Monte Carlo Radiation Transfer in Protoplanetary Disks

Kenneth Wood St Andrews

Radiation Transfer + Hydrodynamics

- RT Models:Barbara Whitney, Jon Bjorkman,
Christina Walker, Mark O'Sullivan
Tom Robitaille
- Dust Theory: Mike Wolff
- SPH Models: Ken Rice, Mike Truss, Ian Bonnell
- Observations: Rachel Akeson, Charlie Lada, Ed Churchwell, Glenn Schneider, Angela Cotera, Keivan Stassun

Monte Carlo Development History

- Scattered light disks & envelopes (1992)
- 3D geometry & illumination (1996)

1992: Predictions

1996: HST data

- Dust radiative equilibrium (2001) SEDs disks + envelopes
- Monte Carlo for disk surface + diffusion for interior (2002)

- Density grids from SPH simulations (2003)
- Spatial variation of dust opacity (2003)
- Self consistent vertical hydrostatic equilibrium (2004)

Disk Structure Calculations

- Our models used parameterized disks: $\Sigma(r) \sim r^{-p}$, $h(r) \sim r^{-\beta}$
- Disk theory: reduce model parameter space
- Irradiated accretion disks in vertical hydrostatic equilibrium (HSEQ): (D'Alessio, Calvet, et al.)

$$\Sigma \sim r^{-1}, h \sim r^{-1.25}$$

- New Monte Carlo: iterate for self consistent disk structure (Walker et al. 2004, 2005)
- How well can power law disks reproduce structure, SEDs and images of HSEQ disks?

Inner Edge of Disk

- Inner edge is important for setting near IR excess (Natta, Dullemond, Dominik, & collaborators)
- Recent HSEQ models suggest a new class of disk where inner edge shadow dominates structure and SED (e.g., Dullemond & Dominik 2004)

Inner Edge of Disk

- Can reproduce HSEQ disk temperature structure, SEDs, and images with power law disks with monotonically increasing scaleheight $h = h_0 (r/R_0)^{\beta}$
- General recipe: scale h(r) from hydrostatic value at dust destruction radius, $\beta = 1.2$ to 1.3
- HSEQ disks: dust settling and disk surface density dominate over inner edge effects
- Inner edge can shadow if outer disk not in HSEQ

Group I & II Herbig Ae Disks

- Similar mm fluxes
- Group II: lower mid to far-IR fluxes
- Mid to far IR SED: dust settling, disk viscosity?

SED data compiled by Mike Sitko

T Tauri Disks: SED + Interferometry

- RY Tau: $M_{\rm d} = 0.015 M_{\odot}$, $M_{\rm acc} = 2.5 \times 10^{-7} M_{\odot}$ /yr
- Inner disk: $R_{dust} = 0.27 \text{ AU}, R_{gas} = 5 R_*$
- Gas opacity, inner edge, disk locking models
- Gas emission inside dust fits PTI 2.2µm data

Akeson et al. (2005)

3D Models: Fractal Clouds

• Big variations with viewing angle in optical to IR SED and silicate features

Whitney et al. (2005)

Disk Candidates from GLIMPSE?

IRAC 1,3,4

2MASS JHK

Disk Candidates from GLIMPSE?

IRAC 1,3,4

2MASS JHK

- Are these images of:
 - Very large, distant disks: $R_{\rm d} \sim 10^4 \, {\rm AU?}$
 - Smaller, nearby disks: $R_{\rm d} \sim 1000$ AU?

– Junk?

Summary

- Monte Carlo: self-consistent disk structure calculations
- Dust settling and $\Sigma(r)$ dominate mid & far-IR SED
- Interferometry: emission from inner gas disks
- Huge disks from GLIMPSE?

Codes now available at:

http://gemelli.spacescience.org/~bwhitney/codes