
efficient algorithm is desirable. Fortunately, is a slowlyiPvarying function of temperature, which implies a simple
iterative algorithm may be used to solve equation (6). To do
so efficiently, we pretabulate the Planck mean opacities for
a large range of temperatures and evaluate by inter-iP(Ti

)
polation, using the temperature from the previous guess.
After a few steps, we have the solution for Note thatT

i
.

because the dust opacity is temperature-independent, the
product which is proportional to increasesi

i
pT

i
4, / ilBl dl,

monotonically with temperature. Consequently, alwaysT
iincreases when the cell absorbs an additional packet.

2.2. Temperature Correction
Now that we know the temperature after absorbing an

additional packet within the cell, we must reradiate this
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energy so that the heating always balances the cooling.
Prior to absorbing this packet, the cell has emitted packets
that carried away an energy corresponding to the cellÏs pre-
vious emissivity where *T is the tem-jl@ \ il Bl(Ti

[ *T ),
perature increase arising from the packet absorption. Note
that these previous packets were emitted with an incorrect
frequency distribution corresponding to the previous tem-
perature, The total energy that should be radiatedT

i
[ *T .

now corresponds to at the new temperature, Thus, thejl T
i
.

additional energy to be carried away is given by

*jl\ jl [ jl@ \ il[Bl(Ti
)[ Bl(Ti

[ *T )] , (7)

which is the shaded area shown in Figure 1. As long as the
packet energy is not too large (this may be assured byEcchoosing a large enough number of photon packets, toNc,use for the simulation), the temperature change *T is small,
so the temperature correction spectrum

*jlB il *T (dBl/dT ) . (8)

Note that is everywhere positive because *T [ 0 and*jlthat the Planck function is a monotonically increasing func-
tion of temperature. Therefore, to correct the previously
emitted spectrum, we immediately reemit the packet (to
conserve energy), and we choose its frequency using the
shape of This procedure statistically reproduces for*jl. *jlthe distribution of the reemitted packets. Normalizing this
distribution, we Ðnd the temperature correction probability

FIG. 1.ÈTemperature correction frequency distribution. Shown are the
dust emissivities, prior to and after the absorption of a singlejl \il Bl(T ),
photon packet. The spectrum of the previously emitted packets is given by
the emissivity at the old cell temperature (bottom curve). To correct the
spectrum from the old temperature to the new temperature (upper curve),
the photon packet should be reemitted using the di†erence spectrum
(shaded area).

distribution

dP
i

dl
\ il

K
AdBl

dT
B
T/Ti

, (9)

where is the probability of reemitting the packetdP
i
/dl

between frequencies l and l] dl, and the normalization
constant K \ /0= il(dBl/dT )dl.

Now that the packetÏs frequency has changed, we change
the opacity and scattering parameters accordingly and con-
tinue with scattering, absorption, temperature correction,
and reemission until all the photon packets Ðnally escape
from the system. In principle, we could also account for the
back-warming of the source. Whenever a packet hits the
source, the source must reradiate this new energy. This will
change the temperature of the source, and the new source
photons can be emitted using a di†erence spectrum similar
to equation (9).

When we begin our calculation, no packets have been
absorbed, so the initial temperature is zero throughout the
envelope. This means that the initial temperature change is
not small, as is required by equation (8). One could use
equation (7) to reemit the Ðrst packet that is absorbed ;
however, this is not necessary. The number of packets
producing this initial temperature change is small ; it is on
the order of the number of spatial grid cells. Furthermore,
these packets generally are reemitted at such long wave-
lengths that they are not observable. Consequently, the
error arising from using equation (8) to reemit every packet
is too small to be of importance.

