
11. Spectral Lines II

• Curve of Growth

• Line formation

• Eddington-Milne

Curve of Growth
Curve of Growth is a theoretical plot of line equivalent width against 
line optical depth, usually plotted as log(Wλ) – log(τ).
The Wλ – τ relation is seen in the Schuster-Schwarzschild model 
atmosphere: continuous spectrum is emitted from a deep layer, 
Ic = Bλ(TR), second reversing layer at TL absorbs the spectral lines.  
Radiation we observe is (from L2):

where τλ is the optical depth of the reversing layer given by:

where Ni is the column density along LOS (m-2) of particles in lower 
level i.  
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The relative line depression is: 

Where Dmax = [Bλ(TR) - Bλ(TL)] / Bλ(TR) the maximum depression for 
very strong lines.  The equivalent width is

showing how Wλ relates to τ and hence also Ni and f. 

The curve of growth can be split into three regimes depending on the 
optical depth (line strength): weak, saturated, and strong lines.
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1. Weak Lines: For τλ << 1, exp(- τλ) ~ 1 – τλ, so D ~ Dmax τλ.  The 
Voigt profile is approximated by Doppler because opacity is too 
small to map damping wings into emergent spectrum.  Replacing 
H(a,v) with exp(-[∆λ/∆λD]2) with area π½ ∆λD gives:

Wλ ~ f Ni.  Part 1 of curve of growth is Doppler part and has slope 
1:1.  Linear increase due to optical thinness of reversing layer.

2. Saturated Lines: For τλ > 1, line cannot be deeper than Dmax.  The 
line width increases with τλ0

and 

Where Q ~ 2 – 4.  This is part 2 of curve of growth or the shoulder.
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3. Strong Lines: For τλ >> 1, the core doesn’ t change any more.  
Line centre is fixed at Dmax, but line wings have τλ < 1 and may 
grow in optically thin fashion to increase Wλ.  For large τλ0

the wings 
contribute a lot because they map the damping part of 

A drop off with ∆λ that is less steep than the exponential decay of the 
Doppler core.  In the damping part of H(a,v) we write:

which gives:

Thus part 3 or the damping part scales as Wλ ~ (a τλ0
)½ ~ (f Ni γ)½ .
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Classical Curve of Growth Fitting
The strategy is to analyze lines via a curve of growth to determine 
abundances, damping parameter a, excitation temperature Texc, and 
microturbulence ξmicro.  Plot measured Wλs as log(Wλ/λ) against

Where C contains unknowns such as Dmax, microturbulence, Saha 
population factor, continuous extinction, elemental abundance.

Changing parameters changes the shape of theoretical curve of growth. 
By minimizing scatter of data can derive physical parameters.
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Residual Flux in a Line

Opacity due to line and continuum: 

Continuum opacity varies slowly with ν => constant across line.  

Write: and assume ην independent of τ.  

Now consider total / continuum optical depth:

lclc
νννν κκκκκ +=+=

cl κκη νν /=

z

z
c

lc

dd

d)(d

κρτ
κκρτ νν

−=

+−= τητ νν )1( +=



In ERT want energy created and energy destroyed along beam:

νννννν κρεκρεκρεκρε IIIID llllcccc )1()1( −++−+=

νννννν κρεκρεκρεκρε JJBBC llccllcc )1()1( −+−++=

continuum
scattering

continuum
absorption

line
absorption

line
scattering

continuum
emission

line
emission

line
scattering

continuum
scattering
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Which simplifies to

where
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Eddington-Milne Solution
Assumptions to solve ERT above:

1. λν independent of τν (i.e., ην independent of τ)
2. Bν(T[τ]) linear function of τ, continuum optical depth

Bν = a + b τ = a + pν τν
pν = b / (1 + ην)

Can now solve ERT above in similar way to scattering in Eddington 
solution.  Form moment equations:
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Use Eddington approximations J = 3K, to get from second moment 
equation above:

Substitute this in first moment equation above and use linearity
of Bν to get:

Solution:

Apply boundary conditions as before: no incident radiation, at large 
depth J => B, Eddington approximation, J(0)=2H(0) or from exact 
solution J(0)=31/2H(0)
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Using these approximations and boundary conditions gives

and the emergent flux:

For the continuum ην = 0 so we get the residual flux as
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Tutorial Example
The above solution has been outlined.  Derive it in detail, going 
through all the steps and algebra.  Then derive equations for the 
residual flux for the following situations

1. Scattering lines: no scattering in continuum, pure 
scattering in the line

2. Absorption lines: Pure scattering in continuum, 
no scattering in line

Hint: what are the line and continuum ε values for the above cases?

What are the residual fluxes for very strong lines in the above cases?
Comment on the spectral appearance of the line cores.
For a very strong line, consider the limit of very large ην


