Notes: 1. Extremely massive stars

- Radiation pressure \rightarrow mass loss by stellar wind during m -s phase at rates of $10^{-5}-10^{-7}$ $\mathrm{M}_{\text {sun }} / \mathrm{yr}$
i.e. several $\mathrm{M}_{\text {sun }}$ during m-s phase.
- Outer layers $(\mathrm{H}+\mathrm{He})$ lost to the star so that products of CNO cycle (N, He) become exposed at surface.
- Shell source regions removed so may not become red-giants.
- will become the Wolf-Rayet stars which have abnormal abundancies of N, O, or C in their atmospheres (hence WN, WO or WC stars); plus dense stellar winds_with mass loss $\sim 10^{-5} \mathrm{M}_{\text {sun }} / \mathrm{yr}$

2. Evolution for metal-deficient stars

- Evolution tracks for pop II stars similar in overall appearance to those for pop I.
- The p-p chain is used for $\mathbf{H} \rightarrow$ He fusion since Z~0.001-0.0001.
- All the more massive pop II stars in the MW Galaxy have evolved to their end states
($>10^{10} \mathrm{yrs}$) - but young metal-deficient stars of all masses seen in LMC / SMC .

- Obvious difference in evolution tracks is at core He fusion stage:
pop II clusters show an extended horizontal branch (h-b).
- Mass loss at r-g stage (for ALL stars) reduces total mass. For low mass stars the core mass $\sim 0.6 \mathrm{M}_{\text {sun }}$, and the envelope mass determines the location on the h - b .
-Thin envelopes (ie smaller radius for same luminosity) at blue end of h-b, thick envelopes at red end.
-So....extent of h-b in globular clusters reflects differences in mass-loss rates for individual stars at the r-g stage.

3. Colour - magnitude diagrams of star clusters

- Stars in cluster formed from same gas cloud at approx. same time.
- Hence appearance of C-M diagram reflects age of cluster
- e.g after 10^{8} yrs,
- M > $8 \mathrm{M}_{\text {sun }}$ stars evolved to end states
- M ~ $5 \mathrm{M}_{\text {sun }}$ stars are core He fusion red / yellow supergiants (Classical Cepheid variables)
- $\mathrm{M}<5 \mathrm{M}_{\text {sun }}$ stars still on m-s

Page 〈\#〉

End states of stars

- Stars lose significant amounts of mass via stellar-wind processes at various stages:
- low-mass stars: r-g and p-n stages
- high mass stars: m-s and r-g stages
- Hence majority of stars end as white dwarfs with C + O cores + He - rich envelopes; more massive stars produce $\mathrm{O}-\mathrm{Ne}-\mathrm{Mg}$ cores .

WHITE DWARFS

Observations

- M ~ $0.6 \mathrm{M}_{\text {sun }}$
- $\mathbf{R} \sim 0.01 \mathrm{R}_{\text {Sun }}$
- $M_{V} \sim+10$ to +15
- Sp. type BO to M

Physics

- escape velocity $=(2 G M / R)^{1 / 2} \sim 10^{7} \mathrm{~ms}^{-1}$
- mass density $\sim 10^{9} \mathrm{kgm}^{-3}$
- electron-degeneracy pressure
(remember....indep of temp, dep on density) helps support the star against own gravity

Size

- W-D cools by emission of radiation, and stays at constant radius; cooling time $\boldsymbol{\sim} \mathbf{1 0}^{9} \mathrm{yrs}$
- theoretical models give good agreement with observations and find that $R \propto M^{-1 / 3}$
- i.e. a more massive WD has a smaller radius
\therefore upper limit to W-D mass of $1.4 \mathrm{M}_{\text {Sun }}$ - the Chandrasekhar limit - i.e. upper limit to mass of WD that can be supported by electron degeneracy pressure.

Page 〈\#〉

