

• Average thermal energy of particles $E_{th} = 3 \text{ kT } / 2$ $= 4 \times 10^{-16} \text{ J} \quad \text{for T} \sim 2 \times 10^7 \text{ K (core temp)}$ • But Coulomb potential between 2 protons separated by r = 10⁻¹⁵ m is much bigger... $E_{pot} = \frac{q_1 q_2}{4\pi\varepsilon_0 r} = 2.3 \times 10^{-13} \text{ J}$ with $q_1 = q_2 = 1.6 \times 10^{-19} \text{ C}$ $\varepsilon_0 = 8.85 \times 10^{-12} \text{ J}^{-1} \text{m}^{-1} \text{C}^2$ AS 2001 Stellar Structure and Evolution

(2) Positron decay: endergonic, requires threshold input energy (since mass of neutron and positron > mass of proton) $p \rightarrow n + e^+ + v$ (weak interaction) (3) (p, γ) process: proton reacts with nucleus of charge Z and mass A to produce a more massive particle (A+1) with charge (Z+1): ${}_Z^A E + p \rightarrow {}_{Z+1}^{A+1}E + \gamma$ $e.g. {}_6^{12}C + {}_1^1H \rightarrow {}_7^1N + \gamma$ AS 2001 Stellar Structure and Evolution

2. CARBON - NITROGEN - OXYGEN (CNO) CYCLE			
(a) ${}^{12}_{6}C + {}^{1}_{1}H$	$\rightarrow \frac{13}{7}N + \gamma$	5×10^3 yrs	1.94 MeV
(p,γ)			
(b) $^{13}_{7}$ N	$\rightarrow {}^{13}_{6}\mathrm{C} + e^+ + v$	15 min	2.22 MeV
$(e^+ \text{ decay})$			
(c) ${}^{13}_{6}C + {}^{1}_{1}H$	$\rightarrow \frac{14}{7}N + \gamma$	2×10^3 yrs	7.55 MeV
(p,γ)			
(d) ${}^{14}_{7}N + {}^{1}_{1}H$	$\rightarrow {}^{15}_{8}\mathrm{O}$ + γ	10 ⁶ yrs	7.29 MeV
(p,γ)			
(e) $^{15}_{8}$ O	$\rightarrow \frac{15}{7}\mathrm{N} + e^+ + v$	3 min	2.76 MeV
(f) ${}^{15}_{7}N + {}^{1}_{1}H$	$\rightarrow {}^{12}_{6}C + {}^{4}_{2}He$	30yrs	4.97 MeV
Reaction rate $\varepsilon \sim T^{15}$; dominant in O, B, A stars, total $\varepsilon \sim 25$ MeV			
AS 2001 Stellar Structure and Evolution			