As the simulation runs, the envelope starts at zero tem-
perature. It then heats up, and the radiation Ðeld ““ relaxes ÏÏ
to its Ðnal spectral shape. The temperature correction pro-
cedure is simply a way of reordering the calculation (the
frequencies that are being used at a given moment) so that
in the end, all the frequencies have been properly sampled.
Consequently, after all the stellar photon packets have been
transported, the Ðnal envelope temperature is the correct
radiative equilibrium temperature, and the emergent SED
has the correct frequency shape. Furthermore, the photon
reemission automatically accounts for the di†use envelope
emission. Note that energy is necessarily conserved, and
there is no time-consuming iteration in our scheme ; calcu-
lating the radiative equilibrium temperature requires no
more computational time than an equivalent pure scat-
tering calculation in which the temperature structure is held
Ðxed. Similarly, there is no issue of convergence in our
method. Unlike "-iteration, the photon packets carry
energy over large distances throughout the envelope
because they are never destroyed, and of course there is no
iteration at all. After running packets, we have the ÐnalNcanswer. The simulation does not continue running until
some convergence criterion is met, and the only source of
error in the calculation is the statistical sampling error
inherent in Monte Carlo simulations.

3. BENCHMARK VERIFICATION

To validate our method for determining the radiative
equilibrium temperatures and emergent Ñuxes, we com-
pared our results against a set of benchmark calculations
recently developed by et al. (1997) for testing spher-Ivezic�
ically symmetric dust radiative equilibrium codes. The pa-
rameters listed by et al. enable us to reproduceIvezic�
exactly the same set of physical conditions (i.e., input spec-
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trum, dust destruction radius, optical depth, opacity fre-
quency distribution, and radial density structure).

For all benchmark tests, et al. used a point-sourceIvezic�
star, radiating with a blackbody spectrum whose tem-
perature K. The dust density distribution was aT

*
\ 2500

power law with radius

o \ o0(Rdust/r)p , (10)

where

o0\
qj

(ij] pj)(1[ Rdust/Rmax)
4
5
6
0
0

1/Rmax (p \ 0) ,
1/Rdust (p \ 2) .

(11)

The inner radius of the envelope is the dust destruction
radius the outer radius is and the total radialRdust, Rmax,optical depth is speciÐed at j \ 1 km. The dust absorp-qj,tive opacity and scattering opacity were taken to beil pl

il
(i1 km] p1 km)

\ 0.5
4
5
6
0
0

1 (j \ 1 km) ,
(1 km/j) (j [ 1 km) ,

(12)

pl
(i1 km] p1 km)

\ 0.5
4
5
6
0
0
1 (j \ 1 km) ,
(1 km/j)4 (j [ 1 km) .

(13)

Since the total optical depth at 1 km is independently speci-
Ðed, these opacities have been normalized to that at 1 km
for convenience. The wavelength-dependent scattering
albedo is given by and the scattering wasa \ pl/(il ] pl),assumed to be isotropic (note that in dust simulations, we
would normally use a nonisotropic phase function for the
scattering).

In principle, the inner radius of the dust shell isRdustdetermined by the dust condensation temperature, chosen
by et al. to be K. However, we are onlyIvezic� Tcond\ 800
testing the temperature correction procedure, so we have
not implemented a scheme to solve self-consistently for the
dust destruction radius. The values for were calculatedRdustinstead using et al.Ïs equation (4) and data from theirIvezic�
Table 1. Finally, the outer radius of the dust shell was set to
be The parameters describing the variousRmax\ 103Rdust.test simulations are summarized in Table 1.

To begin the simulation, we release stellar photon
packets with a blackbody frequency distribution, given by
the normalized Planck function

bl(x)\ 15
n4

x3
ex [ 1

, (14)

where A particularly simple method for sam-x \ hl/kT
*
.

pling the blackbody distribution is given by Carter & Cash-

TABLE 1

SPHERICAL MODELS

q1 km Rdust / R
*

p \ 0

1 . . . . . . . . 8.44
10 . . . . . . . 8.46
100 . . . . . . 8.60

p \ 2

1 . . . . . . . . 9.11
10 . . . . . . . 11.37
100 . . . . . . 17.67

well (1975). Since this reference is somewhat obscure and
difficult to obtain, we summarize the method here. First,
generate a uniform random number in the range 0È1, andm0determine the minimum value of l, that satisÐes thelmincondition

;
i/1

l
i~4º

n4
90

m0 . (15)

