

The Equations of	Stellar Structure
$\frac{dP(r)}{dr} = -\frac{GM(r)\rho(r)}{r^2}$	hydrostatic equilibrium
$\frac{dM(r)}{dr} = 4\pi r^2 \rho(r)$	mass equation
$P(r) = \frac{k\rho(r)T(r)}{m_0\overline{\mu}(r)}$	equation of state
$\frac{dL(r)}{dr} = 4\pi r^2 \rho(r)\varepsilon(r)$	energy equation
$L(r) = \frac{-64\pi\sigma r^2 T^3(r)}{3\kappa(r)\rho(r)} \frac{dT(r)}{dr}$	energy transport (radiative)
AS 2001	Stellar Structure and Evolution

Gravitational contraction -- how long can it last? • From (5) $\frac{dP}{dM} = -\frac{GM(r)}{4\pi r^4}$ i.e. $4\pi r^3 dP = -\frac{GM(r)}{r} dM$ (14) Integrate over the whole star with volume V = (4/3) πr^3 $3\int_{P_c}^{P_r} V dP = -\int_{0}^{M_s} \frac{GM}{r} dM = \Omega$ (15) where Ω is the gravitational potential energy of the whole star (NB $\Omega < 0$!)

Making sense of the Virial Theorem • In a perfect gas, total thermal energy / unit vol is $u^* = nn_f kT/2$ where n = total no. of particles n_f = no. of degrees of freedom for each particle n_f is related to the ratio of specific heats: $\gamma = \frac{n_f + 2}{n_f} \Rightarrow n_f = \frac{2}{\gamma - 1}$ For a perfect monatomic gas, n_f = 3, $\gamma = 5/3$

$$\int_{P_c} 3\int_{P_c}^{P_r} VdP = -\int_{0}^{M_s} \frac{GM}{r} dM = \Omega$$
Now, from (15), noting that $r < r_s$ everywhere
$$-\Omega = \int_{0}^{M_s} \frac{GM}{r} dM > \int_{0}^{M_s} \frac{GM}{r_s} dM = \frac{GM_s^2}{2r_s}$$

$$\tau_{th} \approx GM_s^2 / RL$$
For the Sun, $\tau_{th} \sim 3 \ge 10^7$ years. Slow gravitational contraction is not sufficient to explain timescales > 10⁹ years , but it is important at some stages of stellar evolution.