11. Spectral Lines||

e Curve of Growth
e Lineformation
» Eddington-Milne

Curve of Growth

Curve of Growth is atheoretical plot of line equivalent width against
line optical depth, usually plotted as log(W,) —log(T).

The W, — Tt relation is seen in the Schuster-Schwarzschild model
atmosphere: continuous spectrum is emitted from a deep layer,

I = B,(TR), second reversing layer at T, absorbs the spectral lines.
Radiation we observeis (from L2):

[1,=B,(T)e™ +B,(T) -
where, isthe optical depth of the reversing layer given by:
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where N, is the column density along LOS (m-?) of particlesin lower
level i.




Therelative line depressionis:
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Where D, = [B\(Tg) - B,(T,)] / B,(Tg) the maximum depression for
very strong lines. The equivalent widthis

|WA =Dy, [(1-€"")dA |

line

showing how W, relates to T and hence also N; and f.

The curve of growth can be split into three regimes depending on the
optical depth (line strength): weak, saturated, and strong lines.

1. Wesk Lines: Fort, <<1,exp(-T1)) ~1-T1,,90D ~D,, T). The
Voigt profileis approximated by Doppler because opacity is too
small to map damping wings into emergent spectrum. Replacing
H(a,v) with exp(-[ANAAp]?) with area 102 AN gives:
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W, ~f N, Part 1 of curve of growth is Doppler part and has slope
1:1. Linear increase due to optical thinness of reversing layer.

2. Saturated Lines: For 1, > 1, line cannot be deeper than D,,,,. The
line width increases with 1, - and

IW, =QD,,, A, |

Where Q ~2—-4. Thisispart 2 of curve of growth or the shoulder.




3. Strong Lines: For 1, >> 1, the core doesn’t change any more.
Line centreisfixed at D, but linewings have 1, <1 and may

grow in optically thin fashion to increase W,. For large T, o the wings
contribute alot because they map the damping part of

IH@V) =allVrv?)=alvm@r 1 ar) ~1/02)
A drop off with AA that is less steep than the exponential decay of the
Doppler core. In the damping part of H(a,v) we write:
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Thus part 3 or the damping part scalesas W, ~ (a T, 0)1/2 ~(FN;y)”.
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Classical Curve of Growth Fitting

The strategy isto analyze lines viaacurve of growth to determine

abundances, damping parameter a, excitation temperature T, and

microturbulence & ... Plot measured W, s aslog(W,/A) against

IIogX =logC +log(g f A,) —)(5040/Texc|

Where C contains unknowns such as D, microturbulence, Saha
population factor, continuous extinction, el emental abundance.

Changing parameters changes the shape of theoretical curve of growth.
By minimizing scatter of data can derive physical parameters.

Residua Flux inalLine

Opacity due to line and continuum: IKV =KC+K, =K+ K'VI

Continuum opacity varies slowly with v => constant acrossline.

Write: and assume ), independent of T.

Now consider total / continuum optical depth:

I, =@+n,)|

dr, =-p(k° +k))dz
dr=-pk°dz




In ERT want energy created and energy destroyed along beam:

ID =e°pk°l, +(L-£%)pk°l, +£ pk)l, +(1—£')pK'V|V|

continuum  continuum line line
absorption  scattering  absorption scattering

IC =£°pK°B, +£' pk)B, +(L-£)pk©I, + (1—5'),0K'VJV|

continuum line continuum line
emission  emission scettering scattering
ERT becomes;
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Which simplifiesto
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Eddington-Milne Solution

Assumptions to solve ERT above:
1. A, independent of T, (i.e, n, independent of T)
2. B,(T[1]) linear function of T, continuum optical depth
B, =at+bt=a+p, T,
py=b/(1+n,)

Can now solve ERT above in similar way to scattering in Eddington
solution. Form moment equations:

(%) 2 5 10,(5,) - B, (1,)]
dr,

dK, (7,) _
ar =H,(7,)

Use Eddington approximations J = 3K, to get from second moment
equation above:
de(r D « )‘

v

Substitute thisin first moment equation above and use linearity
of B, to get: 2
“ Sl = a1,10,0,)-8,,)
TV

dz[JV(TV) B BV(TV)]
dr?

=3A,[3,(7,) - B,(7,)]

Solution: ‘]V(Tv) — BV(Tv) — Cl eV 4 C2 e+mn

Apply boundary conditions as before: no incident radiation, at large
depth J => B, Eddington approximation, J(0)=2H(0) or from exact
solution J(0)=3Y2H(0)




Using these approximations and boundary conditions gives
D e e e

and the emergent flux:
‘HV(O) = J,(0)//3 =%[pv + 34 a]/[1+\/I]‘

For the continuum n,, = 0 so we get theresidual flux as

p,+/34, all 1++/e°

=H,(0)/H®(0) =
R, =H,(0)/H"(0) 1+%, || b+ Jaea

Tutorial Example

The above solution has been outlined. Deriveit in detail, going
through all the steps and algebra. Then derive equations for the
residual flux for the following situations

1. Scattering lines.  no scattering in continuum, pure
scattering in the line

2. Absorption lines:  Pure scattering in continuum,
no scattering in line

Hint: what are the line and continuum € values for the above cases?
What are the residual fluxes for very strong lines in the above cases?

Comment on the spectral appearance of the line cores.
For avery strong line, consider the limit of very largen,