Next, obtain four additional uniform random numbers (in
the range 0È1), and Finally, the packet fre-m1, m2, m3, m4.quency is given by

x \ [ ln (m1 m2 m3 m4)/lmin . (16)

After emitting these packets from the star, we track them
through the envelope. To determine the envelope tem-
perature, we must count how many packets are absorbed in
each grid cell. Since the envelope is spherically symmetric,
we employ a set of spherical shells for our grid. To obtain
the best Poisson error statistics, we should ideally construct
the grid positions so that equal numbers of packets are
absorbed in each cell. Since the probability of absorbing a
photon packet is proportional to the optical depth, we
choose equal radial optical depth grid locations,

r
i

Rdust
\ 4

5
6
0
0
i*r ] 1 (p \ 0) ,
N

f
/(N

f
[ i) (p \ 2) ,

(17)

where is the total number of cells we used,N
r
\ 200 *r \

and Inte-(Rmax/Rdust[ 1)/N
r
, N

f
\ N

r
/(1 [ Rdust/Rmax).grating the density, equation (10), over the cell volume to

obtain the mass, we Ðnd from equation (6) that the tem-
perature in each grid cell is given by

T
i
4\ T

*
4 ,

4

5

6

0
0

N
i
N

r
(R

*
/Rdust)2[(i1 km]p1 km)/iP(Ti

)]

4Nc q1 km[(i2[i]1/3)*r2](2i[1)*r]1]
(p\0) ,

N
i
(N

f
[i)(N

f
[i]1)(R

*
/Rdust)2(1[Rdust/Rmax)

4Nc q1 kmN
f
[iP(Ti

)/(i1 km]p1 km)]
(p\2) ,

(18)

where we have used for the stellar lumi-L \ 4nR
*
2 pT

*
4

nosity.
We then proceed with the radiation transfer, temperature

calculation, and reemission as described in ° 2 until all
packets exit the envelope. When the packets escape, they are
placed into uniform frequency bins,Nl \ 1024

l
k
\ lmax

k
Nl

, (19)

where The width of each binhlmax\ 16kT
*
. *l\ lmax/Nl.Since the envelope is spherically symmetric, the observed

Ñux where is the number ofFlk \ N
k
Ec/4nd2*t*l, N

kpackets in the kth frequency bin and d is the observerÏs
distance from the star. Normalizing to the total Ñux, F\
L /4nd2, the SED is given by

AlFl
F
B
k
\ (k [ 1/2)

N
k

Nc
. (20)

The factor (k [ 1/2) arises from using the frequency at the
center of the bin.

In Figures 2a and 2b we show the results of our simula-
tion compared with the output of one of the codes tested by
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FIG. 2a FIG. 2b

FIG. 2.È(a) Spherical model SEDs. Shown are the comparisons of our spherically symmetric model Ñuxes (histogram) with those from DUSTY (solid
curves). The top panel compares the 1/r2 density models, while the bottom panel compares the constant density models. The optical depths at 1 km are as
indicated. The incident stellar spectrum is shown by the dashed curve. (b) Spherical model temperatures. Shown are the comparisons of our spherically
symmetric model temperatures (histogram) with those from DUSTY (solid curves). The top panel compares the 1/r2 density models, while the bottom panel
compares the constant density models. The optical depths at 1 km are as indicated.

et al. This code, called DUSTY, is publicly available1Ivezic�
and is described in & Elitzur (1997). We see that ourIvezic�
Monte Carlo calculations reproduce both the correct tem-
perature structure and SED. Note the large errors at the
longest and shortest wavelengths in the Monte Carlo calcu-
lations. At these wavelengths, the number of emerging
packets is small, resulting in large errors [the relative error
in each Ñux bin equals owing to the Poisson sam-1/(N

k
)1@2,

pling statistics inherent in Monte Carlo simulations]. The
excellent agreement of the comparisons shown in Figures 2a
and 2b (the di†erences are smaller than the numerical error
of the DUSTY calculations) demonstrates the validity of
our temperature correction procedure described in ° 2.

