AS2001: Stellar Structure and Evolution

Kenny Wood
Room 316
email: kw25@st-andrews.ac.uk

THE HR DIAGRAM

- Notice specific regions:
- main sequence
- red giants
- white dwarfs
- Also - links between regions
- and several empty regions
- luminosity range
- $10^{5} L_{\text {sun }}-10^{-4} L_{\text {sun }}$
- surface temp range
- $10^{5} \mathrm{~K}-2 \times 10^{3} \mathrm{~K}$
- radius range
$-\quad 10^{3} \mathbf{R}_{\text {Sun }}-10^{-2} \mathbf{R}_{\text {Sun }}$

Quick reminder

- The luminosity of a star is $L=4 \pi R^{2} \sigma T^{4}$
- hence dividing by the luminosity of the Sun

$$
\begin{aligned}
& \frac{\mathrm{L}}{\mathrm{~L}_{\text {Sun }}}=\left(\frac{\mathrm{R}}{\mathrm{R}_{\text {Sun }}}\right)^{2}\left(\frac{\mathrm{~T}}{\mathrm{~T}_{\text {Sun }}}\right)^{4} \\
& \text { ie } \quad \log \left(\frac{\mathrm{L}}{\mathrm{~L}_{\text {Sun }}}\right)=4 \log \left(\frac{\mathrm{~T}}{\mathrm{~T}_{\text {Sun }}}\right)+2 \log \left(\frac{\mathrm{R}}{\mathrm{R}_{\text {Sun }}}\right)
\end{aligned}
$$

So, on the HR diagram which shows log(L) versus $\log (\mathrm{T})$, we can draw a series of straight lines for different stellar radii.

- For stars of same spectral type (ie surface temp), the width of the spectral lines varies with the luminosity (eg H lines narrow for supergiants, broader for m -s stars).
- This effect is due to variations in the pressure and density of the stellar atmospheres.
- High pressure and density \rightarrow many collisions \rightarrow shift in energy levels of H atoms \rightarrow broad lines
- Hence narrow lines in supergiants, since their pressure and density is low (their mass is spread over a large volume) \rightarrow few collisions \rightarrow energy levels undisturbed.
- Hence luminosity classes I-V
- Spectral type + luminosity class tells you a great deal about a star!

Stellar Structure and Evolution

Mass - luminosity relation

- Use binary systems to measure stellar masses
- from brightness variations (light curves) of eclipsing binaries, determine orbital inclination i, and sizes of stars relative to their orbit size
- from Doppler effect on positions of spectral lines, measure orbital motion of both stars, and hence absolute size of orbits (e.g. in km).
- combined data give masses, radii, temperatures and luminosities of both stars, usually quoted in solar units.

- From masses of many stars, find for m-s stars

$$
\begin{aligned}
\frac{\mathrm{L}}{\mathrm{~L}_{\text {Sun }}} & =\left(\frac{\mathrm{M}}{\mathrm{M}_{\text {Sun }}}\right)^{4.0 \pm 0.02} \text { for } 0.4<\mathrm{M}<10 \mathrm{M}_{\text {Sun }} \\
\frac{\mathrm{L}}{\mathrm{~L}_{\text {Sun }}} & =\left(\frac{\mathrm{M}}{\mathrm{M}_{\text {Sun }}}\right)^{3.6 \pm 0.1} \text { for } 5 \leq \mathrm{M} \leq 40 \mathrm{M}_{\text {Sun }}
\end{aligned}
$$

But note exponent in this power law decreases rapidly for stars of higher mass

- Composite HR diagrams of different clusters \rightarrow stellar evolution; also use clusters to get distances

AS 2001 Stellar Structure and Evolution

Open clusters:

- distances: main sequence (m-s) fitting
- distribution: Milky Way (MW) plane
- population: I
- Chemical comp. :

X ~ 0.73; Y ~ 0.25; Z~0.01-0.04

- Ages: young - old; 10^{6} - n x 10^{9} yrs

Globular clusters:

- distances: m-s fitting; RR Lyrae (all have $\mathrm{M}_{\mathrm{v}} \sim 0.6$)
- distribution: galactic halo + nucleus
- population: II
- Chemical comp. : Z~0.0001-0.001
- Ages: very old; n x $\mathbf{1 0}^{10} \mathbf{y r s}$

STELLAR STRUCTURE

- Governed by mass, age, initial chemical composition
- The equations of stellar structure describe the complete internal structure of a star
- this in turn determines the observable parameters of the star: its radius, surface temperature and luminosity
- NB: asteroseismology provides further tests of these equations and our knowledge of stellar structure

Stellar equilibrium

- Most stars are in a stable state (i.e. there is a balance between all their internal forces)
- the inward force of gravity is balanced by an outward pressure force (hydrostatic equilibrium)
- pressure is higher in centre of star

Gravitational force

Newton's Laws:

- the gravitational force $F_{\text {grav }}$ is the same as if all the mass closer to the star than the element were concentrated at the centre.
- The outer layers have no effect.
- If each side of the cube is of area A, it is a distance r from the centre and has density ρ then the mass of the element is $\mathrm{m}=\rho$ Adr and the mass interior to r is
 $M(r)$, giving

$$
\mathrm{F}_{\mathrm{grav}}=\frac{G M(r) \rho A d r}{r^{2}}
$$

Pressure force

- Pressure forces all balance except on the lower and upper faces
- lower face: pressure force outward $\mathrm{P}(r) A$
- upper face: pressure force inward

$$
\mathrm{P}(r+d r) A
$$

- condition for no net force is:

$$
\mathrm{P}(r+d r) A-P(r) A+\frac{G M(r) \rho A d r}{r^{2}}=0
$$

- But, for an infinitesimal element of side dr,

$$
\mathrm{P}(r+d r)-P(r)=\left(\frac{d P}{d r}\right) d r
$$

- and so force balance becomes

$$
\begin{equation*}
\frac{d P(r)}{d r}=-\frac{G M(r) \rho(r)}{r^{2}} \tag{1}
\end{equation*}
$$

The equation of hydrostatic equilibrium

- The mass interior to r can be found from

$$
\begin{equation*}
\frac{d M(r)}{d r}=4 \pi r^{2} \rho(r) \tag{2}
\end{equation*}
$$

i.e.

$$
M(r)=4 \pi \int r^{2} \rho(r) d r
$$