Now that we have veriÐed our basic radiative equilibrium
algorithm, we can proceed to investigate the temperature
structure and SEDs of other geometries. Owing to the
inherently three-dimensional nature of Monte Carlo simu-
lations (even our one-dimensional spherically symmetric
code internally tracks the photon packets in three
dimensions), our code is readily modiÐed for arbitrary
geometries. We now show the results of an application to
axisymmetric circumstellar environments.

1 The DUSTY Web site is available at http ://www.pa.uky.edu/
Dmoshe/dusty.

4. AXISYMMETRIC TWO-DIMENSIONAL CALCULATIONS

For the purpose of this illustrative simulation, we adopt a
stellar blackbody with K, an envelope innerT

*
\ 3500

radius and a simple ellipsoidal param-Rdust \ 10R
*
,

eterization for the circumstellar density. The isodensity con-
tours are elliptical, with a/b being the ratio of the semimajor
to semiminor axis. The density is given by

o \ o0
(Rdust/r)2

1 ] f 2cos2 h
, (21)

where is given by equation (11) (p \ 2 case), h is the polaro0angle, and the ““ Ñattening factor ÏÏ

f \ J(a/b)2[ 1 . (22)

Note that the equatorial-to-polar density ratio at a given
radius is oeq/opole\ (a/b)2.

As before, we divide the circumstellar environment into
cells with radial and latitudinal gridN

r
\ 200 Nk \ 20

points. Note that the envelope is symmetric about the
equator, so we combine the cells below the equator with
their counterparts above the equator. This is automatically
accomplished by using for the latitudinal gridk

j
\ cos h

jpoint coordinate. Spacing the grid so that the radial and
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latitudinal optical depths are the same for each cell, we Ðnd

r
i
\ N

f
N

f
[ i

Rdust , (23)

k
j
\ 1

J1 ] (a/b)2tan2 (nj/2Nk)
. (24)

With these cell coordinates, equation (6) for the temperature
in cell (i, j) becomes

T
i,j4 \ T

*
4

G N
i,j(Nf

[i)(N
f
[i]1)(R

*
/Rdust)2(1[Rdust/Rmax) f

4NcqVeqNf
[iP(Ti,j)/(iV

]p
V
)][tan~1 ( fk

j~1)[tan~1 ( fk
j
)]

H
,

(25)

where is the number of packets absorbed in the cell,N
i, jand we have chosen j \ 5500 (V band) for our equatorialA�

radial optical depth parameter, q
V
eq.

For the dust opacity, we adopt a standard MRN inter-
stellar grain mixture (Mathis, Rumpl, & Nordsieck 1977),
using optical constants from Draine & Lee (1984). Figure 3
shows the opacity and albedo in graphic form. The data for
this Ðgure are available in tabular form from the DUSTY
Web site.2 Note the prominent silicate absorption features
at 10 and 18 km. For the current demonstration, we assume
that the scattering is isotropic, but we can easily accommo-
date any phase function, analytic or tabulated, when calcu-
lating the emergent SED.

Unlike the spherically symmetric benchmarks, the SED
now depends on the viewing angle, so we must bin the

2 Available at ftp ://gradj.pa.uky.edu/dusty/distribution/ism-stnd.dat.

FIG. 3.ÈDust opacity. The normalized absorptive (dashed line), scat-
tering (dotted line), and total (solid line) opacities for the two-dimensional
simulations are shown in the top panel. The bottom panel shows the
corresponding albedo.

escaping packets in both direction and frequency. Since the
envelope is axisymmetric, the observed Ñux only depends
on the inclination angle i of the envelope symmetry axis (i.e.,
the stellar rotation axis). To obtain approximately equal
numbers of escaping packets, we choose directionNinc\ 10
bins, with equal solid angles, The escaping*)\ 4n/Ninc.directions (inclination angles) for these bins are given byi

l
k
l
esc \ l/Ninc , (26)

where In addition to the direction bins, we usek
l
esc \ cos i

l
.

the frequency bins given by equation (19).
Now that we have speciÐed both the direction and fre-

quency bins, the observed Ñux is Flk, l \N
k, lEc/*)d2*t*l,

where is the number of escaping packets in the (k, l)-N
k, lbin. Normalizing to the bolometric Ñux F gives the emer-

gent SED,

AlFl
F
B
k, l

\ (k [ 1/2)N
k, lNinc

Nc
. (27)

We now choose to investigate the SEDs produced by two
density structures with di†erent degrees of Ñattening. The
Ðrst has a density ratio to represent a disk-oeq/opole\ 1000
like structure. The second has a density ratio oeq/opole\10, which is mildly oblate, representative of an infalling
protostellar envelope. For each density structure, we
perform optically thick (in the mid-IR) and optically thin
calculations. The optically thick calculations have an equa-
torial V -band optical depth while the opticallyq

V
eq\ 200,

thin calculations have Table 2 summarizes theseq
V
eq\ 20.

density structures. For comparison, we also have performed
calculations for p \ 2 spherically symmetric models con-
taining the same total mass as our disk and envelope den-
sities. Keeping the same inner and outer radii, the optical
depth for the equivalent spherical model is

q
V
sp \ q

V
eq tan~1 f

f
. (28)

4.1. Disk Model
Figure 4a shows the incident stellar spectrum and the

emergent SED as a function of the viewing angle for the
disklike model as well as the result of the equivalent spher-
ically symmetric calculation. For both disk simulations,
when viewing the system pole-on, we are looking through
optically thin circumstellar dust (see Table 2) and can see
the star at optical wavelengths. In the IR, there is an excess
arising from the circumstellar disk, which reprocesses the
stellar radiation. Note that, for pole-on viewing, we see the
silicate features in emission since the disk is optically thin in
the vertical direction. As we go to higher viewing angles, the
optical depth to the central star increases, and as a result,
the star becomes more extincted in the optical region. Note

TABLE 2

ELLIPSOIDAL MODELS

q
V
eq q

V
pole Rdust / R

*

oeq / opole \ 1000

200 . . . . . . 0.2 10
20 . . . . . . . 0.02 10

oeq / opole \ 10

200 . . . . . . 20 10
20 . . . . . . . 2 10
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FIG. 4a FIG. 4b

FIG. 4.È(a) Disk model SEDs. The normalized emergent Ñuxes (solid lines) are shown as a function of the viewing angle (10 inclinations, evenly spaced in
cos i) for the disklike circumstellar density. The lowest curve corresponds to an almost edge-on view (cos i\ 0.05), while the highest curve corresponds to an
almost pole-on view (cos i\ 0.95). The dotted curves are for a spherically symmetric simulation, having the same total circumstellar mass. The incident
stellar spectrum is shown by the dashed curve. (b) Disk model temperatures. The temperatures (solid lines) are shown as a function of polar angle (20 angles,
spaced as indicated in the text). The lowest curve is closest to the equatorial plane, and the highest curve is nearest to the polar axis. The dashed curve is the
temperature for a spherically symmetric simulation, having the same total circumstellar mass, and the thin dotted curve is a simple power law T P r~0.4 for
reference.

that at almost edge-on viewing, a ““ shoulder ÏÏ appears
around 1 km for the optically thick case. This arises because
of the dominant e†ects of scattering the stellar radiation at
these wavelengths. These scattering shoulders are also
present in the axisymmetric calculations presented by Efsta-
thiou & Rowan-Robinson (1991), Sonnhalter et al. (1995),
MenÏschikov & Henning (1997), and DÏAlessio et al. (1999).
At wavelengths longer than about 1 km, the albedo begins
to drop rapidly (see Fig. 3), and the disk thermal emission
begins to dominate, so the shoulder terminates. Beyond 30
km, the envelope becomes optically thin, so the spectrum is
independent of inclination and is dominated by the dust
emission.

The two-dimensional temperature structure for the disk-
like models is displayed in Figure 4b. We see that at the
inner edge of the envelope there is little variation of(Rdust),the temperature with latitude, while at large radii, there is a
clear latitudinal temperature gradient, with the dust in the
denser equatorial regions being cooler than dust at high
latitudes.

In the polar region, the material is optically thin to the
stellar radiation, so it heats up to the optically thin radiative
equilibrium temperature. This temperature has a power-law
behavior T P r~0.4 for dust opacity (i P j~1). As can be
seen in Figure 4b, the polar temperature does indeed have a
power-law decrease with a slope of approximately [0.4.

In contrast, the disk only displays this power-law behav-
ior at large radii. At the inner edge of the disk, the disk
““ sees ÏÏ the same mean (stellar) intensity as is present in the
polar region (J \ W B, where W \ 0.5M1 [ [1[ (R/r)2]1@2N
is the dilution factor). Consequently, the inner edge of the
disk heats up to the optically thin radiative equilibrium
temperatureÈthe same as the polar temperature. However,
at larger radii, the opaque material in the inner regions of
the disk shields the outer regions from direct heating by the
stellar radiation. This shielding reduces the mean intensity
(J \ W B). As a result, the outer disk is only heated to a
fraction of the optically thin radiative equilibrium tem-
perature. Thus, the equatorial region is cooler than the
polar region. Eventually, at large enough radii, the disk
becomes optically thin to the heating radiation. At that
point, it sees a radially streaming radiation Ðeld from an
e†ective photosphere that has a much lower temperature
than the star. From that point outward, the disk tem-
perature displays an optically thin power-law decrease with
a slope that parallels the polar temperature.

The spherically symmetric calculation overestimates both
the emergent Ñux and the disk temperature. In the optically
thin limit, the IR continuum is proportional to the mass of
the circumstellar material, so one would expect that a
spherically equivalent mass would reproduce the long-
wavelength spectrum. Recall, however, that we can see the
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star at pole-on viewing angles. This implies that the disk
does not reprocess the entire bolometric luminosity of the
star. Consequently, the IR excess is less than that in the
spherical model. Note that one can nonetheless reproduce
the edge-on SED using a spherical model if we allow the
density power law to depart from 1/r2 and change the size
of the spherical envelope. This also was noted by Sonnhal-
ter et al. (1995), who found that they could Ðt the IR contin-
uum of their disk models by changing the radial dependence
of the circumstellar density and the outer radius for the
same total envelope mass.

4.2. Envelope Model
The SED and temperature structure for the oblate

envelope are shown in Figures 5a and 5b. The optically thin
envelope displays signiÐcant extinction of the star at all
viewing angles. Close to edge-on, scattering shoulders
appear around 1 km that are similar to those seen in the
disk model (Fig. 4a). Finally, because the model is optically
thin in the mid-IR, the silicate feature is always in emission,
and the SED is independent of the viewing angle for wave-
lengths longer than a few microns.

For the denser envelope, the star is extremely faint at
optical wavelengths. Along with the increased extinction in
the optical, the scattering shoulders are less prominent
because of the thermal emission by the envelope. In the
mid-IR, the envelope is optically thick edge-on and opti-
cally thin pole-on. Consequently, the silicate features go
from absorption to emission as the viewing angle changes
from edge-on to pole-on. The general shape of the SEDs,

which now peak in the mid-IR for all inclinations, are remi-
niscent of spectra from embedded (class I) T Tauri stars,
which are commonly modeled using Ñattened axisymmetric
dusty envelopes (e.g., Adams, Lada, & Shu 1987 ; Kenyon,
Calvet, & Hartmann 1993 ; MenÏshchikov & Henning 1997 ;
DÏAlessio, Calvet, & Hartmann 1997). Of these T Tauri
simulations, only Efstathiou & Rowan-Robinson (1991)
have performed an exact calculation for the SED and cir-
cumstellar temperature for the Terebey, Shu, & Cassen
(1984) collapse model.

The temperature structure for our envelope models (Fig.
5b) is qualitatively similar to the temperature structure of
the disk models (Fig. 4b). The temperature at the inner edge
of the envelope is independent of latitude, while at larger
radii, the equatorial regions are cooler than the polar
regions. The primary di†erence is that the latitudinal tem-
perature gradient is not as extreme.

Finally, we note that the equivalent spherically sym-
metric model better reproduces the far-IR spectrum of the
envelope models than the disk models. This is because the
envelope models reprocess the entire bolometric luminosity,
while in disk models, some of the stellar luminosity escapes
through the polar region.

5. DISCUSSION

We have developed a temperature correction procedure
for use in Monte Carlo radiation transfer codes. We have
tested our method against other spherically symmetric
benchmark codes and successfully matched their results.
After verifying our method, we applied it to obtain sample

FIG. 5a FIG. 5b

FIG. 5.È(a) Envelope model SEDs. Same as Fig. 4a, but for the envelope density distribution. (b) Envelope model temperatures. Same as Fig. 4b, but for
the envelope density distribution.
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temperature distributions and SEDs for two-dimensional
axisymmetric disklike models and mildly oblate envelopes.
These simulations illustrate the important role envelope
geometry can play when interpreting the SEDs of embed-
ded sources.

The primary limitation of our temperature correction
procedure is that it only applies if the opacity is indepen-
dent of temperature. This is not true for free-free opacity or
hydrogen bound-free opacity, but it is true for dust opacity,
which is the dominant opacity source in many astrophysical
situations. The reason our method is limited to
temperature-independent opacities is that two associated
problems occur if the opacity varies when the cellÏs tem-
perature changes. The Ðrst is that the cell will have
absorbed either too many or too few of the previous packets
passing through the cell. The second is the associated
change in the interaction locations of the previous packets,
which implies that the paths of the previous photon packets
should have been di†erent. These problems do not occur if
the opacity is independent of temperature.

Lucy (1999) has proposed a slightly di†erent method to
calculate the equilibrium temperature. Instead of sampling
photon absorption, he directly samples the photon density
(equivalent to the mean intensity) by summing the path
length of all packets that pass through a cell. Typically,
more packets pass through a cell than are absorbed in the
cell, so this method potentially produces a more accurate
measurement of the temperature for a given total number of
packets, especially when the envelope is very optically thin.
The disadvantage of his method is that it requires iteration
to determine the envelope temperature. In principle, one
could partially combine both methods. First, run our simu-
lation, adding path length counters to each cell. After
running all packets, use the path length information to cal-
culate a Ðnal temperature. This will provide a more accu-
rate temperature that can be used to calculate the source
function. After obtaining the source function for each cell, it
is a simple matter to integrate the transfer equation to
obtain the SED.

Another limitation of the Monte Carlo method is that it
is not well suited to envelopes with very high optical depths
(q[ 100È1000), unless there is an escape channel for the

photons. For example, geometrically thin disks can be
extremely optically thick in the radial direction, but opti-
cally thin in the polar direction, providing an escape
channel for the photons. Similarly, dense envelopes can be
very optically thick to the illumination source, but optically
thin to the reprocessed radiation, which is a another escape
channel. In the event that no such escape channels exist, one
must turn to other methods. We are currently investigating
how to couple the Monte Carlo simulation in the optically
thinner regions with other methods in the optically thick
interior.

The focus of the present paper has been on the develop-
ment and implementation of the temperature correction
procedure. For this reason, we have made several simplify-
ing assumptions regarding the circumstellar opacity and
geometry. For example, we have assumed a single tem-
perature for all dust grains regardless of their size and com-
position. This di†ers from other investigations in which
di†erent types of grains can have di†erent temperatures at
the same spatial location (e.g., the spherically symmetric
radiation transfer code developed by WolÐre & Cassinelli
1986). Similarly, we have not implemented a procedure to
solve for the location of the dust destruction radius, which
will be di†erent for grains of di†ering size and composition.
These issues are currently under investigation.

With the speed of todayÏs computers, Monte Carlo radi-
ation transfer simulations can be performed in a reasonably
short time. The two-dimensional simulations presented in
this paper employed 108 packets, requiring about 2 hr of
CPU time ; the spherically symmetric cases used 106
packets, requiring about 1 minute. So for continuum trans-
fer, Monte Carlo simulation is proving to be a very power-
ful technique for investigating arbitrary density structures
and illuminations.
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